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Symmetric s-t Path TSP



Recall: s-t Path TSP

Input:

• A complete undirected graph G = (V ,E );

• Start vertex s ∈ V , end vertex t ∈ V ;

• Edge costs c(e) ≡ c(i , j) ≥ 0 for all e = (i , j) ∈ E ;

• Edge costs satisfy the triangle inequality: c(i , j) ≤ c(i , k) + c(k, j)

for all i , j , k.

Goal: Find a min-cost path from s to t that visits all other vertices in

between.



Recall: LP relaxation

Let δ(S) be the set of edges with exactly one endpoint in S , and

x(E ′) ≡
∑

e∈E ′ x(e).

Call δ(S) an s-t cut if s ∈ S , t 6∈ S (or s 6∈ S , t ∈ S). Call δ(S) a non s-t

cut if s, t 6∈ S (or s, t ∈ S).

Min
∑
e∈E

c(e)x(e)

subject to: x(δ(i)) =

{
1, ∀i = s, t,

2, ∀i 6= s, t,

x(δ(S)) ≥

{
1, ∀s-t cuts δ(S),

2, ∀non s-t cuts δ(S),

0 ≤ x(e) ≤ 1, ∀e ∈ E .



Recall: No Even Narrow Cuts – No Problem

Let x∗ be an optimal solution for the s-t path TSP LP.

Definition

A cut δ(S) is narrow if x∗(δ(S)) < 2.

Observation

Let T be a spanning tree, and WT = OddT4{s, t}.

If c(T ) ≤ OPTLP , and there is no narrow cut δ(S) for which |δ(S)∩T |
is even, then adding a minimum-cost WT -matching to T gives an s-t

traveling salesman path of cost at most 3
2OPTLP .



Recall: Narrow Cuts Are Nested

Theorem (An, Kleinberg, Shmoys (2012))

If δ(S1), δ(S2) are narrow cuts, S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.

So the narrow cuts look like s ∈ S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ V .

s C1 C2
. . . . . . Ck t

Each narrow cut δ(Si ) is indicated by a gray line; Si =
⋃i

j=1 Cj is all

nodes to the left of the line.



An idea!?

Can we just use Gao’s algorithm again??!?

3 Yes, we can find a Gao-tree TGao:

|TGao ∩ δ(S)| is odd for all cuts δ(S) with x∗(δ(S)) < 2.

3 That implies that the “cost of parity correction” is at most 1
2OPTLP :

c(M) ≤ 1

2
OPTLP ,

for a minimum-cost WTGao-matching M.

7 But, unfortunately, Gao (2015) shows that c(TGao) 6≤ OPTLP ...
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Recent Developments



Many new ideas

Many interesting ideas in these recent developments:

• An, Kleinberg, Shmoys (2012): Best-of-many trees algorithm;

• Gottschalk, Vygen (2018): Choosing better trees;

• Sebő, vZ (2019): Best-of-many with deletion;

• Traub, Vygen (2019), Zenklusen (2019): Dynamic programming.

We will talk about the first three ideas in this lecture, giving high level

ideas and simplified proofs. In tomorrow’s lecture, we will describe the

last result (giving a full analysis).



Best-of-Many Trees



Convex Combination of Spanning Trees1

Because an optimal LP solution x∗ is in the spanning tree polytope

(feasible for the spanning tree LP), we can compute a convex

combination of spanning trees

x∗ =
k∑

i=1

λiχTi .

(
∑k

i=1 λi = 1, λi ≥ 0 for i = 1, . . . , k .)

1Recall: The characteristic vector of T has χT (e) = 1 if e ∈ T , χT (e) = 0 if e 6∈ T .



Example: Convex Combination of Spanning Trees

s 1 2 4 5 6 t

3

— x∗(e) = 1

- - x∗(e) = 2/3

· · · x∗(e) = 1/3

λ1 = 1
3 ,T1 =

s 1 2 4 5 6 t

3

λ2 = 1
3 ,T2 =

s 1 2 4 5 6 t

3

λ3 = 1
3 ,T3 =

s 1 2 4 5 6 t

3
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Best-of-Many Algorithm

An, Kleinberg, Shmoys (2012) propose the Best-of-Many Christofides’

algorithm: given optimal LP solution x∗, compute convex combination of

spanning trees

x∗ =
k∑

i=1

λiχTi .

For each spanning tree Ti :

• Let WTi = OddTi4{s, t} be the set of vertices whose degree parity

needs fixing.

• Let Mi be a minimum-cost WTi -matching.

• Find s-t traveling salesman path by shortcutting Eulerian path of

(V ,Ti tMi ).

Return the shortest traveling salesman path found over all i .
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Probabilistic View

Since the algorithm returns the best solution among the solutions based

on T1, . . . ,Tk , the cost of the algorithm’s solution is at most the

(weighted) average cost of these solutions.

For convenience, we view the weighted average cost as an expected

value, by considering a random spanning tree T where P(T = Ti ) = λi
for i = 1, . . . , k , and adding M, a min-cost WT-matching for the random

spanning tree T.

The cost of the algorithm’s solution is at most

E(c(T)) + E(c(M)),

where E(·) indicates the expectation.

Observation: P(e ∈ T) = x∗(e), and E(|T ∩ δ(S)|) = x∗(δ(S)).
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Theorem

Theorem

The Best-of-Many algorithm returns a solution of cost at most
13
8 OPTLP = 1.625OPTLP .

We will prove the theorem, by proving the following two lemmas.

Lemma (Connectivity Cost)

E(c(T)) = OPTLP .

Lemma (Parity Correction Cost)

E(c(M)) ≤ 5

8
OPTLP .



Connectivity Cost

E(c(T)) = OPTLP .



Analyzing the Parity Correction Cost

Remember that the obstacle in our analysis is even narrow cuts, i.e., s-t

cuts δ(S) with x∗(δ(S)) < 2 and |T ∩ δ(S)| even.

Lemma

For a narrow cut δ(S),

P(|T ∩ δ(S)| is odd) ≥ 2− x∗(δ(S)).
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Analyzing the Parity Correction Cost

Let the narrow cuts be δ(S1), δ(S2), . . . , δ(S`).

Approach: Given a tree T , construct a vector zT that is feasible for the

WT -matching LP:

zT =
1

2
x∗ + additional vectors,

one for each narrow cut δ(Sj) such that |T ∩ δ(Sj)| is even

1/3

1/3

1

x∗(δ(Sj)) = 5/3



Analyzing the Parity Correction Cost

Let the narrow cuts be δ(S1), δ(S2), . . . , δ(S`). For each narrow cut, let

fj = 2− x∗(δ(Sj)).

Let ej be the cheapest edge in δ(Sj). For a tree T , we define

zT =
1

2
x∗ +

∑
j :|T∩δ(Sj )| is even

1

2
fjχej .

1/3

1/3

1

x∗(δ(S)) = 5/3

1/6

1/6

1/2

1/6

zT (δ(S)) = 1
2 ·

5
3 + 1

2 (2− 5
3 ) = 1

(if |T ∩ δ(S)| is even)
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Proof of Second Lemma: E(c(M)) ≤ 5
8
OPTLP

Since

zT =
1

2
x∗ +

∑
j :|T∩δ(Sj )| is even

1

2
fjχej

is feasible for the WT -matching LP for any tree T , we have

E(c(M)) ≤ E(
∑
e

c(e)zT(e))

=
1

2

∑
e∈E

c(e)x∗(e) +
∑̀
j=1

1

2
fjc(ej)P(|T ∩ δ(Sj)| even).

We showed that P(|T ∩ δ(Sj)| is odd) ≥ 2− x∗(δ(Sj)) = fj , so

E(c(M)) ≤

1

2
OPTLP +

∑̀
j=1

1

2
fjc(ej)(1− fj) ≤

1

2
OPTLP +

1

8

∑̀
j=1

c(ej).
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One Last Lemma

We need one last ingredient.

Lemma (Gao (2015)) ∑̀
j=1

c(ej) ≤ OPTLP .

Proof.

Consider the MST T . We will show that we can assign each narrow cut

δ(Sj) an edge eT ,j ∈ T ∩ δ(Sj) in such a way that no edge in T is

assigned to more than one cut.

So
∑`

j=1 c(ej) ≤
∑`

j=1 c(eT ,j) ≤ c(T ) ≤ OPTLP .



Assigning Edges of T to Narrow Cuts

Consider (V ,T ). Contract S1 to v1, V \ S` to v`, and Sj \ Sj−1 to vj , for

j = 2, . . . , `− 1.

Graph is connected; remove edges from T if necessary to ensure T is a

spanning tree of contracted graph.

For j = 1, . . . , `:

• Let eT ,j be the edge incident on vj on the unique path from vj to

vj+1. Remove eT ,j from T , and contract vj , vj+1.



Improved Analysis

We showed that the solution returned by the Best-of-Many algorithm has

cost at most 13
8 OPTLP = 1.625OPTLP .

An, Kleinberg and Shmoys give a more refined analysis, showing the

following result.

Theorem (An, Kleinberg, Shmoys (2012))

The Best-of-Many algorithm returns a solution of cost at most
1+
√
5

2 OPTLP ≤ 1.618OPTLP .

Their analysis was further improved by Sebő:

Theorem (Sebő (2013))

The Best-of-Many algorithm returns a solution of cost at most

1.6OPTLP .
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Choosing Better Trees



Reassembling Trees

Vygen shows that exchanging edges in pairs of spanning trees of the

convex combination can improve their properties under certain conditions.

Theorem (Vygen (2015))

The Best-of-Many algorithm “with Reassembling of Trees” returns a

solution of cost at most 1.599OPTLP .

Analysis is complicated, but the idea of reassembly led to the next idea:

a Gao-like (or layered) convex combination.



Gao-like Convex Combinations

Given a convex combination x∗ =
∑k

i=1 λiχTi , and a narrow cut δ(S), we

previously showed that

P(|T ∩ δ(S)| is odd) ≥
∑

i :|Ti∩δ(S)|=1

λi ≥ 2− x∗(δ(S)).

Call a narrow cut lonely in tree T if |T ∩ δ(S)| = 1. Let

fS = 2− x∗(δ(S)).

The above says that each narrow cut is lonely in an at least an “fS
fraction” of the trees in the convex combination.

Gottschalk and Vygen showed that we can find a convex combination

such that δ(S) is lonely in the “first” fS fraction of the trees; and that

this holds simultaneously for all narrow cuts δ(S).
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Layered Convex Combination

Theorem (Gottschalk, Vygen (2018), Schalekamp, Sebő, Traub,

vZ (2018))

There exists spanning trees T1, . . . ,Tk and multipliers λ1, . . . , λk ≥ 0

such that

x∗ =
k∑

i=1

λiχTi ,

and for any narrow cut δ(S), there exists ` such that |Ti ∩ δ(S)| = 1 for

1 ≤ i ≤ ` and
∑`

j=1 λi ≥ 2− x∗(δ(S)).



Example

s 1 2 4 5 6 t

3

— x∗(e) = 1

- - x∗(e) = 2/3

· · · x∗(e) = 1/3

δ(S1) δ(S2) δ(S3) δ(S4) δ(S5) δ(S6)

Narrow cuts δ(S) indicated by gray lines; S is the set of vertices to the

left of the line.

x∗(δ(Sj)) = 5
3 for j = 2, 3, 4, 5 → must be lonely in first 2− 5

3 = 1
3

fraction of trees,

x∗(δ(S1)) = x∗(δ(S6)) = 1 → must be lonely in first 2− 1 = 1

fraction of trees.



Layered Convex Combination

“Layer 1”:

• All cuts δ(S) with x∗(δ(S)) < 2

are lonely in trees in layer 1.

• Weight of layer 1 is φ1.

s 1 2 4 5 6 t

3

“Layer 2”:

• All cuts δ(S) with

x∗(δ(S)) < 2− φ1 are lonely in

layer 2.

• Weight of layer 2 is φ2.

. . .

s 1 2 4 5 6 t

3

s 1 2 4 5 6 t

3



Layered Trees and Matroids

Schalekamp, Sebő, Traub and vZ: Trees in a given layer are bases of a

matroid:

s t

s t

s t

• Spanning tree in each

“level set”, plus

• one edge per lonely cut.

⇒ simpler proof of the

theorem of Gottschalk and

Vygen.

⇒ we can use greedy

algorithm to find

minimum-cost tree for each

layer (instead of computing

convex combination).
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Why Layered Set of Trees May Help in the Analysis

s t

s t

s t

As we go down the layered

set:

• Trees are less restrictive

→ tree cost decreasing;

• More narrow cuts may

be even → parity

correction cost

increasing.



Best-of-Many on Layered Trees

Theorem (Gottschalk, Vygen (2018))

The Best-of-Many algorithm on a Layered Set of Trees returns a

solution of cost at most 1.566OPTLP .



Best-of-Many with Deletion



Best-of-Many with Deletion

Sebő and vZ (2016) propose the Best-of-Many with Deletion (BOMD)

algorithm: given optimal LP solution x∗, and a layered set of trees for x∗,

for each spanning tree Ti :

• Delete the edges in the layer’s lonely cuts to get a forest Fi .

• Let WFi = OddFi4{s, t} be the set of vertices whose degree parity

needs fixing, and let Mi be a minimum-cost WFi -matching.

• Add doubled edges Di in lonely cuts if needed to reconnect

(V ,Fi tMi ).

• Find s-t traveling salesman path by shortcutting Eulerian path of

(V ,Fi tMi t Di ).

Return the shortest traveling salesman path found over all i .



First Example of BOMD

Forest Fi . s t

Add parity correction Mi . s t

Reconnect if needed.

s t

Parity correction reconnected the forest! (and we show this happens

often)
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Second Example of BOMD

Forest Fi . s t

Add parity correction Mi . s t

Reconnect if needed. s t



Analysis of BOMD

Since we start with a forest instead of a tree, we “save” compared to

starting with a spanning tree. The analysis of the cost of parity correction

is similar to before. We can prove that parity correction often reconnects

the forest, so that the cost of reconnection is small on average.
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The Best-of-Many with Deletion algorithm returns a solution of cost at

most 1.5284OPTLP .
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