Lecture 3

Recap $SL(X,q) = \{A \in SL(2, R) \text{ such that } A(X,q) = (X,q) \}$ as unmarked flat surfaces. Theorem (Smillie): SL(2, IR) orbit of q closed > SL(X, q) is a lattice.

I Veech dichotomy A flat surface (X, q) has optimal (straight line) dynamics if for any $\Theta \in [0, 2\pi)$, the foliation F_{Θ} on (X, q) in the clirection & is either 1) uniquely ergodic 2) completely periodic, namely (x,q) = U Ci finite union where Ci are metric ylinders with slope of.

Veech dichotomy For example 5-1 5-1 1 5-1 Theorem: SL(X,q) lattice $\rightarrow (X,q)$ has optimal dynamics. Contion: Converse is not true !

 \mathbb{T}

Lattice => optimal dynamics 11 Step 1: (X,q) contains a cylinder R_c RB RD Step 2: Dq / SL(X,q) is not compact Suppose the said whinder is in direction & with respect to vertical Then the core curve gets arbitrarily short (cylinder modulus gets arbitrarily large) in $g_t r_{-\theta}(x,q)$ as $t \to \infty$.

Lattice
$$\Rightarrow$$
 optimal dynamics
Step 3: Conclude SL(X, Q) is a non-uniform lattice, that is
 $D_q/SL(X, q)$ a finite area hyperbolic surface with usps.
Step 4: Consider any direction \neq on (X, q) .
Consider Teich. ray $\forall_t = g_t r_{-\phi}(X, Q)$ on $D_q/SL(X, Q)$.
Rays on $D_q/SL(X, Q)$ either recur to a compact part or
head straight out a cusp.
If \forall_t recurs then foliation F_{ϕ} is uniquely ergodic
by a theorem of Masur.

 \square

III Dynamics of the Teichmüller flow Inhomogeneity: A flat surface (X, q) is ϵ -thin if there exists a saddle connection $\propto s:t | per_q(x) | < \epsilon$. Thick part influences rank 1 behaviour; thin parts higher rank. Dynamics of gt anabyous to rank 1

TV Kontsevich-Zorich co-cyle
The co-cyle that records the action on the absolute
homology of the surface.

$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
Red and Blue curve a Z-basis for homology.
Action of g_{t} in the eigendirection of give a change of basis
which in this case is the same matrix.

IV Kontsevich-Zorich co-cyle Cocycle along the flow trivialise absolute homology over contractible period chart Record action on the absolute homology when ge returns us to the period chart. Cocycle preserves algebraic intersection on H_1 and hence takes values in Sp(2g, Z).

IV Kontsevich-Zorich co-cyle Co-cycle over the flow is the part of the symplectic monodromy that the flow detects.

TV Kontsevich-Zorich co-cyle Zorich: Oseledets theorem applies to the Kontsevich-Zorich co-cycle. Kontsevich - Zorich conjecture The Lyapunov spectrum of the Kontsevich-Zorich co-cycle over the full stratum component is simple, that is the exponents λ_i are distinct.

I Why the interest 1 Interval exchange maps: Zorich relates counting visits to subintervals under iteration to the co-cycle getting deviations of ergodic averages in terms of the exponents. 2 Mind-free models

$$T \qquad \text{Why the interest} \\ \hline Counting periodic trajectories of length $\leq L / Z^2 - \text{translations} \\ \hline Pardo : For almost - every wind-tree \\ N(L) = \frac{1}{2T^2} T L^2 + O(L^2) \\ \int Ded trajectories \\ \hline Counting of bad trajectories related to Lyapunox exponents \\ of an associated co-cycle . \\ \hline \end{array}$$$

VI Lyapunov simplicity Approach hinges on two ingredients 1) g_t dynamics has a coding with approximate product structure. 2) Large co-cycle in terms of image in Sp(2g, Z).