
Exercises for
Sample complexity and uniform

convergence for learning and data analysis

1 Large Deviation Bounds

1. Suppose that we can obtain independent samples X1, X2, . . . , of a random vari-
able X, and we want to use these samples to estimate E[X]. Using t samples,
we use

∑t
i=1Xi/t for our estimate of E[X]. We want the estimate to be within

εE[X] from the true value of E[X] with probability at least 1− δ. We may not
be able to use Chernoff’s bound directly to bound how good our estimate is if
X is not a 0 − 1 random variable, and we do not know its moment generating
function. We develop an alternative approach that requires only having a bound

on the variance of X. Let r =

√
Var[X]

E[X]
.

(a) Show using Chebyshev’s inequality that O( r
2

ε2δ
) samples are sufficient to

solve the above problem.

(b) Suppose that we only need a weak estimate that is within εE[X] of E[X]
with probability at least 3/4. Argue that only O( r

2

ε2
) samples are enough

for this weak estimate.

(c) Show that by taking the median of O(log 1
δ
) weak estimates, we can obtain

an estimate within εE[X] of E[X] with probability at least 1−δ. Conclude

that we only need O( r
2 log 1/δ
ε2

) samples.

2. A casino is testing a new class of simple slot machines. Each game, the player
puts in one dollar, and the slot machine is supposed to return either three
dollars to the player with probability 4/25, one hundred dollars with proability
1/200, and nothing with all remaining probability. Each game is supposed to
be independent of other games.

The casino has been surprised to find in testing that the machines have lost ten
thousand dollars over the first millions games. Derive a Chernoff bound for the
probability of this event. You may want to use a calculator or program to help
you choose appropriate values as you derive your bound.
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3. In many wireless communication systems, each receiver listens on a specific
frequency. The bit b(t) sent at time t is represented by a 1 or −1. Unfortunately,
noise from other nearby communications can affect the receiver’s signal. A
simplified model of this noise is the following: there are n other senders, and
the ith has strength pi. At any time t the ith sender is also trying to send a bit
bi(t), represented by 1 or −1. The receiver obtains the signal s(t) given by

s(t) = b(t) +
n∑
i=1

pibi(t).

If s(t) is closer to 1 than −1, the receiver assumes that the bit sent at time t
was a 1; otherwise, the receiver assumes that is was a −1.

Assume that all the bits bi(t) can be considered independent, uniform random
variables. Give a Chernoff bound to estimate the probability that the receiver
makes an error in determining b(t).

4. Recall that a function f is said to be convex if for any x1, x2, and 0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

(a) Let Z be a random variable that takes on a (finite) set of values in the
interval [0, 1], and let p = E[Z]. Define the Bernoulli random variable X
by Pr(X = 1) = p and Pr(X = 0) = 1− p. Show that E[f(Z)] ≤ E[f(X)]
for any convex function f .

(b) Use the fact that f(x) = etx is convex for any t ≥ 0 to obtain a Chernoff-
like bound for Z based on a Chernoff bound for X.

5. We prove that the randomized Quicksort algorithm sorts a set of n numbers in
time O(n log n) with high probability. Consider the following view of Quicksort.
Every point in the algorithm where it decides on a pivot element is called a node.
Suppose the size of the set to be sorted at a particular node is S. The node is
called good if the pivot element divides the set into two parts, each of size not
exceeding 2S/3. Otherwise the node is called bad. The nodes can be thought
of as forming a tree in which the root node has the whole set to be sorted and
its children have the two sets formed after the first pivot step and so on.

(a) Show that the number of good nodes in any path from the root to a leaf
in the above tree is not greater than c log2 n, where c is some positive
constant.

(b) Show that with high probability (greater than 1 − 1/n2), the number of
nodes in a given root to leaf path of the above tree is not greater than
c
′
log2 n where c

′
is another constant.

(c) Show that with high probability (greater than 1 − 1/n), the number of
nodes in the longest root to leaf path is not greater than c

′
log2 n. (Hint:

How many nodes are there in the tree?)
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(d) Use the above to show that the running time of Quicksort is O(n log n)
with probability 1− 1/n.

6. In this problem, we design a randomized algorithm for the following packet
routing problem: we are given a network which is an undirected connected
graph G where nodes represent processors and the edges between the nodes
represent wires. We are also given a set of N packets to route. For each packet
we are given a source node, a destination node, and the exact route (path in
the graph) that the packet should take from the source to its destination. (We
may assume that there are no loops in the path.) In each time step, only one
packet can traverse an edge. A packet can wait at any node during any time
step and we assume unbounded queue sizes at each node.

A schedule for a set of packets specifies the timing for the movement of packets
along their respective routes. That is, it specifies which packet should move
and which should wait at each time step. Our goal is to produce a schedule for
the packets that tries to minimize the total time and the maximum queue size
needed to route all the packets to their destinations.

(a) The dilation d is the maximum distance traveled by any packet. The
congestion c is the maximum number of packets that must traverse a single
edge during the entire course of the routing. Argue that the time required
for any schedule should be at least Ω(c+ d).

(b) Consider the following unconstrained schedule, where many packets may
traverse an edge during a single time step. Assign each packet an inte-
gral delay chosen randomly, independently and uniformly from the inter-
val [1, αc

log(Nd)
], where α is a constant. A packet that is assigned a delay

of x waits in its source node for x time steps, and then moves on to its
final destination through its specified route without ever stopping. Give
an upper bound on the probability that more than O(log(Nd)) packets use
a particular edge e at a particular time step t.

(c) Again using the unconstrained schedule above, show that the probability
that more than O(log(Nd)) packets pass through any edge at any time
step is at most 1/(Nd) for a sufficiently large α.

(d) Use the unconstrained schedule to devise a simple randomized algorithm
that with high probability produces a schedule following the constraint of
only one packet crossing an edge per time step of length O(c+ d log(Nd))
using queues of size O(log(Nd)).

2 Martingales

1. Show that if Z0, Z1, . . . Zn is a martingale with respect to X0, X1, . . . Xn, then
it is a martingale with respect to itself.
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2. Let X0 = 0 and for j ≥ 0 let Xj+1 be chosen uniformly over the real interval
[Xj, 1]. Show that for k ≥ 0 the sequence

Yk = 2k(1−Xk)

is a martingale.

3. LetX1, X2, . . . be independent and identically distributed random variables with
expectation 0 and variance σ2 <∞. Let

Zn =

(
n∑
i=1

Xi

)2

− nσ2.

Show that Z1, Z2, . . . is a martingale.

4. Consider an n-cube with N = 2n nodes. Let S be a non-empty set of vertices
on the cube, and let x be a random vertex chosen uniformly at random among
all vertices of the cube. Let D(x, S) be the minimum number of coordinates
that x and y differ in over all points y ∈ S. Give a bound on

Pr(|D(x, S)− E[D(x, S)]| > λ).

5. A subsequence of a string s is any string that can that can be obtained by
deleting characters from s. Consider two strings x and y of length n, where
each character in each string is independently a 0 with probability 1/2 and a 1
with probability 1/2. We consider the longest common subsequence of the two
strings.

(a) Show that the expected length of the longest common subsequence is
greater than c1n and less than c2n for constants c1 > 1/2 and c2 < 1
when n is sufficiently large. (Any constants c1 and c2 are sufficient; as a
challenge, you may attempt to find the best constants c1 and c2 that you
can.)

(b) Use a martingale inequality to show that the length of the longest common
subsequence is highly concentrated around its mean.

6. Given a bag with r red balls and g green balls, suppose that we uniformly sample
n balls from the bin without replacement. Set up an appropriate martingale and
use it to show that the number of red balls in the sample is tightly concentrated
around nr

r+g
.

7. Consider a random graph from Gn,N , where N = cn for some constant c > 0.
Let X be the expected number of isolated vertices, that is, vertices of degree 0.

(a) Determine E[X].
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(b) Show that

Pr(|X − E[X]| ≥ 2λ
√
cn) ≤ 2e−λ

2/2.

(Hint: use a martingale that reveals the locations of the edges that are in
the graph, one at a time.)

8. We improve our bound from the Azuma-Hoeffding inequality for the problem
where m balls are thrown into n bins. We let F be the number of empty bins
after the m balls are thrown, and we let Xi be the bin in which the i-th ball
lands. We define Z0 = E[F ], and Zi = E[F | X1, . . . , Xi].

(a) Suppose that the number of bins that are empty after the i-th ball is
thrown is Ai. Show that in this case

Zi−1 = Ai−1

(
1− 1

n

)m−i+1

.

(b) Show that if the i-th ball lands in a bin that is empty when it is thrown,
then

Zi = (Ai−1 − 1)

(
1− 1

n

)m−i
.

(c) Show that if the i-th ball lands in a bin that is not empty when it is thrown,
then

Zi = Ai−1

(
1− 1

n

)m−i
.

(d) Show that the Azuma-Hoeffding inequality in Theorem ?? applies with

di =
(
1− 1

n

)m−i
.

(e) Using the above, prove that

Pr(|F − E[F ]| ≥ λ) ≤ 2e−λ
2(2n−1)/(n2−(E[F ])2).

3 Exercises - Uniform Convergence

1. Consider a range space (X, C) where X = {1, 2, . . . , n} and C is the set of all
subsets of X of size k for some k < n. What is the VC dimenion of C?

2. Consider a range space (R2, C) of all axis-aligned rectangles in R2. That is,
c ∈ C if for some x0 < x1 and y0 < y1, c = {(x, y) ∈ R2 | x0 ≤ x ≤ x1 and y0 ≤
y ≤ y1}.

(a) Show that the VC dimension of (R2, C) is equal to 4. You should show
both a set of four points that can be shattered, and show that no larger
set can be shattered.
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(b) Construct and analyze a PAC learning algorithm for the concept class of
all axis-aligned rectangles in R2.

3. Consider a range space (R2, C) of all axis-aligned squares in R2. Show that the
VC dimension of (R2, C) is equal to 3.

4. Consider a range space (R2, C) of all squares (that need not be axis-aligned) in
R2. Show that the VC dimension of (R2, C) is equal to 5.

5. Consider a range space (R2, C) of all axis-aligned rectangular boxes in R3. Find
the VC dimension of (R2, C); you should show both the largest number of points
that can be shattered, and show that no larger set can be shattered.

6. Prove that the VC dimension of the collection of all closed disks on the plane
is 3.

7. Prove that the VC dimension of the range space (Rd,R), whereR is the set of all
half-spaces in Rd, is at least d+1, by showing that the set consisting of the origin
(0, 0, . . . , 0) and the d unit points (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)
is shattered by R.

8. Let S = (X,R) and S ′ = (X,R′) be two range spaces. Prove that if R′ ⊆ R
then the VC dimension of S ′ is no larger than the VC dimension of S.

9. Given a set of functions F and constants a, b ∈ R, consider the set of functions

Fa,b = {af + b | f ∈ F}.

LetRm() and R̃m() denote the Rademacher complexity and the empirical Rademacher
complexity, respectively. Prove that

(a) R̃m(Fa,b) = |a|R̃m(F),

(b) Rm(Fa,b) = |a|Rm(F).
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