Statistical properties of expanding circle maps with an indifferent fixed point

Irene Inoquio Joint work with Eduardo Garibaldi

Universidad de La Serena, Chile Dyadisc 7: Brazilian, Chilean and French Interplay for Symbolic Dynamics

December 9, 2024

The dynamics is described by a continuous map $T:\mathbb{T}\to\mathbb{T}$ of the form

$$T(x) := x(1 + V(x)) \mod 1,$$

where:

 \blacksquare The phase space consists of the circle $\mathbb{T}=\mathbb{R}/\mathbb{Z}$ endowed with the standard metric

$$d(x, y) = \min\{|x - y|, |x - y \pm 1|\}.$$

• $V: [0, +\infty) \to [0, +\infty)$ is continuous and increasing, $V(1) \in \mathbb{N}$. For $\sigma \ge 0$, $\lim_{x \to 0} \frac{V(tx)}{V(x)} = t^{\sigma}, \text{ for all } t > 0.$

* When $\sigma > 0$, V regularly varying with index σ * When $\sigma = 0$, V is called *slowly varying* (E. Seneta (1976): Regularly varying functions)

Prototype map: Manneville Pomeau map

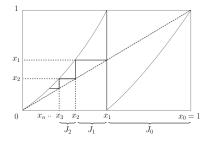


Figure: $T_s(x) = x(1 + x^s) \mod 1$

For a fixed $s \in (0, 1)$. $T_s : \mathbb{R}/\mathbb{Z} = [0, 1) \rightarrow [0, 1),$

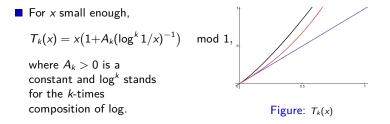
$$T_s(x) = x(1+x^s) \mod 1$$

Is non-uniformly expanding: $T_s(0) = 0, DT_s(0) = 1,$ $DT_s(x) > 1$ for all $x \in \mathbb{R}/\mathbb{Z} \setminus \{0\}.$

Near to origin the dynamics of $T_s(x) = x(1 + x^s) \mod 1$ for $s \in (0, 1)$ Let $(x_n)_{n=0}^{+\infty} \subset \mathbb{T}$ be a sequence of points by defining $T(x_{n+1}) = x_n$, $n \ge 0$.

$$x_n \sim rac{1}{n^{1/s}} \qquad |J_n| \sim rac{1}{n^{1+1/s}}$$

When the graph of T is less tangent to the diagonal at the indifferent fixed point



(Kloeckner: ETDS, 2020): For $s \in (0, 1)$

$$T_s(x) = \begin{cases} 0, & x = 0 \\ x(1 + (1 - \log 2x)^{-s}), & x \in (0, 1/2), \\ 2x - 1, & x \in [1/2, 1]. \end{cases}$$

 $T(x) = x(1 + V(x)) \mod 1$ is expanding outside any subset of the form $[0, \epsilon)$, $0 < \epsilon < 1$. It follows that for all $x, y \in [\epsilon, 1)$ with $d(x, y) < \varrho_V$,

$$d(T(x), T(y)) \geq \lambda(\epsilon) d(x, y),$$

where $\lambda(\epsilon) := 1 + V(\epsilon) \rightarrow 1$ as $\epsilon \rightarrow 0$.

A quantitative version of the non-uniformly expanding property on the whole circle is provided by the following lemma.

Lemma

There exists a constant $\varrho_0 > 0$ such that for $x, y \in \mathbb{T}$ with $d(x, y) < \varrho_0$,

$$d(T(x), T(y)) \geq d(x, y) \left(1 + \frac{1}{2^{\sigma+2}} V(d(x, y))\right).$$

Garibaldi, I. 2020; I. Morris 2009.

Potentials defined on $\ensuremath{\mathbb{T}}$

We consider potentials $f:\mathbb{T}\to\mathbb{R}$ with a particular modulus of continuity ω : namely, potentials f such that

$$|f|_{\omega} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{\omega(d(x, y))} < \infty.$$

where: $\omega: [0, +\infty) \rightarrow [0, +\infty)$ is continuous, non-decreasing, with $\omega(0) = 0$.

Potentials defined on $\ensuremath{\mathbb{T}}$

We consider potentials $f: \mathbb{T} \to \mathbb{R}$ with a particular modulus of continuity ω : namely, potentials f such that

$$|f|_{\omega} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{\omega(d(x, y))} < \infty.$$

where: $\omega: [0, +\infty) \rightarrow [0, +\infty)$ is continuous, non-decreasing, with $\omega(0) = 0$.

Regularity beyond the usual Hölder modulus environment • $\omega(x) = x^{\alpha}$ (Hölder modulus of continuity)

• $\omega(x) = (-\log x)^{-\beta}, \beta \ge 0$ (A class larger than Hölder continuous functions.)

Potentials defined on $\ensuremath{\mathbb{T}}$

We consider potentials $f: \mathbb{T} \to \mathbb{R}$ with a particular modulus of continuity ω : namely, potentials f such that

$$|f|_{\omega} := \sup_{x\neq y} \frac{|f(x) - f(y)|}{\omega(d(x,y))} < \infty.$$

where: $\omega: [0, +\infty) \to [0, +\infty)$ is continuous, non-decreasing, with $\omega(0) = 0$.

Regularity beyond the usual Hölder modulus environment • $\omega(x) = x^{\alpha}$ (Hölder modulus of continuity)

2 $\omega(x) = (-\log x)^{-\beta}, \beta \ge 0$ (A class larger than Hölder continuous functions.)

• for $0 \le \alpha < 1$ and $\beta \ge 0$ with $\alpha + \beta > 0$,

$$\omega_{\alpha,\beta}(x) := \left\{ \begin{array}{ll} x^{\alpha}(-\log x)^{-\beta}, & 0 < x < x_0, \\ x_0^{\alpha}(-\log x_0)^{-\beta}, & x \ge x_0, \end{array} \right.$$

where $x_0 = x_0(\alpha, \beta)$ is taken small enough so that $\omega_{\alpha, \beta}$ is concave.

ω(x) = (log^k 1/x)⁻¹(log 1/x)⁻¹(log² 1/x)⁻¹, k ∈ Z⁺ is defined in a small neighborhood of the origin so that is concave.

Let $f \in \mathscr{C}_{\omega}(\mathbb{T})$ (real continuous map with modulus of continuity ω). We define the *transfer operator* associated with f as

$$\mathscr{L}_{\mathrm{f}}\phi(\mathsf{x}) := \sum_{\mathsf{y}\in\mathcal{T}^{-1}(\mathsf{x})} e^{\mathsf{f}(\mathsf{y})}\phi(\mathsf{y}), \qquad \forall \; \phi\in C^0(\mathbb{T}).$$

We have that \mathscr{L}_{f} is a bounded linear operator.

• For every $n \ge 1$ and $x \in \mathbb{T}$,

$$\mathscr{L}_{f}^{n}\phi(x)=\sum_{y\in T^{-n}(x)}e^{S_{n}f(y)}\phi(y).$$

where

$$S_n f(x) := f(x) + f(T(x)) + \cdots f(T^{n-1}(x)).$$

• Let \mathscr{L}_{f}^{*} denote the dual operator of \mathscr{L}_{f} , acting on the dual space of $C^{0}(\mathbb{T})$, as

$$\int \phi \, d(\mathscr{L}_{f}^{*} \, m) = \int \mathscr{L}_{f} \phi \, dm, \quad \forall \, \phi \in \, C^{0}(\mathbb{T}), \, \forall \, m \in \operatorname{Prob}(\mathbb{T}).$$

As is well known, if we can find

- a positive eigenfunction h for \mathscr{L}_{f} ,
- and an eigenmeasure d
 u for its dual $\mathscr{L}_{\mathrm{f}}^{*}$

(both corresponding to the same positive maximal eigenvalue χ), considering normalization,

We expected that the probability :

$$d\mu = h \, d\nu$$

be an equilibrium state of the system.

As is well known, if we can find

- a positive eigenfunction h for \mathscr{L}_{f} ,
- and an eigenmeasure d
 u for its dual $\mathscr{L}_{\mathrm{f}}^{*}$

(both corresponding to the same positive maximal eigenvalue χ), considering normalization,

We expected that the probability :

$$d\mu = h d\nu$$

be an equilibrium state of the system. That is,

$$P(T,f) := \max_{m \in \mathcal{M}(\mathbb{T},T)} \left[h_m(T) + \int f dm \right] = h_\mu(T) + \int f d\mu.$$

We work with pairs of moduli of continuity (ω, Ω) ,

- $\textcircled{0} \ \omega \text{ for the regularity of the potential,}$
- ${f 0}$ Ω for the regularity of a such possible density.

Without inducing, a direct Ruelle-Peron-Frobenius theorem for a non-uniformly hyperbolic system was obtained in [GI2022 Lett. Math. Phy.].

Key property. T-compatibility of between moduli.

We say that Ω is *T*-compatible with respect to ω when there are positive constants ϱ_1 and C_1 such that, for any points x_0 and y_0 with $d(x_0, y_0) < \varrho_1$, there is a bijection among respective pre-orbits $\{x_k\}$ and $\{y_k\}$ fulfilling for all k

$$\begin{aligned} d(x_k,y_k) &\leq d(x_0,y_0) < \varrho_1, \\ C_1 \sum_{j=1}^k \omega(d(x_j,y_j)) &\leq \Omega(d(x_0,y_0)) - \Omega(d(x_k,y_k)). \end{aligned}$$

We say that Ω is *T*-compatible with respect to ω when there are positive constants ϱ_1 and C_1 such that, for any points x_0 and y_0 with $d(x_0, y_0) < \varrho_1$, there is a bijection among respective pre-orbits $\{x_k\}$ and $\{y_k\}$ fulfilling for all k

$$d(x_k, y_k) \leq d(x_0, y_0) < \varrho_1,$$

$$C_1 \sum_{j=1}^k \omega(d(x_j, y_j)) \leq \Omega(d(x_0, y_0)) - \Omega(d(x_k, y_k)).$$

When the moduli are concave, T-compatibility may be ensured as follows.

We say that Ω is *T*-compatible with respect to ω when there are positive constants ϱ_1 and C_1 such that, for any points x_0 and y_0 with $d(x_0, y_0) < \varrho_1$, there is a bijection among respective pre-orbits $\{x_k\}$ and $\{y_k\}$ fulfilling for all k

$$d(x_k, y_k) \leq d(x_0, y_0) < \varrho_1,$$
 $C_1 \sum_{j=1}^k \omega(d(x_j, y_j)) \leq \Omega(d(x_0, y_0)) - \Omega(d(x_k, y_k)).$

When the moduli are concave, *T*-compatibility may be ensured as follows.

Proposition (GI2022)

If $\liminf_{x\to 0} \frac{V(x)}{\omega(x)} (\Omega((1+c)x) - \Omega(x)) > 0$ for all c > 0 sufficiently small, then Ω is *T*-compatible with respect to ω .

For $T_s(x) = x(1+x^s) \mod 1$, $s \in (0,1)$

• Let $\alpha \in (0, 1)$, $\beta \ge 0$ with $\alpha + \beta > 0$, consider

$$\omega_{\alpha,\beta}(x) := \begin{cases} x^{\alpha} (-\log x)^{-\beta}, & 0 < x < x_0, \\ x_0^{\alpha} (-\log x_0)^{-\beta}, & x \ge x_0, \end{cases}$$
(1)

where x_0 is taken small enough so that $\omega_{\alpha,\beta}$ is concave.

For $\alpha \in (s, 1)$, the modulus $\Omega(x) = \omega_{\alpha-s,\beta}(x)$ is T_s -compatible with $\omega_{\alpha,\beta}(x)$.

¹This class in (1) was taken into account in the work of Kloeckner, An optimal transportation approach to the decay of correlations for non-uniformly expanding maps, ETDS, 2020.

For $T_s(x) = x(1+x^s) \mod 1$, $s \in (0,1)$

Let $\alpha \in (0, 1)$, $\beta \ge 0$ with $\alpha + \beta > 0$, consider

$$\omega_{\alpha,\beta}(x) := \begin{cases} x^{\alpha}(-\log x)^{-\beta}, & 0 < x < x_0, \\ x_0^{\alpha}(-\log x_0)^{-\beta}, & x \ge x_0, \end{cases}$$
(1)

where x_0 is taken small enough so that $\omega_{\alpha,\beta}$ is concave.

For $\alpha \in (s, 1)$, the modulus $\Omega(x) = \omega_{\alpha-s,\beta}(x)$ is T_s -compatible with $\omega_{\alpha,\beta}(x)$. For $\beta = 0$ and $\alpha \in (s, 1)$, the modulus $\Omega(x) = x^{\alpha-s}$ is T_s -compatible with $\omega(x) = x^{\alpha}$.

¹This class in (1) was taken into account in the work of Kloeckner, An optimal transportation approach to the decay of correlations for non-uniformly expanding maps, ETDS, 2020.

Example: Slowly varying scenario.

For $k \in \mathbb{Z}^+$, let

 $T_k(x) = x(1 + a_k(\log^k 1/x)^{-1}) \mod 1$, for some $a_k > 0$.

in a neighborhood of the origen

Consider the following moduli in a small neighborhood of the origin so that both are concave:

$$\begin{aligned} & & \quad \Omega(x) = (\log^2 1/x)^{-1}, \\ & & \quad \omega_k(x) = (\log^k 1/x)^{-1} (\log 1/x)^{-1} (\log^2 1/x)^{-1}, \quad k \in \mathbb{Z}^+ \end{aligned}$$

Then $\Omega(x)$ is T_k -compatible with $\omega_k(x)$.

Ruelle-Perron-Frobenius Theorem (GI2022)

Let Ω be a *T*-compatible modulus of continuity with respect to ω . Suppose that $f \in \mathscr{C}_{\omega}(\mathbb{T})$.

• There exists $\nu \in \mathsf{Prob}(\mathbb{T})$ and a positive constant χ such that

$$\mathscr{L}_{\mathsf{f}}^*\nu = \chi\nu.$$

② The number χ is a simple eigenvalue and maximal eigenvalue of the operator \mathscr{L}_{f} and there is a positive function $h \in \mathscr{C}_{\Omega}(\mathbb{T})$ such that

$$\mathscr{L}_{\mathsf{f}}\mathsf{h} = \chi \mathsf{h}$$

③ The measure $\mu := h\nu$ is a *T*-invariant probability such that

$$h_{\mu}(T) + \int f d\mu = \log \chi = P(T, f).$$

the measure μ is the unique Gibbs-equilibrium measure for f, that is: for every sufficiently small r > 0, there is a constant $K_r > 0$ such that, for $x \in \mathbb{T}$ and $n \ge 1$,

$$K_r^{-1} \leq \frac{\mu(B(x, n, r))}{e^{S_n f(x) - nP(T, f)}} \leq K_r,$$

where $B(x, n, r) := \{y \in \mathbb{T} : d(T^{j}(x), T^{j}(y)) < r, 0 \le j \le n\}.$

Decay of correlations

• We provide a sufficient condition on the modulus Ω to guarantee spectral gap property, exponential decay of correlations and CLT

(Garibaldi, I. Nonlinearity 2024)

What can we say about the zero-temperature formalism?

Let $\beta > 0$ and $f \in \mathscr{C}_{\omega}(\mathbb{T})$. From the Ruelle-Perron-Frobenius Theorem with respect to the potential βf , we denote μ_{β} the unique Gibbs-equilibrium state associated with βf .

For specific moduli of continuity ω and Ω . What can be said about the limits in the weak-star topology of $(\mu_{\beta})_{\beta}$ as $\beta \to +\infty$? ($\beta = \frac{1}{\tau}$, *T* is the temperature)

(Garibaldi, I. Work in Progress 2024)

Theorem (Exponential Decay of Correlations)

There exists $\rho \in (0, 1)$ such that, given $\phi, \psi \in \mathscr{C}_{\Omega}(\mathbb{T})$, there is a positive constant $K = K(\phi, \psi)$ for which

$$\int \phi \ \psi \circ T^n \ d\mu - \int \phi \ d\mu \ \int \psi \ d\mu \Big| \leq K \rho^n \qquad \forall \ n \geq 1.$$

The transfer operator \mathscr{L}_f acting on $\mathscr{C}_{\Omega}(\mathbb{T})$ has a property of gap spectral if:

There is $0 < r_0 < \chi = {
m spectral radius}$, such that the operator has a decomposition of the spectrum

$$spec(\mathscr{L}_f) = \{\chi\} \cup spec_0,$$

where $spec_0$ is contained in a ball $B(0, r_0)$.

As the spectral radius of $\mathscr{L}_{\vec{f}}|_{\mathbb{C}^{\perp}_{\Omega}}$ is strictly smaller that 1. Then,

there are constants $ho \in (0,1)$ and $K_0 > 0$ such that

 $\|\mathscr{L}^n_{\tilde{f}}\psi\|_{\Omega} \leq K_0 \,\|\psi\|_{\Omega} \,\rho^n$

for all $\psi \in \mathbb{C}_{\Omega}^{\perp}$ and $n \geq 1$.

Therefore, for $\phi,\psi\in \mathscr{C}_{\Omega}(\mathbb{T})$, with $\int\psi\,d\mu=$ 0, one has

$$\left|\int\phi\ \psi\circ\ T^n\ d\mu\right|\leq \|\phi\|_{L^1(\mu)}\ \|\mathscr{L}^n_{\widetilde{f}}\psi\|_{\infty}\leq K_0\ \|\phi\|_{L^1(\mu)}\ \|\psi\|_{\Omega}\ \rho^n.$$

Proposition (GI2024)

Let Ω be a *T*-compatible modulus of continuity with respect to ω . Suppose that Ω is **concave**. Given $n \geq 1$, $\phi \in \mathscr{C}_{\Omega}(\mathbb{T})$, and $x, y \in \mathbb{T}$ with $d(x, y) < \varrho_1$, for $\Gamma := \max\{2\kappa_f e^{2\kappa_f \Omega(1/2)}, \lceil \max h / \min h \rceil\}$ the following estimate holds

$$\left|\mathscr{L}_{f}^{n}\phi(x)-\mathscr{L}_{f}^{n}\phi(y)\right|\leq \mathsf{\Gamma}\Big(|\phi|_{\Omega}\;\Omega\big(\theta(n)\,d(x,y)\big)+||\phi||_{\infty}\;\Omega(d(x,y))\Big),$$

where $\theta(n) := \frac{1}{\chi^n} \left\| \mathscr{L}_{f-\log(1+V)}^n \mathbb{1} \right\|_{\infty}$. In particular, there exists a positive multiple $\tilde{\Gamma} = \tilde{\Gamma}(\varrho_1)$ of the constant Γ such that

$$\left|\mathscr{L}^{n}_{\tilde{t}}\phi\right|_{\Omega} \leq \tilde{\Gamma}(\tau(n) |\phi|_{\Omega} + ||\phi||_{\infty}),$$

with $\tau(n) := \sup_{0 < d < 1/2} \frac{\Omega(\theta(n) d)}{\Omega(d)}.$

Sufficiently condition to guarantee spectral gap property

The additional attribute to be respected by a concave modulus Ω is the following limit

$$\lim_{x\to 0^+} \sup_{0< d< 1/2} \frac{\Omega(dx)}{\Omega(d)} = 0.$$

Theorem ((GI2024) Spectral Gap Property)

Let Ω be a T-compatible modulus of continuity with respect to ω . Assume also that Ω is concave and

$$\lim_{\kappa \to 0^+} \sup_{0 < \mathsf{d} < 1/2} \frac{\Omega(\mathsf{d} x)}{\Omega(\mathsf{d})} = 0.$$

Then, for any potential $f \in \mathscr{C}_{\omega}(\mathbb{T})$, the transfer operator \mathscr{L}_{f} , acting on $\mathscr{C}_{\Omega}(\mathbb{T})$ has the property of gap spectral.

Canonical way to obtain pair of moduli dynamically compatible and satisfying $\lim_{x\to 0^+} \sup_{0< d<1/2} \frac{\Omega(dx)}{\Omega(d)} = 0$

Suppose that V, ω_0 and Ω_0 are nonnegative continuous functions, with ω_0 and Ω_0 non-decreasing. If the triple (V, ω_0, Ω_0) satisfies

$$\liminf_{x\to 0} \frac{V(x)}{\omega(x)} (\Omega((1+c)x) - \Omega(x)) > 0. \tag{2}$$

Then, for s > 0, the triple (V, ω_s, Ω_s) , where

$$\omega_{s}(x) := x^{s} \omega_{0}(x)$$
$$\Omega_{s}(x) := x^{s} \Omega_{0}(x)$$

also satisfies condition (2) and Ω_s vanishes orderly:

$$\lim_{x\to 0^+} \sup_{0<\mathsf{d}<1/2} \frac{\Omega_{\mathsf{s}}(\mathsf{d}x)}{\Omega_{\mathsf{s}}(\mathsf{d})} = 0.$$

Examples

$$T_{s}(x) = x(1+x^{s}) \mod 1, \quad s > 0$$
$$\bullet \ \omega(x) = x^{p}\Theta(x)$$
$$\bullet \ \Omega(x) = x^{m}\Theta(x)$$

 Θ satisfying: for some m,

•
$$x \longrightarrow x^m \Theta(x)$$
 is concave, non-decreasing
• $\liminf_{x \to 0^+} x^{s-p+m} \left(\frac{\Theta((1+c)x)}{\Theta(x)} (1+c)^m - 1 \right) > 0.$

Given a potential $f \in \mathscr{C}_{\omega}(\mathbb{T})$, the transfer operator \mathscr{L}_f acting on $\mathscr{C}_{\Omega}(\mathbb{T})$ satisfies a Ruelle-Perron-Frobenius theorem and has a gap spectral.

• When
$$\Theta(x) = 1$$
, we recover Holder continuity:

(Kloeckner 2020 ; Li and Rivera-Letelier 2014)

2 $\Theta(x) = 1 + |\log x|$, we deal with locally Hölder continuous.

Examples

Let

$$T_k(x) = x(1 + A_k(\log^k 1/x)^{-1}) \mod 1, \text{ with } A_k > 0$$

•
$$\omega_0(x) = (\log^k 1/x)^{-1} (\log 1/x)^{-1} (\log^2 1/x)^{-2}$$
 and $\Omega_0(x) = (\log^2 1/x)^{-1}$

For any fixed $s \in (0, 1)$, both

•
$$\omega_s(x) = x^s \omega_0(x)$$
 and $\Omega_s(x) = x^s \Omega_0(x)$

are concave in a neighborhood of the origin, Then the following hold

Prop.

for any potential $f \in \mathscr{C}_{\omega_s}(\mathbb{T})$, there exists a unique associated Gibbs-equilibrium state μ which has exponential decay of correlations. with respect to the class $\mathscr{C}_{\Omega_s}(\mathbb{T})$.

For all $\beta > 0$, from the Ruelle-Perron-Frobenius Theorem with respect to the potential βf , with $f \in \mathscr{C}_{\omega}(\mathbb{T})$, we denote as:

• μ_{β} the unique Gibbs-equilibrium state associated with βf , as χ_{β} the spectral radius of the transfer operator $\mathscr{L}_{\beta f}$, which fulfills

$$\exp(P(T,\beta f) = \chi_{\beta},$$

• $h_{\beta} \in \mathscr{C}_{\Omega}(\mathbb{T})$ the corresponding positive eigenfunction.

The parameter β represents the inverse of the temperature in Statistical Mechanics.

On the zero-temperature limit of Gibbs-equilibrium states for specific modulus of continuity $\omega, \Omega.$

So, **the goal** is to analyze the zero-temperature Gibbs measure, for specific modulus of continuity ω, Ω . What can be said about the limits in the weak-star topology of μ_{β} as $\beta \to +\infty$?

J. Brémont: Nonl.(2003): Topological mixing subshift of finite type and locally constant potentials.

On the zero-temperature limit of Gibbs-equilibrium states for specific modulus of continuity $\omega, \Omega.$

So, **the goal** is to analyze the zero-temperature Gibbs measure, for specific modulus of continuity ω, Ω . What can be said about the limits in the weak-star topology of μ_{β} as $\beta \to +\infty$?

J. Brémont: Nonl.(2003): Topological mixing subshift of finite type and locally constant potentials.

Contreras-Lopes-Thiuellen ETDS (2001): any accumulation measure (in the weak topology) of $\{\mu_{\beta}\}_{\beta}$ as $\beta \to \infty$ is a **maximizing measure** of *f*.

The maximizing measure is such that attains the maximum:

$$m(f) := \max_{\mu \in M(\mathbb{T},T)} \int f d\mu$$

Here, m(f) is the ergodic maximizing value of f.

Large deviation principle version

Expected result: (Large Deviation Principle when $\beta \to \infty$)

Let Ω be a *T*-compatible modulus of continuity with respect to the modulus ω . Let $f: \mathbb{T} \to \mathbb{R}$ be a function in $\mathscr{C}_{\omega}(\mathbb{T})$, **Suppose that** f admits a unique maximizing measure μ_{max} . Then for any dynamical ball $B(n, \epsilon, x)$ holds

$$\lim_{\beta \to +\infty} \frac{1}{\beta} \log \mu_{\beta} \Big(B(n, \epsilon, x) \Big) = - \inf_{y \in B(n, \epsilon, x)} I(y)$$

Here, the function $I(y) = \sum_{n \ge 0} (U \circ T - U - (f - m(f)) \circ T^n(y))$ and U is any calibrated subacction for f.

Where:

$$U: \text{ can be construct as a cumulation point of } \frac{1}{\beta} \log h_{\beta}$$
(calibrated subaction of $f \in \mathscr{C}_{\omega}(\mathbb{T})$)

Under what suitable conditions of (ω, Ω) we can prove that the existence of Large Deviation Principle for the family {μ_β}_β, when β → +∞? We follow Baraviera, A. O. Lopes and P. Thieullen: Stoch. Dynam.(2011), in the setting of subshift of finite type and Hölder continuous potentials, based on the dual shift and the existence of the Involution Kernel.

Assuming the hypothesis that: there exists a unique maximizing measure. In order to have:

- $\star\,$ for any two calibrated subactions differ by a constant.
- \star that deviation function I(x) be well defined.

We follow Baraviera, A. O. Lopes and P. Thieullen: Stoch. Dynam.(2011), in the setting of subshift of finite type and Hölder continuous potentials, based on the dual shift and the existence of the Involution Kernel.

Assuming the hypothesis that: there exists a unique maximizing measure. In order to have:

- $\star\,$ for any two calibrated subactions differ by a constant.
- \star that deviation function I(x) be well defined.
- The uniqueness of maximizing measure is a generic condition in several spaces of potentials:
 - * Contreras, A. O. Lopes and Thiuellen: (2001) ETDS.

Proposition (GI2024)

For a subadditive modulus of continuity ω , the space $\mathscr{C}_{\omega}(\mathbb{T})$ is dense in $(C^{0}(\mathbb{T}), \|\cdot\|_{\infty})$.

The following proposition states that a (topologically) typical potential $f \in \mathscr{C}_{\omega}(\mathbb{T})$ has exactly one maximizing measure, provided that the modulus ω is assumed to be subadditive.

Proposition (GI2024)

For a subadditive modulus of continuity ω , the space $\mathscr{C}_{\omega}(\mathbb{T})$ is dense in $(C^{0}(\mathbb{T}), \|\cdot\|_{\infty})$.

The following proposition states that a (topologically) typical potential $f \in \mathscr{C}_{\omega}(\mathbb{T})$ has exactly one maximizing measure, provided that the modulus ω is assumed to be subadditive.

Proposition: A generic potential $f \in \mathscr{C}_{\omega}$ admits a unique maximizing measure

Let ω be a subadditive modulus of continuity. Then, there is a residual set \mathcal{R}_{ω} in $\mathscr{C}_{\omega}(\mathbb{T})$ for the $|| \cdot ||_{\omega}$ -topology such that every $f \in \mathcal{R}_{\omega}$ admits a unique maximizing measure, namely, the set

$$\left\{\mu \in M(\mathbb{T}, T) : \int f d\mu = m(f)\right\}$$
 contains a unique measure.

Having established due to that $(\mathscr{C}_{\omega}(\mathbb{T}), \|\cdot\|_{\omega})$ is a **dense** Banach space in $C^{0}(\mathbb{T})$ which embeds continuously in $(C^{0}(\mathbb{T}), \|\cdot\|_{\infty})$, this results follows immediately from (**Contreras, A. O. Lopes and Thiuellen (2001) ETDS)**.