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Outline - What I'll try to cover...

® | arge Deviation

® The basic scheme: How to create your own bound

® iid bounds: Chernoff bound, Hoeffding bound

® Martingale bounds: Azuma-Hoeffding bound, McDiarmid
bound

e Uniform convergence

® Sample complexity and machine learning
VC-dimension bounds
Rademacher complexity bounds
Applications beyond machine learning



It's (almost) all in the book:

Probability and
Computing

Randomization and Probabilistic Techniqu

& in Algorithms and Data A




Fine Sample Techniques
A typical probability theory statement:
Theorem (The Central Limit Theorem)

Let Xi,...,X, be independent identically distributed random
variables with common mean ji and variance 0. Then

n L Xi— 1 [
lim PI’(M < Z) — / e_t2/2dt.
n—o00 a'ﬁ ,/271— —69

A typical CS probabilistic tool:
Theorem (Chernoff Bound)

Let Xi,...,X, be independent Bernoulli random variables such
that Pr(X; = 1) = p, then

Pr(d "X > (1+ 8)np) < e"P/3,
=Sl



The Basic ldea of Large Deviation Bounds:

For any random variable X, by Markov inequality we have:
For any t > 0,

E[etX]
_ tX t
Pr(XZa)fPr(e zea)§?
Similarly, for any t < 0
E tX
Pr(X < a) = Pr(e > e'?) < [:ta ]

We use:

Theorem (Markov Inequality)

If a random variable X is non-negative (X > 0) then

< EX1

Prob(X > a) ;



The General Scheme:

We obtain specific bounds for particular conditions/distributions by

©® Compute E[e™]
® Optimize w.r.t t,

© Simplify



Moment Generating Function

Definition

The moment generating function of a random variable X is

Mx(t) = E[e™].

Theorem

If Mx(t) exists in some neighborhood of O, then for all n > 1,

_ d"Mx(t)

E[x"] = M{(0) . .
t=0

Theorem

For independent random variables X and Y/,

Mx 1y (t) = Mx(t)My(t).



Chernoff Bound for Sum of Bernoulli Trials

Let Xi,...,X, be a sequence of independent Bernoulli trials with
Pr(Xi =1) = p;. Let X =", Xj, and let

p=EX]=E|> X| =D EX]=> p.
i=1 i=1 i=1
For each X;:
Mx;(t) Ele™]
= pie' +(1-pi)
= 1+pi(ef-1)
< epi(e’=1)



Mx (t) = E[e¥i] < ePie™-1),

1

Taking the product of the n generating functions we get for
X = 27:1 Xi

Mx(t) = []Mx(0)
i=1

n
< [
i=1

— ezl'":l pi(ef—1)

— e(etil)u



Mx(t) = E[e™] = (=10

Applying Markov's inequality we have for any t > 0

Pr(X > (1+08)u) = Pr(e™X > et(+om)
_ E[etX]
- et(1+)p
e(etfl)ﬂ
= et(1+0)u

For any 6 > 0, we can set t = In(1+J) > 0 to get:

e5 "
Pr(X > (14 6)u) < <(1+<5)(1+5’> .



Let Xi,...,X, be independent Bernoulli random variables such
that Pr(X; = 1) = p;. Let p= E[X] =", pi, then
® For any 0 > 0,

eé 1z
Pr(X > (1 +&)u) < ((1+5)1+5> : (1)

o For0 < <1,

Pr(X > (1+6)p) < e H9°/3, (2)

® For R > 6y,
Pr(X > R) <27F. (3)



Theorem

Let Xi,..., X, be independent Bernoulli random variables such
that Pr(X; =1) = p;. Let X =37, X; and = E[X].
For0 <4 <1:

o? 7
Pr(X < (1—06)u) < <(15)(15)) . (4)

Pr(X < (1—6)u) < e H9°/2 (5)



Using Markov's inequality, for any t < 0,

Pr(X < (1—08)u) = Pr(eX > ell-0tm)
E[etX]
et(1=0)u
ele'=1)u

IN

IN

For0 <o <1, wesett=In(1l—-0)<0 to get:

o0 u
Pr(X <(1-0)u) < ((1—5)(1_5))

This proves (4).
We need to show:

f(6) = —6—(1—0)In(1 —6) + %52 <0.



We need to show:

f(6) = —6 — (1 —0)In(1 —6) + %52 <0.

Differentiating () we get

f'(6) = In(1—136)+4,
f'(6) = ———=+1.

Since () < 0 for 6 € (0,1), '(9) decreasing in that interval.

Since /(0) = 0, f/(§) < 0 for 6 € (0,1). Therefore £(9) is non

increasing in that interval.

f(0) = 0. Since 7(0d) is non increasing for § € [0,1), f(§) <0 in
that interval, and (5) follows.



Example: Coin flips

Let X be the number of heads in a sequence of n independent fair
coin flips.

_1ln 1
<e 32 n 4e 2

Note that the standard deviation is /n/2



The probability of > 3n/4 heads

Markov Inequality gives

Pr X>@ < /2 <
~ 3n/4

Using the Chebyshev’'s bound we have:

Pr(‘X—‘_4><(n//j)2_:

Using the Chernoff bound in this case, we obtain

Priix—2l=3)
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Chernoff’s vs. Chebyshev's Inequality

Assume for all i we have p; = p;1 — p; = q.

n=E[X] =np

Var[X] = npq

If we use Chebyshev's Inequality we get

npq _ npq q

'Dr(’X_:U“ > 5/1) < W - 52n2p2 - 52M

Chernoff bound gives

Pr(|X — p] > dp) < 2e H%/3,



Example: Estimate the value of 7

Choose X and Y independently and uniformly at random in

[0, 1].
Let

Pr(Z =1)
4E[Z] = .

C
\__/

Z_{ 1 ifvX2+Y2<1,

0 otherwise,



® let /y,...,Z, be the values of m independent experiments.
w=>",2.
[
EW]=E|) Z| =) E[Z]=—
i=1 i=1
o W = %W is an unbiased estimate for 7.

Pr({W’' — 7t| > en)

o (w2 )
Pr(|W — E[W]| > eE[W])

< 2e” nme .

2
For fixed ¢ and § we need m > O(L:—gé) samples.



Set Balancing

Given an n x n matrix A with entries in {0,1}, let

ail a2 ... ain b1 c1
ani dno don b2 Co
anl am2 ... amn b, Cn

Find a vector b with entries in {—1,1} that minimizes

14b]| o, = max |cjl.
=1,...,n

1



Theorem

For a random vector b, with entries chosen independently and with
equal probability from the set {—1,1},

Pr(HAEHOO >V4nlnn) < g
n

The Y7, ajib;i (excluding the zero terms) is a sum of independent
—1,1 random variable. We need a bound on such sum.



Chernoff Bound for Sum of {—1,+41} Random
Variables

Theorem

Let Xi, ..., X,, be independent random variables with

Pr(X = 1) = Pr(X; = —1) = %

Let X =3 1 X;. Foranya>0,

a

Pr(X > a) < e an.

de Moivre — Laplace approximation: For any k, such that
|k —np| < a

<”> k(1 — p)nk I =
J— % e n, —
k)P P 2wnp(1 — p)



For any t > 0,

1 1
E[etX"] = §et -+ Eeit.
t2 t
et =14+ t+_—4- 4+ —+...
2! il
and ]
t2 it
=l-tdo+- +(_1)ﬁ+
Thus,
tX, t t t2i
E i1 — Tt
[e""] ,e T3¢ > o)
i>0
t2

IA

—~~

=N
N

»

N

~

N




n
E[etX] _ H E[etX'] < ent2/2,
i=1

_ E[etX]

< et2n/2—ta
- eta — :

Pr(X > a) = Pr(e™ > %)

Setting t = a/n yields



By symmetry we also have

Corollary

Let X1, ..., X, be independent random variables with

1
Pr(X,- = 1) = Pr(X,- = —1) = 5
Let X =37, X;. Then for any a >0,

2

Pr(|X| > a) < 2e” 2.



Application: Set Balancing

Theorem

For a random vector b, with entries chosen independently and with
equal probability from the set {—1,1},

Pr(||Ab||so > V4nlnn) < (6)

SN

® Consider the /-th row a; = a;1,....,a; .

® |et k be the number of 1's in that row.
k

o /i = Zj:l a,-,,-jb,-j.

If K <+/4nlnn then clearly Z; < +/4nlnn.



If kK > +/4nlog n, the k non-zero terms in the sum Z; are
independent random variables, each with probability 1/2 of being
either +1 or —1.

Using the Chernoff bound:

2
Pr{|Z,-\ > +/4nlog n} < e 4nlogn/(2k) < =1

where we use the fact that n > k.
The result follows by union bound (n rows).



Hoeffding's Inequality

Large deviation bound for more general random variables:

Theorem (Hoeffding's Inequality)

Let Xi,...,X, be independent random variables such that for all
1<i<n, E[X]]=p and Pr(a < X; < b)=1. Then

\fZX p] > €) < 220/ (b=2)°

Lemma

(Hoeffding's Lemma) Let X be a random variable such that
Pr(X € [a,b]) =1 and E[X] = 0. Then for every A > 0,

E[e)\X] < e)\Q(afb)2/8.



Proof of the Lemma

Since f(x) = ™ is a convex function, for any o € (0,1) and
x € [a, b],
X) < af(a)+ (1 — a)f(b).

f(
Thus, for a = 2=% € (0, 1),

b—x X—a
e)\XS e)\a_|_ e)\b
b—a b—a

Taking expectation, and using E[X] = 0, we have

E[e’\X] < bﬁaeAa T bjaeAb < N(b—a)2/8.



Proof of the Bound

Let Z; = X; —E[X;]and Z =137 | X;.

n ) _22
Pr(Z = ) < e VE[e¥] < e [ E[eM/7] < e 5

i=1

Set A\ = (bA'_”e)z gives

1 n
Pr(I D X — il = €) = Pr(Z > ) < 2720/ (0-oF
i=1



A More General Version

Theorem

Let Xi,..., X, be independent random variables with E[X;] = p;
and Pr(B; < X; < Bj + ¢;) = 1, then

n n 22
IS - o 2 9 < e T
=i =1L



