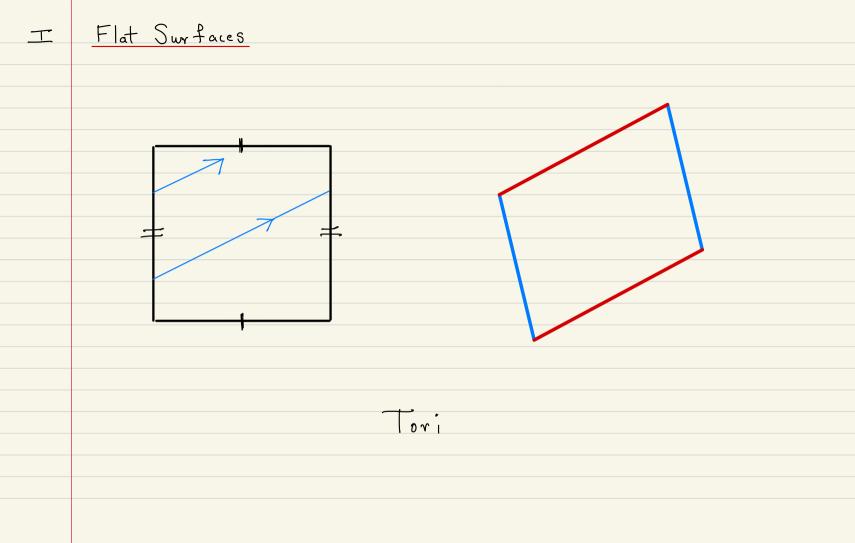
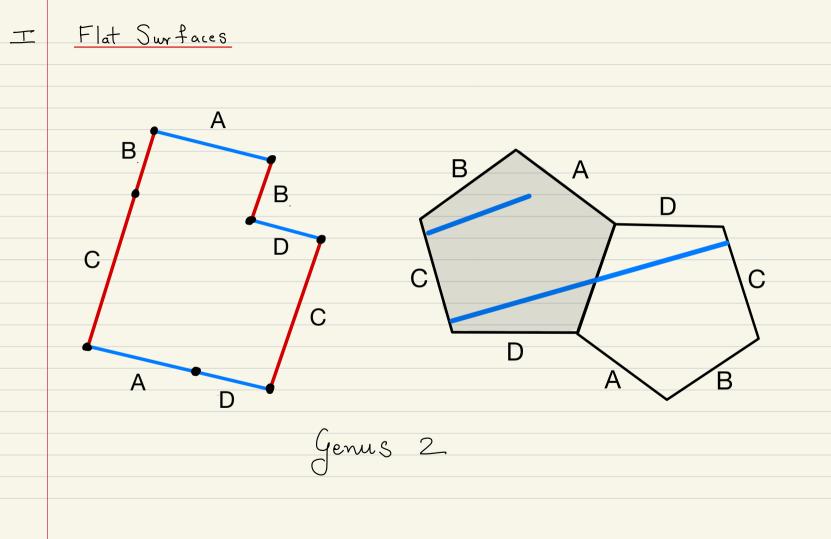
Greometry and Dynamics on Flat Surfaces Vaibhav Gradre (Grlasgow)

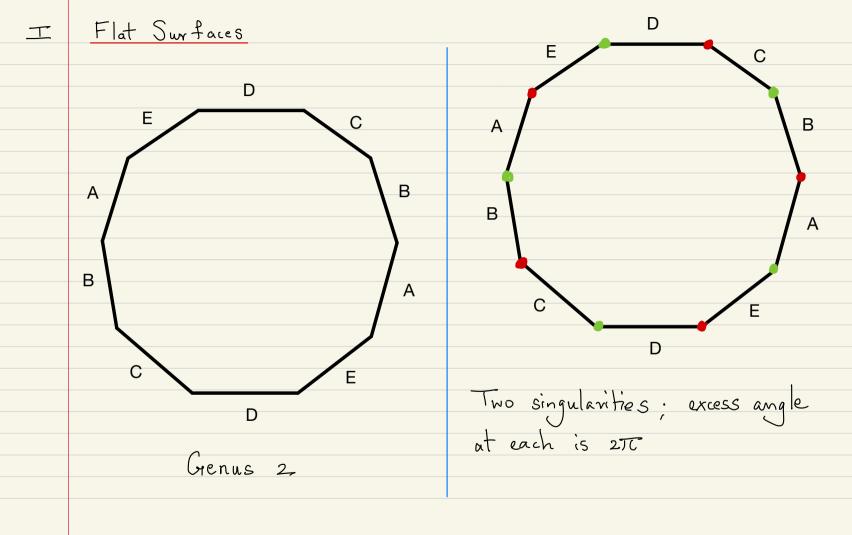
Lecture 1

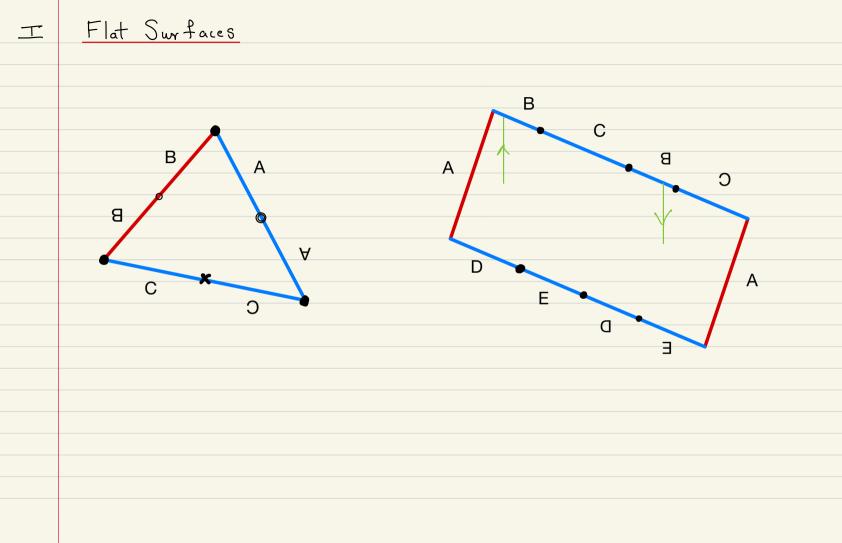
References 1 Zorich : Flat surfaces, Springer 2006. 2 Voccoz: Interval exchange transformations and translation Surfaces, Pisa lecture notes, Clay Math 2010 3 Wright : From rational billiards to dynamics on moduli Spaces, Bull. Amer. Math. Soc. 2016.

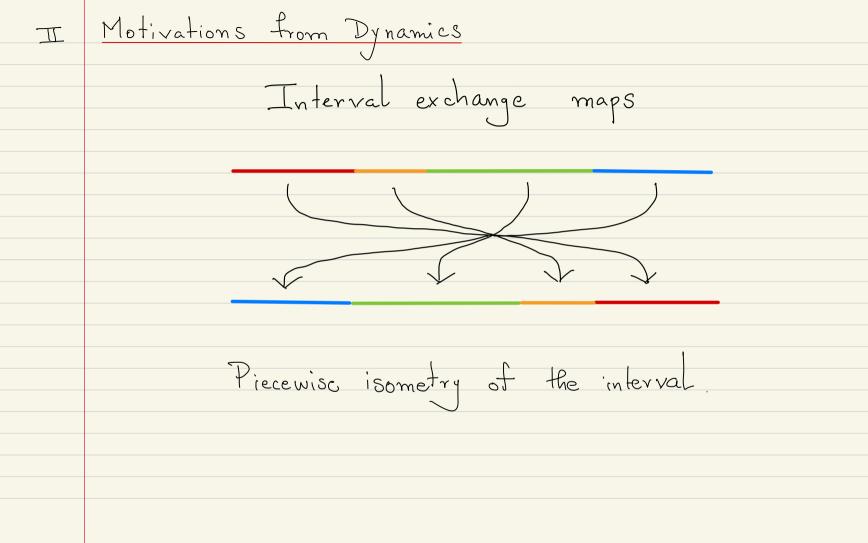


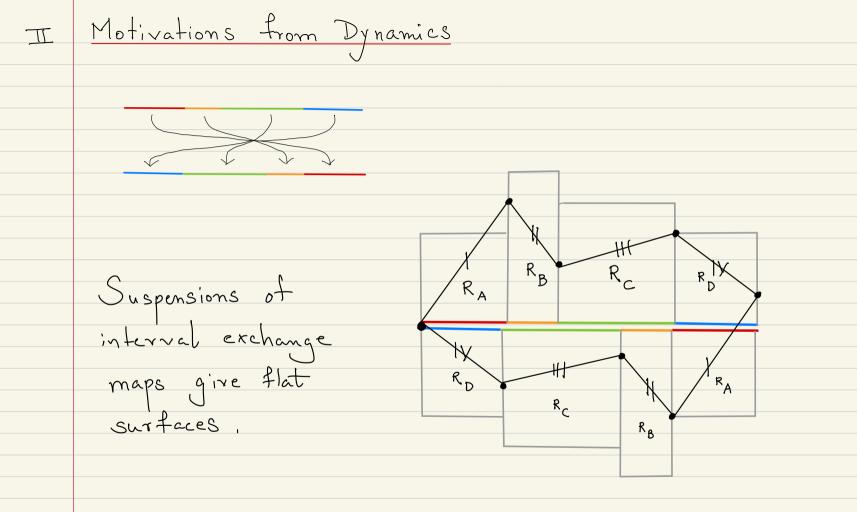
В Flat Surfaces ્ર В 5 D D А D D В One singularity in red Excess angle at singularity А С В is 2(2TT) Genus 2 Consistent with brauss- Bonnet

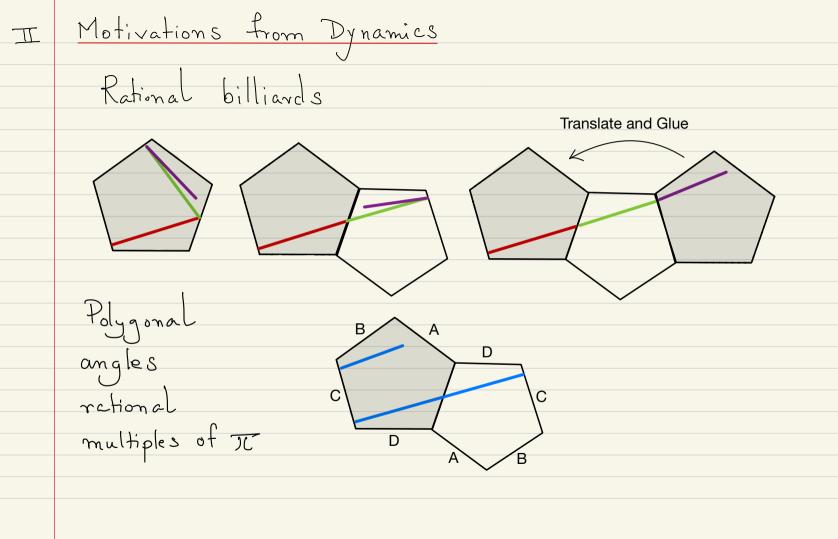












II Holomorphic viewpoint
Let S be a surface of finite type.
finite genus
finitely many
marked points
A flat surface homeomorphic to S is equivalent to charts
from
$$S - Z$$
 to C, where Z is a finite set containing the
marked points with transition functions of the form
 $Z \longrightarrow \pm Z + C$

Holomorphic viewpoint TIT transition functions 1 . f: By Removable Singularity Theorem, conformal structure extends to all of S when Transitions are translations / half translations.

III Holomorphic viewpoint
The structure of charts to C with half-translation/
translation transitions is equivalent to a
meromorphic quadrabic differential with at most
simple poles at the marked points.
In a local co-ordinate
$$q = f(z) dz^2$$

on $S - Z$
Meromorphic

Teichmüller theory
$$(S, Z)$$
 orientable surface S with finite genus and a
finite set Z of marked points; assume $|Z| = n$ Uniformisation theorem : universal cover is either D D D D P $C P$ D P $C P$ $C P$

 $1 \sim$

Teichmüller theory
The torus
$$g=1$$
, $n=0$
A marked conformal torus.
Aut $(C) = \{z \rightarrow az+b\}$
We want $\pi_1(S_{1,0}) \simeq Z \oplus Z$ $\stackrel{P}{\longrightarrow}$ Aut (C) to act on C
properly discontinuously, so has to be by translations.
Post-composing by rotations and dilations, assume
 $p(1,0) = \{z \rightarrow z+1\}$
Then $p(0,1) = \{z \rightarrow z+z\}$ where $f_m(z) > 0$
that is $z \in [H]$

 $^{\vee}$

$$\begin{array}{rcl} \hline \text{Teichmüller theory} \\ \hline \text{Moduli space of conformal tori} : \\ \hline \text{Jor convenience}, suppose $\tau = i ; \quad \Lambda = \mathbb{Z} \cdot 1 \oplus \mathbb{Z} i \\ \hline \text{Then } SL(2,\mathbb{Z}) \cdot \Lambda = \Lambda \\ \hline 2 \times 2 \cdot \text{matrices over} \\ \hline \mathbb{Z} \text{ with determinant } 1 \\ \hline \text{Note that } A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} e SL(2,\mathbb{Z}) \text{ changes the marking} \\ \hline to (a,c) \text{ and } (b,d) \text{ curves} \\ \hline \text{Moduli space} \quad M_0 = [H/SL(2,\mathbb{Z})] \leftarrow \text{modular surface} \\ & (2,3,\infty) \text{ hyp.} \\ & (a & b \\ c & d \end{pmatrix} \tau = \frac{a\tau + b}{c\tau + d} \end{array}$$$

Teichmüller theory

$$M_0 = moduli space of elliptic curves.$$

 $y^2 = x^2 + ax + b < d$
The connection between the two descriptions of M_0 is
through the theory of Weierstrass p-functions.
Similarly
 $M_{g,n}$ is also the moduli space of algebraic curves
that are conformally a Riemann surface of type $S_{g,n}$.

 $^{\vee}$

$$\begin{array}{cccc} \hline & \end{tabular} &$$

~

Teichmüller theory
Repeated real roots: A is a pavabolic matrix, conjugate to

$$|T_r(A)|=2$$

acts on the torus by a Dehn twist
in the (1,0) curve

Tr general: reducible mapping classes, some power fixes
a multi-curve.

 $1 \sim$

Teichmüller theory
Distinct real voots: A is a hyperbolic matrix

$$|Tr(A)| > 2$$
 for example $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$
acts on the torus as a hyperbolic map with
stude and unstable foliations given by eigen directions
- admit nice Markov partitions
- translate along a hyperbolic geodesic in Teicho
Tr general : pseudo-Anosov mapping classes expand and contract
measured toliations; translate along a Teichmüller geodesic,

 $^{\vee}$

 $\backslash \sim$

 $\backslash \sim$

IN Teichmüller theory

$$Mod = group of orientation preserving diffeo / isotopy$$
.
 $Moduli space M = Teich / Mod$
Similarly define the Teichmüller space of meromorphic
quadratic differentials with at most simple poles.
This is stratified by the orders of the zeroes
 $K = (K_1, ..., K_j)$ such that $\sum K_j = 4g - 4$

Teichmüller Heory $\left| \right\rangle$ Strata of (unmarried) quadratic differentials = QTeich (K) / Mod Kontsevich-Zorich, Boissy-Lanneau, Chen-Möller: Classification of connected components of strata. Invariants : quadratic or Abelian, hyper-elliptic or not, odd or even spin, regular or irregular. Study stratum components in detail tomorrow.

 \vee Does anyone have questions?