Furstenberg’s conjecture on intersections of Cantor sets, and self-similar measures

Pablo Shmerkin

Department of Mathematics and Statistics
Universidad T. Di Tella and CONICET

Santiago, 07.12.2016
Base p expansions

Let $p \in \mathbb{N}_{\geq 2}$. Every point x has an expansion to base p:

$$x = 0.x_1 x_2 \ldots = \sum_{n=1}^{\infty} x_n p^{-n}, \quad x_i \in \{0, 1, \ldots, p - 1\}. $$

Basic facts:

1. All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
2. A point is rational if and only if the expansion is eventually periodic.
3. Expansions in bases p^n and p^k are “almost the same” (look at base p in blocks of length n and k).
Base p expansions

Let $p \in \mathbb{N}_{\geq 2}$. Every point x has an expansion to base p:

$$x = 0.x_1x_2\ldots = \sum_{n=1}^{\infty} x_n p^{-n}, \quad x_i \in \{0, 1, \ldots, p - 1\}.$$

Basic facts:

1. All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
2. A point is rational if and only if the expansion is eventually periodic.
3. Expansions in bases p^n and p^k are “almost the same” (look at base p in blocks of length n and k).
Base p expansions

Let $p \in \mathbb{N}_{\geq 2}$. Every point x has an expansion to base p:

$$x = 0.x_1x_2 \ldots = \sum_{n=1}^{\infty} x_n p^{-n}, \quad x_i \in \{0, 1, \ldots, p-1\}.$$

Basic facts:

1. All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
2. A point is rational if and only if the expansion is eventually periodic.
3. Expansions in bases p^n and p^k are “almost the same” (look at base p in blocks of length n and k).
Multiplication by \(p \)

Definition

For \(p \in \mathbb{N}_{\geq 2} \), let

\[
T_p = px \mod 1
\]

be multiplication by \(p \) on the circle.

Symbolically, \(T_p x \) corresponds to shifting the \(p \)-ary expansion \(x \): there is a factor map, which is one-to-one outside of the countably many points with two \(p \)-ary expansions.
Multiplying by 2 and by 3: the founding father
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. $\times 2, \times 3$, rigidity of higher order actions.
6. Fractal geometry \cap ergodic theory (CP-processes, ...).
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. \(\times 2, \times 3\), rigidity of higher order actions.
6. Fractal geometry \(\cap\) ergodic theory (CP-processes, ...).
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. $\times 2, \times 3$, rigidity of higher order actions.
6. Fractal geometry \cap ergodic theory (CP-processes, ...).
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. \(\times 2, \times 3\), rigidity of higher order actions.
6. Fractal geometry \(\cap\) ergodic theory (CP-processes, ...).

P. Shmerkin (U.T. Di Tella/CONICET)
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. $\times 2, \times 3$, rigidity of higher order actions.
6. Fractal geometry \cap ergodic theory (CP-processes, ...).
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. $\times 2, \times 3$, rigidity of higher order actions.
6. Fractal geometry \cap ergodic theory (CP-processes, ...).
Expansions in different bases

Principle (Furstenberg)

Expansions in bases 2 and 3 have no common structure. More generally, this holds for bases p and q which are not powers of a common integer or, equivalently, $\log p / \log q$ is irrational.

Remark

Furstenberg proved some results, and proposed many conjectures, which make precise (in different ways) the concept of “no common structure”.
Expansions in different bases

Principle (Furstenberg)

Expansions in bases 2 and 3 have no common structure.
More generally, this holds for bases p and q which are not powers of a common integer or, equivalently, \(\log p / \log q \) is irrational.

Remark

Furstenberg proved some results, and proposed many conjectures, which make precise (in different ways) the concept of “no common structure”.
Invariant sets

Definition

A set $A \subset [0, 1)$ is T_p-invariant if $T_p(A) \subset A$. That is, shifting the p-ary
expansion of a point in A gives another point in A.

- If p and q are coprime, then $\{0, 1/q, \ldots, (q-1)/q\}$ is T_p-invariant.
- $[0, 1)$ is T_p-invariant.
- Let $D \subset \{0, 1, \ldots, p-1\}$. The set $A = A_{p,D}$ of points whose base
 p-expansion has only digits from D is T_p-invariant. We call it a
 p-Cantor set. Example: the middle-thirds Cantor set.
- There is a **wild abundance** of invariant sets and no classification or
description is possible.
Invariant sets

Definition

A set \(A \subset [0, 1) \) is \(T_p \)-invariant if \(T_p(A) \subset A \). That is, shifting the \(p \)-ary expansion of a point in \(A \) gives another point in \(A \).

- If \(p \) and \(q \) are coprime, then \(\{0, 1/q, \ldots, (q-1)/q\} \) is \(T_p \)-invariant.
- \([0, 1)\) is \(T_p \)-invariant.
- Let \(D \subset \{0, 1, \ldots, p-1\} \). The set \(A = A_{p,D} \) of points whose base \(p \)-expansion has only digits from \(D \) is \(T_p \)-invariant. We call it a \(p \)-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.
Invariant sets

Definition

A set $A \subset [0, 1)$ is T_p-invariant if $T_p(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- If p and q are coprime, then $\{0, 1/q, \ldots, (q - 1)/q\}$ is T_p-invariant.
- $[0, 1)$ is T_p-invariant.
- Let $D \subset \{0, 1, \ldots, p - 1\}$. The set $A = A_{p, D}$ of points whose base p-expansion has only digits from D is T_p-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.
Invariant sets

Definition

A set $A \subset [0, 1)$ is T_p-invariant if $T_p(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- If p and q are coprime, then $\{0, 1/q, \ldots, (q-1)/q\}$ is T_p-invariant.
- $[0, 1)$ is T_p-invariant.
- Let $D \subset \{0, 1, \ldots, p-1\}$. The set $A = A_{p,D}$ of points whose base p-expansion has only digits from D is T_p-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.
Invariant sets

Definition

A set $A \subset [0, 1)$ is T_p-invariant if $T_p(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- If p and q are coprime, then $\{0, 1/q, \ldots, (q-1)/q\}$ is T_p-invariant.
- $[0, 1)$ is T_p-invariant.
- Let $D \subset \{0, 1, \ldots, p-1\}$. The set $A = A_{p,D}$ of points whose base p-expansion has only digits from D is T_p-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.
Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2, T_3 respectively, then *A and B have no common structure.*

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3, then A is either finite or the whole circle $[0, 1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets “without structure”.
Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2, T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3, then A is either finite or the whole circle $[0, 1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets “without structure”.
Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2, T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3, then A is either finite or the whole circle $[0, 1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets “without structure”.

P. Shmerkin (U.T. Di Tella/CONICET)
Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2, T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3, then A is either finite or the whole circle $[0, 1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets “without structure”.
Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2, T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3, then A is either finite or the whole circle $[0, 1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets “without structure”.
A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\{ T_2^n T_3^m x \}_{n,m=1}^{\infty}$ is infinite.
- If x is irrational, then the orbit $\{ T_2^n T_3^m x \}_{n,m=1}^{\infty}$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

If x is irrational, then the orbit $\{ T_2^n T_3^m x \}_{n,m=1}^{\infty}$ is dense in $[0, 1)$.
A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\{T^n_2 T^m_3 x\}_{n,m=1}^\infty$ is infinite.
- If x is irrational, then the orbit $\{T^n_2 T^m_3 x\}_{n,m=1}^\infty$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

If x is irrational, then the orbit $\{T^n_2 T^m_3 x\}_{n,m=1}^\infty$ is dense in $[0, 1)$.

P. Shmerkin (U.T. Di Tella/CONICET)
A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^\infty$ is infinite.
- If x is irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^\infty$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

If x is irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^\infty$ is dense in $[0, 1)$.
A corollary in terms of orbits

Observation

- If \(x \) is rational, then the orbit \(\{ T_2^n T_3^m x \}_{n,m=1}^\infty \) is infinite.
- If \(x \) is irrational, then the orbit \(\{ T_2^n T_3^m x \}_{n,m=1}^\infty \) is infinite (and its closure is invariant under \(T_2 \) and \(T_3 \)).

Corollary (Furstenberg 1967)

If \(x \) is irrational, then the orbit \(\{ T_2^n T_3^m x \}_{n,m=1}^\infty \) is dense in \([0,1)\).
“The” $\times 2$, $\times 3$ Furstenberg conjecture

Definition
A Borel probability measure μ on $[0, 1)$ is T_p-invariant if

$$\mu(B) = \mu(T_p^{-1}B) \quad \text{for all Borel sets } B.$$

Conjecture (Furstenberg 1967)
If μ is T_2 and T_3 invariant, then μ is a convex combination of Lebesgue measure and an atomic measure supported on rationals.
“The” $\times 2$, $\times 3$ Furstenberg conjecture

Definition
A Borel probability measure μ on $[0, 1)$ is T_p-invariant if

$$\mu(B) = \mu(T_p^{-1}B)$$

for all Borel sets B.

Conjecture (Furstenberg 1967)
If μ is T_2 and T_3 invariant, then μ is a convex combination of Lebesgue measure and an atomic measure supported on rationals.
How to quantify “shared structure”

1 Furstenberg’s Theorem says that non-trivial T_2 and T_3 invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.

2 How can we quantify shared structure in finer/more quantitative ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.

3 Geometry helps quantify common structure. For example, if two sets $A, B \subset \mathbb{R}$ have no shared structure one expects the sumset $A + B = \{a + b : a \in A, b \in B\}$ to be “as large as possible” and the intersection $A \cap B$ and $A \cap (\lambda B + t)$ to be “as small as possible”.
How to quantify “shared structure”

1. Furstenberg’s Theorem says that non-trivial T_2 and T_3 invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.

2. How can we quantify shared structure in finer/more quantitative ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.

3. Geometry helps quantify common structure. For example, if two sets $A, B \subset \mathbb{R}$ have no shared structure one expects the sumset $A + B = \{ a + b : a \in A, b \in B \}$ to be “as large as possible” and the intersection $A \cap B$ and $A \cap (\lambda B + t)$ to be “as small as possible”.

P. Shmerkin (U.T. Di Tella/CONICET)
How to quantify “shared structure”

1. Furstenberg’s Theorem says that non-trivial T_2 and T_3 invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.

2. How can we quantify shared structure in finer/more quantitative ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.

3. Geometry helps quantify common structure. For example, if two sets $A, B \subset \mathbb{R}$ have no shared structure one expects the sumset

$$A + B = \{ a + b : a \in A, b \in B \}$$

to be “as large as possible” and the intersection $A \cap B$ and $A \cap (\lambda B + t)$ to be “as small as possible”.
Hausdorff Dimension

• Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:

\[\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \bigcup_i B(x_i, r_i) \right\} = 0 \right\} \]

• Gives a notion of “size” for sets in \(\mathbb{R}^d \), varies between 0 and \(d \), gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size \(\log 2 / \log 3 \) to the middle-thirds Cantor set, ...

• If \(A \subset \mathbb{T} \) is \(T_p \)-invariant, then \(\dim_H A = h_{\text{top}}(A) / \log p \).

• If \(A = A_{p,D} \) is a \(p \)-Cantor set, then \(\dim_H A = \log |D| / \log p \).
Hausdorff Dimension

- Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:

\[\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \bigcup_i B(x_i, r_i) \right\} = 0 \right\} \]

- Gives a notion of “size” for sets in \(\mathbb{R}^d \), varies between 0 and \(d \), gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size \(\log 2 / \log 3 \) to the middle-thirds Cantor set,...

- If \(A \subset \mathbb{T} \) is \(T_p \)-invariant, then \(\dim_H A = h_{\text{top}}(A) / \log p \).

- If \(A = A_{p,D} \) is a \(p \)-Cantor set, then \(\dim_H A = \log |D| / \log p \).
Hausdorff Dimension

- Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:

\[
\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \bigcup_i B(x_i, r_i) \right\} = 0 \right\}
\]

- Gives a notion of “size” for sets in \(\mathbb{R}^d\), varies between 0 and \(d\), gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size \(\log 2 / \log 3\) to the middle-thirds Cantor set,...

- If \(A \subset \mathbb{T}\) is \(T_p\)-invariant, then \(\dim_H A = h_{\text{top}}(A) / \log p\).

- If \(A = A_{p,D}\) is a \(p\)-Cantor set, then \(\dim_H A = \log |D| / \log p\).
Hausdorff Dimension

- Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:

\[\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \bigcup_i B(x_i, r_i) \right\} = 0 \right\} \]

- Gives a notion of “size” for sets in \(\mathbb{R}^d \), varies between 0 and \(d \), gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size \(\log 2 / \log 3 \) to the middle-thirds Cantor set, ...

- If \(A \subset \mathbb{T} \) is \(T_p \)-invariant, then \(\dim_H A = h_{top}(A) / \log p \).
- If \(A = A_{p,D} \) is a \(p \)-Cantor set, then \(\dim_H A = \log |D| / \log p \).
Furstenberg’s sumset conjecture
In all conjectures, \(p, q \) are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1
Let \(A, B \) be closed and \(T_p, T_q \) invariant. Then

\[
\dim_H(A + B) = \max(\dim_H(A) + \dim_H(B), 1).
\]

Motivation
- One “typically” expects the formula above to hold. For example, for arbitrary sets \(A, B \) it holds that

\[
\dim_H(A + \lambda B) = \max(\dim_H(A) + \dim_H(B), 1) \ 	ext{for almost all} \ \lambda \in \mathbb{R}.
\]
- Moreover, the right-hand side is always a (trivial) upper bound.
- For a strict inequality to occur, \(A \) and \(B \) must have “shared structure at many scales”.
Furstenberg’s sumset conjecture

In all conjectures, p, q are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1

Let A, B be closed and T_p, T_q invariant. Then

$$\dim_H(A + B) = \max(\dim_H(A) + \dim_H(B), 1).$$

Motivation

- One “typically” expects the formula above to hold. For example, for arbitrary sets A, B it holds that
 $$\dim_H(A + \lambda B) = \max(\dim_H(A) + \dim_H(B), 1)$$ for almost all $\lambda \in \mathbb{R}$.

- Moreover, the right-hand side is always a (trivial) upper bound.

- For a strict inequality to occur, A and B must have “shared structure at many scales”.
Furstenberg’s sumset conjecture

In all conjectures, \(p, q \) are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1

Let \(A, B \) be closed and \(T_p, T_q \) invariant. Then

\[
\dim_H(A + B) = \max(\dim_H(A) + \dim_H(B), 1).
\]

Motivation

- One “typically” expects the formula above to hold. For example, for arbitrary sets \(A, B \) it holds\(^*\) that

\[
\dim_H(A + \lambda B) = \max(\dim_H(A) + \dim_H(B), 1) \text{ for almost all } \lambda \in \mathbb{R}.
\]

- Moreover, the right-hand side is always a (trivial) upper bound.

- For a strict inequality to occur, \(A \) and \(B \) must have “shared structure at many scales”.

\(^*\) For \(\lambda = 0 \) it is a trivial equality.
Furstenberg’s sumset conjecture

In all conjectures, \(p, q \) are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1

Let \(A, B \) be closed and \(T_p, T_q \) invariant. Then

\[
\dim_H(A + B) = \max(\dim_H(A) + \dim_H(B), 1).
\]

Motivation

- One “typically” expects the formula above to hold. For example, for arbitrary sets \(A, B \) it holds* that

\[
\dim_H(A + \lambda B) = \max(\dim_H(A) + \dim_H(B), 1) \text{ for almost all } \lambda \in \mathbb{R}.
\]

- Moreover, the right-hand side is always a (trivial) upper bound.
- For a strict inequality to occur, \(A \) and \(B \) must have “shared structure at many scales”.

* This is an example to illustrate the concept, not a formal proof.

Furstenberg’s sumset conjecture
In all conjectures, p, q are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1

Let A, B be closed and T_p, T_q invariant. Then

$$\dim_H(A + B) = \max(\dim_H(A) + \dim_H(B), 1).$$

Motivation

- One “typically” expects the formula above to hold. For example, for arbitrary sets A, B it holds* that

$$\dim_H(A + \lambda B) = \max(\dim_H(A) + \dim_H(B), 1) \text{ for almost all } \lambda \in \mathbb{R}.$$

- Moreover, the right-hand side is always a (trivial) upper bound.

- For a strict inequality to occur, A and B must have “shared structure at many scales”.

P. Shmerkin (U.T. Di Tella/CONICET)
Furstenberg’s sumset conjecture
In all conjectures, \(p, q \) are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1
Let \(A, B \) be closed and \(T_p, T_q \) invariant. Then

\[
\dim_H(A + B) = \max(\dim_H(A) + \dim_H(B), 1).
\]

Motivation
One “typically” expects the formula above to hold. For example, for arbitrary sets \(A, B \) it holds* that

\[
\dim_H(A + \lambda B) = \max(\dim_H(A) + \dim_H(B), 1) \text{ for almost all } \lambda \in \mathbb{R}.
\]

Moreover, the right-hand side is always a (trivial) upper bound.

For a strict inequality to occur, \(A \) and \(B \) must have “shared structure at many scales”.

If A, B are a p-Cantor set and a q-Cantor set, then

$$\dim_H(A + \lambda B) = \min(\dim_H(A) + \dim_H(B), 1) \text{ for all } \lambda \in \mathbb{R} \setminus \{0\}.$$
Theorem (M.Hochman-P.S. 2012)

If A, B are closed and T_p, T_q-invariant, then

$$\dim_H(A + \lambda B) = \min(\dim_H(A) + \dim_H(B), 1) \text{ for all } \lambda \in \mathbb{R} \setminus \{0\}.$$
Product, projection, fiber

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"×2, ×3"
Product, projection, fiber
More general notions of shared structure?

I argued that if

$$\dim_H(A + B) < \min(\dim_H(A) + \dim_H(B), 1),$$

then A and B have “common structure” at many scales.

But the opposite is far from true! For many (“most”) sets A, even of dimension $\leq 1/2$, even T_p-invariant ones,

$$\dim_H(A + A) = \min(2 \dim_H(A), 1).$$

A stronger notion of shared structure is given by the size of intersections. For example, $A \cap A$ is always larger than “expected” (if $\dim_H(A) > 0$).
More general notions of shared structure?

I argued that if

$$\dim_H(A + B) < \min(\dim_H(A) + \dim_H(B), 1),$$

then A and B have “common structure” at many scales.

But the opposite is far from true! For many (“most”) sets A, even of dimension $\leq 1/2$, even T_p-invariant ones,

$$\dim_H(A + A) = \min(2 \dim_H(A), 1).$$

A stronger notion of shared structure is given by the size of intersections. For example, $A \cap A$ is always larger than “expected” (if $\dim_H(A) > 0$).
More general notions of shared structure?

- I argued that if

\[\dim_H(A + B) < \min(\dim_H(A) + \dim_H(B), 1), \]

then \(A \) and \(B \) have “common structure” at many scales.

- But the opposite is far from true! For many (“most”) sets \(A \), even of dimension \(\leq 1/2 \), even \(T_p \)-invariant ones,

\[\dim_H(A + A) = \min(2 \dim_H(A), 1). \]

- A stronger notion of shared structure is given by the size of intersections. For example, \(A \cap A \) is always larger than “expected” (if \(\dim_H(A) > 0 \)).
Conjecture 2 (Furstenberg 1969)

Let A, B be closed and invariant under T_p, T_q (seen as subsets of \mathbb{R}). Then for every affine bijection $f : \mathbb{R} \rightarrow \mathbb{R}$,

$$\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1, 0).$$

Motivation

- It is known that for arbitrary sets A, B one cannot do better than the right-hand side. Counting heuristics show that the RHS is the “average size” of an intersection.
- Conjecture 2 is far stronger than Conjecture 1. Heuristically, the sumset $A + B$ is “large” if “many” fibers are “small”. The conjecture asserts that all fibers are small.
Furstenberg’s intersection conjecture

Conjecture 2 (Furstenberg 1969)

Let A, B be closed and invariant under T_p, T_q (seen as subsets of \mathbb{R}). Then for every affine bijection $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1, 0).$$

Motivation

- It is known that for arbitrary sets A, B one cannot do better than the right-hand side. Counting heuristics show that the RHS is the “average size” of an intersection.

- Conjecture 2 is far stronger than Conjecture 1. Heuristically, the sumset $A + B$ is “large” if “many” fibers are “small”. The conjecture asserts that all fibers are small.
Furstenberg’s intersection conjecture

Conjecture 2 (Furstenberg 1969)

Let A, B be closed and invariant under T_p, T_q (seen as subsets of \mathbb{R}). Then for every affine bijection $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1, 0).$$

Motivation

- It is known that for arbitrary sets A, B one cannot do better than the right-hand side. Counting heuristics show that the RHS is the “average size” of an intersection.

- Conjecture 2 is far stronger than Conjecture 1. Heuristically, the sumset $A + B$ is “large” if “many” fibers are “small”. The conjecture asserts that all fibers are small.
Furstenberg’s intersection conjecture

Conjecture 2 (Furstenberg 1969)
Let A, B be closed and invariant under T_p, T_q (seen as subsets of \mathbb{R}). Then for every affine bijection $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1, 0).$$

Motivation

- It is known that for arbitrary sets A, B one cannot do better than the right-hand side. Counting heuristics show that the RHS is the “average size” of an intersection.

- Conjecture 2 is far stronger than Conjecture 1. Heuristically, the sumset $A + B$ is “large” if “many” fibers are “small”. The conjecture asserts that all fibers are small.
Previous results on Furstenberg’s conjecture

Theorem (Furstenberg 1969, Wolff 2000)

The conjecture holds if $\dim_H(A) + \dim_H(B) \leq 1/2$. More generally, one always has

$$\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1/2, 0).$$

Remark

No example of invariant sets A, B for which the conjecture holds with $\dim_H(A) + \dim_H(B) > 1/2$ were known.
Theorem (Furstenberg 1969, Wolff 2000)

The conjecture holds if \(\dim_H(A) + \dim_H(B) \leq 1/2 \). More generally, one always has

\[
\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1/2, 0).
\]

Remark

No example of invariant sets \(A, B \) *for which the conjecture holds with* \(\dim_H(A) + \dim_H(B) > 1/2 \) *were known.*
Solution to Furstenberg’s conjecture 2

Theorem (P.S. 2016)

Furstenberg’s conjecture 2 holds.

Remark

Meng Wu (University of Oulu, Finland) independently found another proof. The proofs are completely different. Wu’s proof is purely ergodic theoretical, using CP-processes (introduced by Furstenberg in the paper where he stated the conjecture) and Sinai’s factor theorem.
Theorem (P.S. 2016)

Furstenberg’s conjecture 2 holds.

Remark

Meng Wu (University of Oulu, Finland) independently found another proof. The proofs are completely different. Wu’s proof is purely ergodic theoretical, using CP-processes (introduced by Furstenberg in the paper where he stated the conjecture) and Sinai’s factor theorem.
Our old friend again: $A \times B$.

More pictures!
More pictures!

$A \times B \cap \text{diagonal} = A \cap B$.
$A \times B \cap \text{any line} = A \cap \text{affine image of } B.$
A corollary on subsets of integers

Corollary
Let A be the natural numbers with digits $0, 3$ in base 4, and B the natural numbers with digits $1, 2, 7$ in base 10. Then

$$\lim_{n \to \infty} \frac{\log |A \cap B \cap \{1, \ldots, n\}|}{\log n} = 0,$$

in other words, given $\varepsilon > 0$,

$$|A \cap B \cap \{1, \ldots, n\}| \leq n^\varepsilon \quad \text{for } n \text{ large enough}.$$
A corollary on subsets of integers

Corollary

Let A be the natural numbers with digits $0, 3$ in base 4, and B the natural numbers with digits $1, 2, 7$ in base 10. Then

$$\lim_{n \to \infty} \frac{\log |A \cap B \cap \{1, \ldots, n\}|}{\log n} = 0,$$

in other words, given $\varepsilon > 0$,

$$|A \cap B \cap \{1, \ldots, n\}| \leq n^\varepsilon \quad \text{for } n \text{ large enough}. $$

Question (Related to another conjecture of Furstenberg)

Is $A \cap B$ finite?
Tools involved in the proof

1. **Additive combinatorics**: an inverse theorem for the L^q norm of the convolution of two finitely supported measures (Balog-Szemerédi-Gowers Theorem, Bourgain’s additive part of discretized sum-product results).

2. **Ergodic theory**: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).

3. **Multifractal analysis** (L^q spectrum, regularity at points of differentiability).

4. General scheme of proof follows Mike Hochman’s strategy in his recent landmark paper on the dimensions of self-similar measures.
Tools involved in the proof

1. **Additive combinatorics**: an inverse theorem for the L^q norm of the convolution of two finitely supported measures (Balog-Szemerédi-Gowers Theorem, Bourgain’s additive part of discretized sum-product results).

2. **Ergodic theory**: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).

3. **Multifractal analysis** (L^q spectrum, regularity at points of differentiability).

4. General scheme of proof follows Mike Hochman’s strategy in his recent landmark paper on the dimensions of self-similar measures.
Tools involved in the proof

1. **Additive combinatorics**: an inverse theorem for the L^q norm of the convolution of two finitely supported measures (Balog-Szemerédi-Gowers Theorem, Bourgain’s additive part of discretized sum-product results).

2. **Ergodic theory**: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).

3. **Multifractal analysis** (L^q spectrum, regularity at points of differentiability).

4. General scheme of proof follows Mike Hochman’s strategy in his recent landmark paper on the dimensions of self-similar measures.
Tools involved in the proof

1. **Additive combinatorics**: an inverse theorem for the L^q norm of the convolution of two finitely supported measures (Balog-Szemerédi-Gowers Theorem, Bourgain’s additive part of discretized sum-product results).

2. **Ergodic theory**: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).

3. **Multifractal analysis** (L^q spectrum, regularity at points of differentiability).

4. General scheme of proof follows Mike Hochman’s strategy in his recent landmark paper on the dimensions of self-similar measures.
Reduction to a problem in multifractal analysis

- By a standard argument, it is enough to prove the theorem when A, B are a p-Cantor set and a q-Cantor set respectively (with digit sets $D_1 \subset \{0, 1, \ldots, p - 1\}$, $D_2 \subset \{0, 1, \ldots, q - 1\}$).
- There are natural measures μ, ν on A, B (Hausdorff measure, measure of maximal entropy, they all agree).
- Let
 \[
 \eta_t = \mu \ast S_t \nu
 \]
 where $S_t x = tx$ scales by x. Alternatively, η_t is the push-down measure of $\mu \times \nu$ under the linear projection $(x, y) \mapsto x + ty$.
- Given a probability measure η on $[0, 1]$, let
 \[
 D_q(\mu) = \lim_{n \to \infty} \frac{1}{n(1 - q)} \log \sum_{I \in \mathcal{D}_n} \mu(I)^q.
 \]
Reduction to a problem in multifractal analysis

By a standard argument, it is enough to prove the theorem when A, B are a p-Cantor set and a q-Cantor set respectively (with digit sets $D_1 \subset \{0, 1, \ldots, p-1\}$, $D_2 \subset \{0, 1, \ldots, q-1\}$).

There are natural measures μ, ν on A, B (Hausdorff measure, measure of maximal entropy, they all agree).

Let

$$\eta_t = \mu \ast S_t \nu$$

where $S_t x = tx$ scales by x. Alternatively, η_t is the push-down measure of $\mu \times \nu$ under the linear projection $(x, y) \mapsto x + ty$.

Given a probability measure η on $[0, 1]$, let

$$D_q(\mu) = \lim_{n \to \infty} \frac{1}{n(1 - q)} \log \sum_{I \in D_n} \mu(I)^q.$$
By a standard argument, it is enough to prove the theorem when A, B are a p-Cantor set and a q-Cantor set respectively (with digit sets $D_1 \subset \{0, 1, \ldots, p - 1\}$, $D_2 \subset \{0, 1, \ldots, q - 1\}$).

There are natural measures μ, ν on A, B (Hausdorff measure, measure of maximal entropy, they all agree).

Let

$$\eta_t = \mu \ast S_t \nu$$

where $S_t x = tx$ scales by x. Alternatively, η_t is the push-down measure of $\mu \times \nu$ under the linear projection $(x, y) \mapsto x + ty$.

Given a probability measure η on $[0, 1]$, let

$$D_q(\mu) = \lim_{n \to \infty} \frac{1}{n(1 - q)} \log \sum_{I \in D_n} \mu(I)^q.$$
By a standard argument, it is enough to prove the theorem when A, B are a p-Cantor set and a q-Cantor set respectively (with digit sets $D_1 \subset \{0, 1, \ldots, p - 1\}$, $D_2 \subset \{0, 1, \ldots, q - 1\}$).

There are natural measures μ, ν on A, B (Hausdorff measure, measure of maximal entropy, they all agree).

Let

$$\eta_t = \mu \ast S_t \nu$$

where $S_t x = tx$ scales by x. Alternatively, η_t is the push-down measure of $\mu \times \nu$ under the linear projection $(x, y) \mapsto x + ty$.

Given a probability measure η on $[0, 1]$, let

$$D_q(\mu) = \lim_{n \to \infty} \frac{1}{n(1 - q)} \log \sum_{I \in D_n} \mu(I)^q.$$
Theorem (P.S. 2016)

For all $t \neq 0$,

$$D_q(\eta_t) = \min\left(\dim_H(A) + \dim_H(B), 1\right) \quad \text{for all } q > 1.$$

Remark

The theorem says that η_t is very uniformly distributed in its support $A + tB$ with no points of “larger than expected” mass.
Multifractal analysis → intersections I

\[D_q(\eta) = \lim_{n \to \infty} \frac{1}{n(1-q)} \log \sum_{I \in D_n} \eta(I)^q. \]

\[\eta_t = \mu \ast S_t \nu \]

Theorem (P.S. 2016)

*For all \(t \neq 0 \),

\[D_q(\eta_t) = \min(\dim_H(A) + \dim_H(B), 1) \quad \text{for all } q > 1. \]

Remark

The theorem says that \(\eta_t \) is very uniformly distributed in its support \(A + tB \) with no points of “larger than expected” mass.
Proof of Furstenberg’s conjecture assuming theorem.

Let
\[s = \dim_H(A) + \dim_H(B) = \dim_H(A \times B). \]

Suppose
\[d = \dim_H(A \cap (tB + u)) > \min(s - 1, 0) \]

Let \(u \in I \in \mathcal{D}_n \) with \(n \gg 1 \). Then, writing \(P(x, y) = x + ty \), we have \(A \cap (tB + u) \subset P^{-1}(I) \) so that
\[\eta_t(I) = (\mu \times \nu)(P^{-1}(I)) \gtrsim 2^{dn}2^{-sn}. \]

It follows that
\[2^{\min(s,1)(1-q)n} \geq \sum_{I \in \mathcal{D}_n} \eta_x(I)^q \gtrsim \left(2^{dn}2^{-sn}\right)^q. \]

This is a contradiction if \(q \) is large enough.
Self-similarity

\[\mu \sim \sum_{n=1}^{\infty} X_n p^{-n}, \quad \nu \sim \sum_{n=1}^{\infty} Y_n q^{-n} \]

with \(X_n, Y_n \) independent and uniform in \(D_1, D_2 \) respectively.

\[\eta_t = \mu * S_t \nu \sim \sum_{n=1}^{\infty} X_n p^{-n} + \sum_{m=1}^{\infty} t Y_m q^{-m}. \]

One can rearrange terms to find out \(\eta_t \) has a dynamical self-similar structure:

\[\eta_t = \Delta(t) \ast \eta_{\sigma(t)} \]

where: \(\Delta(t) \) is a finitely supported measure, and \(\sigma \) is a uniquely ergodic transformation of some interval.
Self-similarity

\[\mu \sim \sum_{n=1}^{\infty} X_n p^{-n}, \quad \nu \sim \sum_{n=1}^{\infty} Y_n q^{-n} \]

with \(X_n, Y_n \) independent and uniform in \(D_1, D_2 \) respectively.

\[\eta_t = \mu \ast S_t \nu \sim \sum_{n=1}^{\infty} X_n p^{-n} + \sum_{m=1}^{\infty} tY_m q^{-m}. \]

One can rearrange terms to find out \(\eta_t \) has a dynamical self-similar structure:

\[\eta_t = \Delta(t) \ast \eta_{\sigma(t)} \]

where: \(\Delta(t) \) is a finitely supported measure, and \(\sigma \) is a uniquely ergodic transformation of some interval.
Self-similarity

\[\mu \sim \sum_{n=1}^{\infty} X_n p^{-n}, \quad \nu \sim \sum_{n=1}^{\infty} Y_n q^{-n} \]

with \(X_n, \ Y_n \) independent and uniform in \(D_1, \ D_2 \) respectively.

\[\eta_t = \mu \ast S_t \nu \sim \sum_{n=1}^{\infty} X_n p^{-n} + \sum_{m=1}^{\infty} t Y_m q^{-m}. \]

One can rearrange terms to find out \(\eta_t \) has a dynamical self-similar structure:

\[\eta_t = \Delta(t) \ast \eta_\sigma(t) \]

where: \(\Delta(t) \) is a finitely supported measure, and \(\sigma \) is a uniquely ergodic transformation of some interval.
Theorem (P.S. 2016)

If (η_t) is a family of “dynamical self-similar measures” where the driving dynamics is uniquely ergodic + some regularity hypotheses, then

$$D_q(\eta_t) = \text{what you expect for all } t \text{ and } q > 1.$$

Remark

As corollaries of this theorem, beyond Furstenberg’s conjecture I get applications to:

1. The dimensions and densities of self-similar measures, including Bernoulli convolutions,
2. The dimensions of slices of many self-similar fractals in the plane including the 1-dimensional Sierpiński gasket (improving another conjecture of Furstenberg).

These results are not obtainable with M. Wu’s method.
Theorem (P.S. 2016)

If \((\eta_t)\) is a family of “dynamical self-similar measures” where the driving dynamics is uniquely ergodic + some regularity hypotheses, then

\[D_q(\eta_t) = \text{what you expect for all } t \text{ and } q > 1. \]

Remark

As corollaries of this theorem, beyond Furstenberg’s conjecture I get applications to:

1. The dimensions and densities of self-similar measures, including Bernoulli convolutions,
2. The dimensions of slices of many self-similar fractals in the plane including the 1-dimensional Sierpiński gasket (improving another conjecture of Furstenberg).

These results are not obtainable with M. Wu’s method.
Theorem (P.S. 2016)

If \((\eta_t)\) is a family of “dynamical self-similar measures” where the driving dynamics is uniquely ergodic + some regularity hypotheses, then

\[D_q(\eta_t) = \text{what you expect} \quad \text{for all } t \text{ and } q > 1. \]

Remark

As corollaries of this theorem, beyond Furstenberg’s conjecture I get applications to:

1. The dimensions and densities of self-similar measures, including Bernoulli convolutions,

2. The dimensions of slices of many self-similar fractals in the plane including the 1-dimensional Sierpiński gasket (improving another conjecture of Furstenberg).

These results are not obtainable with M. Wu’s method.
Theorem (P.S. 2016)

If \((\eta_t)\) is a family of “dynamical self-similar measures” where the driving dynamics is uniquely ergodic + some regularity hypotheses, then

\[D_q(\eta_t) = \text{what you expect} \quad \text{for all } t \text{ and } q > 1. \]

Remark

As corollaries of this theorem, beyond Furstenberg’s conjecture I get applications to:

1. The dimensions and densities of self-similar measures, including Bernoulli convolutions,

2. The dimensions of slices of many self-similar fractals in the plane including the 1-dimensional Sierpiński gasket (improving another conjecture of Furstenberg).

These results are not obtainable with M. Wu’s method.
Slices of the 1-dim Sierpiński Gasket

Theorem (Hochman, settling a conjecture of Furstenberg)

All orthogonal projections with irrational slope have dimension 1.

Theorem (P.S. 2016)

All slices with irrational slope have dimension 0.
Slices of the 1-dim Sierpiński Gasket

Theorem (Hochman, settling a conjecture of Furstenberg)

All orthogonal projections with irrational slope have dimension 1.

Theorem (P.S. 2016)

All slices with irrational slope have dimension 0.
¡¡¡Muchas gracias!!!