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Introduction

This course focuses on the application of machine learning techniques to
optimal control. Speci�cally, we will study the problem of construction a
smooth (approximately) optimal Feedback law.
The general content of the course is the following:

A brief introduction to optimal control: dynamic programming,
Pontryaguin maximum principle, Hamilton Jacobi-Bellman equation.

Learning problems for the synthesis of optimal Feedback laws.

Convergence analysis of the cost functional (stability and consistency).

Approximation of semiconcave functions.
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Introduction

Some question arise:

Why should we use Machine Learning at all?

Are performance guarantees? Convergence?

Which of the multiple methods available is more suitable? Does it
depends on the parameters of the problem?

We will try to answer these question during the course.
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Optimal control

We start by de�ning the type of control problem we will work with:

(P)y0 min
u

J(u, y0) :=

∫ ∞

0

(
ℓ(y(t)) +

β

2
|u(t)|2

)
dt

where y ∈ H1((0,∞);Rd) is the unique solution of

y ′(t) = f (y(t)) + Bu(t), t ∈ (0,∞), y(0) = y0.

with

β > 0,

Ω ⊂ Rd open, bounded y convex.

ℓ ∈ C 1([t0,T ]; Ω), ℓ ≥ 0, ℓ(0) = 0, ∇ℓ(0) = 0,

f ∈ C 1(Ω), B ∈ Rd×m.
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(P)y0 min
u

J(u, y0) :=

∫ ∞

0

(
ℓ(y(t)) +

β

2
|u(t)|2

)
dt

where y ∈ H1((0,∞);Rd) is the unique solution of

y ′(t) = f (y(t)) + Bu(t), t ∈ (0,∞), y(0) = y0.

Remark 1

This is a in�nite horizon problem which aims to stabilize the system to

0, in the sense that ℓ(0) = 0.

The methods that we will see can be applied to more general type of

problems, but for the ease of the presentation this one.
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Optimal Control

We are interested in �nding a solution in form of a Feedback law, that is,
we seek for a function û : Rd 7→ Rm such that{

y ′(t) = f (y(t)) + Bû(y(t)), for all t > 0 and

y(0) = y0
(1)

has a solution ŷ ∈ H1((0,∞);Rd) and u∗ = û ◦ ŷ is a solution of (P)y0 .
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Optimal Control

There are classical methods to construct an optimal Feedback law. They
are based on

Pontryagin Maximum Principle

Dynamic Programming

We point out, that the Pontryagin Maximum Principle does not deliver a
Feedback-law, but is important to understand the methods we will work
with, in particular for the ML based methods.
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Optimal Control

To understand these topics we need to bring up some de�nitions:

Lagrangian:

L(y , u, p) =
∫ ∞

0

{
ℓ(y) +

β

2
|u|2 + p⊤

(
y ′ − f (y)− Bu

)}
dt

Adjoint equation and state:

−p′ +∇ℓ(y)− Df ⊤(y)p = 0

The Hamiltonian:

H(y , u, q) = ℓ(y) +
β

2
|u|2 + q⊤ · (f (y) + Bu)
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Optimal Control

The Pontryagin maximum principle refers to the following optimality
conditions of (P)y0 :

(PM)



u∗ =
1

β
B⊤p∗, u ∈ L2((0,∞);Rm)

− d

dy
p∗ − Df ⊤(y∗)p∗ +∇ℓ(y∗) = 0

d

dt
y∗ = f (y∗) + Bu∗, y∗(0) = y0.

The �rst condition is equivalent to:

H(y∗, u∗,−p∗) = min
u∈Rm

H(y∗, u, p∗) = 0.
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Optimal Control

Remark 2

It is important to note that no transversality condition is consider. If

(y∗, u∗, p∗) are regular enough, then we may expect

lim
t→∞

p(t) = 0,

but this will not hold in general.

Remark 3

If the control problem were convex, solving the optimality conditions would

be enough, but this is not the general case. Further, the systems PM is not

easily solvable unless the problems is very simple or there is a good guess.
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Optimal Control

We now turn to dynamic programming. The value function of (P)y0 is
de�ned by

V (y0) = min
u∈L2((0,∞);Rd )

J(u, y0).

The core of dynamic programming is the dynamic programming principle or
Bellman principle:

V (y0) = min
u∈L2((0,T );Rd )

V (y(T )) +

∫ T

0

(ℓ(y) +
β

2
|u|2)dt

= V (y∗(T )) +

∫ T

0

(ℓ(y∗) +
β

2
|u∗|2)dt

where y is the state associated to u and T is any time horizon in (0,∞).
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Optimal Control

Using the dynamic programming principle and assuming that V is C 1 we
can arrange the terms to obtain:

0 = min
u∈L2((0,T );Rm)

1

T
(V (y(T ))− V (y0)) +

1

T

∫ T

0

(ℓ(y) +
β

2
|u|2)dt
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Optimal Control

Using the dynamic programming principle and assuming that V is C 1 we
can arrange the terms to obtain:

0 = min
u∈L2((0,T );Rm)

1

T
(V (y(T ))− V (y0)) +

1

T

∫ T

0

(ℓ(y) +
β

2
|u|2)dt

taking T → ∞

0 = min
u∈Rm

∇V (y0)
⊤(f (y0) + Bu) + (ℓ(y0) +

β

2
|u|2)
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Optimal Control

solves the so called Hamilton-Jacobi-Bellman equation:

− min
u∈Rm

H(y0, u,∇v(y0)) = 0, for all y0 ∈ Rd . (HJB)
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Optimal Control

solves the so called Hamilton-Jacobi-Bellman equation:

− min
u∈Rm

H(y0, u,∇v(y0)) = 0, for all y0 ∈ Rd . (HJB)

An implication of this fact, is the veri�cation formula, namely, u∗ is an
optimal control with associated state y∗ and adjoint state p∗ if an only if

p∗(t) = −∇V (y∗(t)), u∗(t) = − 1

β
B⊤∇V (y∗).
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Optimal Control

solves the so called Hamilton-Jacobi-Bellman equation:

− min
u∈Rm

H(y0, u,∇v(y0)) = 0, for all y0 ∈ Rd . (HJB)

An implication of this fact, is the veri�cation formula, namely, u∗ is an
optimal control with associated state y∗ and adjoint state p∗ if an only if

p∗(t) = −∇V (y∗(t)), u∗(t) = − 1

β
B⊤∇V (y∗).

This gives the following formula for the optimal feedback law:

û(y) = − 1

β
B⊤∇V (y).
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Optimal Control

Classical approaches relies on solving the HJB equation Classical
approaches relies on:

Solving the (HJB) equation. this requires to discretize the problem!

Use the Veri�cation Formula to construct and optimal Feedback.
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Optimal Control

Classical approaches relies on solving the HJB equation Classical
approaches relies on:

Solving the (HJB) equation. this requires to discretize the problem!

Use the Veri�cation Formula to construct and optimal Feedback.

But they su�er from the curse of dimensionality!

Donato Vásquez-Varas (DIM) IPPhys2026 January 8, 2026 13 / 144



Optimal Control

We can consider for example the Semi-Lagrangian approach.

In this method the control problem is discretized �rst:

yi+1 = yi + h(f (yi ) + Bui )

Jh(u, y0) =
∞∑
i=1

(
ℓ(yi ) +

β

2
|ui |2

)
h

From which we obtain a discrete version of the Bellman principle:

Vh(y0) = min
u∈Rd

h(ℓ(y0) +
β

2
|u|2) + Vh(y0 + h(f (y0) + Bu)).
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Optimal Control

We can try to solve this problem by considering a grid yi
n of Ω of size

∆y and considering a set of basis functions Bn = {ϕi}ni=1 for which
the grid is unisolvent, the equations is replaced by

Vh,n(yi ) = min
u∈Rd

h(ℓ(yi ) +
β

2
|u|2) + Vh,n(yi + h(f (yi ) + Bu))

where Vh,n lives in the space generated by Bn.

Unisolvent means that for all ϕ1, ϕ2 ∈ the space generated by Bn we
have

ϕ1(yi ) = ϕ2(yi ) for all i ⇒ ϕ1 = ϕ2
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Optimal Control

Since the grid is unisolvent, this equation determines the coe�cientes
of Vh,n. In turns, this could be solve by Picard iterations:

Vh,n,j+1(yi ) = min
u∈Rd

h(ℓ(yi ) +
β

2
|u|2) + Vh,n,j(yi + h(f (yi ) + Bu))

In the case of �nite elements we obtain the following error bound:

∥V − Vh,n∥C(Ω) ≤ C

(
h

1
2 +

∆y

h

)
.

This seems to be a nice bound, however, in a high dimensional
context, if we want to bound the space error by ε > 0, we need at

least
(
1
ε

)d
points! This issue is called the curse of dimensionality.
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Optimal Control

The curse of dimensionality is our main motivation to use machine learning
techniques for solving control problems, although they have some
limitations as well. Some new questions arise

1 Which methods exist?

2 Can we give any performance guarantee of the Feedback? In the case
of classical methods there is an error bound but also growths badly
with the dimension.

Before continuing we need to address another important issue we were
forgetting, the solutions of (HJB) equation are not C 1. We need to work
we viscosity solutions instead of classical solutions.
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Optimal Control

De�nition 1

For v ∈ C (Ω) we consider

D+v := {q ∈ Rd : lim sup
h→0

v(y + h)− v(y)− q⊤ · h
|h|

≤ 0}

is called the upper-di�erential of v at y and

D−v := {q ∈ Rd : lim inf
h→0

v(y + h)− v(y)− q⊤ · h
|h|

≥ 0}

is called the sub-di�erential of v at y
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Optimal Control

Some important facts:

D+v and D−v are not empty almost everywhere.

v is di�ernetiable at y if and only if

D+v(y) = D−v(y) = {∇v(y)}.

D+v(y) and D−v(y) are convex and closed sets for all y .

D+v is upper semi-continuous, that is, if yn → y and pn ∈ D+v(yn) is
such pn → p, then

p ∈ D+v(y).
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Optimal Control

De�nition 2

Let us consider F : Rd × Rd 7→ R, we say that v ∈ C (Ω) is a viscosity

solution of

F (y ,∇v(y)) = 0, ∀y ∈ Ω

if for all y ∈ Ω

F (y , q) ≤ 0, ∀q ∈ D+v(y) (sub-solution)

and

F (y , q) ≥ 0, ∀q ∈ D−v(y) (super-solution).
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Optimal Control

In the case of HJB equation, it is well known that V is the unique viscosity
solution of (HJB):

− min
u∈Rm

H(y , u,∇V (y)) = 0

that is
min
u∈Rm

H(y , u, p) ≥ 0 for all p ∈ D+V (y)

and
min
u∈Rm

H(y , u, p) ≤ 0 for all p ∈ D−V (y).
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Optimal Control

As we mentioned before, V is not di�erentiable in general, nevertheless it
does have a regularity notion which is connected to the concept of viscosity
solutions:

De�nition 3

We say that a function v ∈ C (Ω) is C-semiconcave if x 7→ v(x)− C
2
|x |2 is

concave.

A natural regularity assumption for the value function (and the solutions of
HJB) is the semiconcavity.
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Optimal Control

In fact, a semiconcave functions is always kind of a value function:

Theorem 1

v ∈ C (Ω) is C−semi-concave if and only if there exists {ϕi}∞i=1 ⊂ C 2(Ω)
with ∥ϕi∥C(Ω;Rd×d ) ≤ C such that

v(y) = inf
i∈N

ϕi (y).

This will be important to contruct a parametrization-approximation for
semiconcave functions!
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Optimal Control

Semiconcave functions satis�es the following properties:

1 v is locally Lipschitz in Ω.

2 The upper di�erential of v is never empty and

p ∈ D+v(y) ⇔ v(h + y)− v(y) + p⊤ · h ≤ C |h|2,

∀|h| < dist(x , ∂Ω).

3 v is semiconcave if and only if the largest eigenvalue of ∇2v is
bounded by C in the sense of distributions:∫

Rd

x⊤∇2ϕ(y)xv(y)dy ≤ C |x |2 for all x ∈ Rd .

4 v is C 1 and twice di�erentiable almost everywhere.
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Optimal Control

There is a connection with HJB:

Theorem 2

If v is semiconcave and v satsi�es (HJB) almost everywhere, i.e.,

min
u∈Rm

H(y , u,∇v(y)) = 0 for almost all y ∈ Ω

then v is a viscosity solution of (HJB) in Ω.
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Optimal Control

The semiconcavity of the value function will allow us to study the
convergence of machine learning methods. It also helps to construct a
parametrization.
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ML Algorithms

There are many methods in the literature that attempt to solve HJB
equations and/or construct a optimal feedback laws. In the rest of the
course we will consider the followings:

1 Regression along trajectories: In this method the optimal feedback
law is obtained by solving the control problem for many initial
conditions and then �t a ML model to approximate the optimal
control, adjoint state or the value function along the trajectories.

2 Averaged method: This method lies in the category of unsupervised
ML algorithms. It consists in replacing J by an averaged version (with
respecto to the intial conditions) and parametrized the control.

3 PINNS: This also can be considered a unsupervised method. This
method tries to directly solve the HJB equation. The fact that we
look for a viscosity solution makes the analysis of this problem very
challenging.
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ML algorithms

To describe the methods we need the concept of setting

De�nition 4

We de�ne a setting as a tupple (Θ, v ,P) in which:

Θ is a �nite dimensional Banach space, we call this the space of

parameters or parametric space.

v : Θ 7→ C 2(Ω) is a continuous function. We call it the

parametrization.

P : Θ 7→ [0,∞) a continuous coersive function, that is,

lim
∥θ∥Θ→∞

P(θ) = ∞.

We call it the penalty function.
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ML algorithms

We can consider the following examples of settings:

Polynomials: ϕi (x) = x i , Θn = Rn+1, vn(θ)(x) =
∑n+1

i=1 ϕi−1(x)θi ,
Pn(θ) = α1|θ|2 + α2|θ|1.
d-Polynomials For α ∈ Nd , ϕα(x) =

∏d
i=1 x

αi . De�ning

Λn = {α ∈ Nd : |α|∞ ≤ n},

Θn = RΛn

,
vn(θ)(x) =

∑
α∈Λn

θαϕα(x)

Pn(θ) = α1|θ|2 + α2|θ|1.
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ML algorithms

Another important case is the neural network parametrization. We will only
consider the case of Shallow Neural Networks. For θ = (a1, b1, a0, b0) with
a1 ∈ Rn, a0 ∈ Rn×d , b0 ∈ Rn and b1 ∈ R, we set consider the following
parametrization

v(θ) = b1 +
n∑

i=1

a1,iϕ(a
⊤
0,i · x + b0,1·).

with ϕ : R 7→ R being the activation function. For example

ϕ(x) = max(x , 0)2, ϕ(x) =
1

1+ exp(−x)
, ϕ(x) = tanh(x)
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ML algorithms

In this case the parametric space is Θ = Rn × R× Rn×d × Rn. As for the
penalty functions, typically, the euclidean norm is used. Nevertheless, there
other options, for example

Pn(θ) = |b1|+
n∑

i=1

|a1|(|a0,i |+ |bi |).

This is norm is connected to the Barron space associated to the activation
function.
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ML algorithm

We know recall the veri�cation formula, which states that the optimal
Feedback must be of the form

u = − 1

β
B⊤∇V

with V the value function of the control problem. The idea is to use the
parametrization to replace the value function in the veri�cation formula,
which delivers the following parametrization for the optimal feedback law:

u(θ) = − 1

β
B⊤∇v(θ)

In general, ∇ represent the gradient with respect to the state variables.
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ML algorithm

The three methods we are about to discuss consists in �nding a parameter
θ∗ as the solution of a Continuous Learning problem of the following form

min
θ∈Θ

∫
Ω
L(θ, x)f (x)dx + αP(θ)

where L is called the loss function and f is a probability density function
over Ω. For simplicity we will assume f (x) = 1

|Ω| .

For each method, we consider a di�erent choice of loss function, with the
hope that v(θ∗) delivers an optimal feedback law by means of the
veri�cation formula.
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ML algorithm

Of course, in practice we cannot solve such a problem, because the
integrals involved are intractable. Instead we solve a discrete version. That
is, for a training set Y = {yi}Ni=1 we consider the Monte Carlo
approximation of the learning problem:

min
θ∈Θ

1

N

N∑
i=1

L(θ, yi ) + αP(θ)

where the training set is sampled independently from the distribution
associated to f .
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ML algorithm

The convergence of the discrete problem towards the continues one is
ensured by:

1 The Uniform Law of Large Numbers, which states that if
g : X × Y 7→ R is continuous in x , X is a compact subset of Rd , and
integrable with respect to Y , then for a iid sample {yi}∞i=1 we have

lim
N→∞

sup
x∈X

∣∣∣∣∣ 1N
N∑
i=1

g(x , yi )− Ey (g(x , ·))

∣∣∣∣∣ = 0

almost surely.

2 The set of solutions of the continuous learning problem is compact
due to the coersivity of P.
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Regression Along Trajectories

A �rst attempt to construct an optimal feedback law could be to �nd
θ∗ ∈ Θ by minimizing the distance between the optimal feedback law and
our parametrization:

min
θ∈Θ

1

|Ω|

∫
Ω

1

β
|B⊤(∇V (x)−∇v(θ)(x))|2dx + αP(θ)

Of course, we do not have access to V , but we could consider a set of
initial conditions Ytrain = {yi}Ni=1 in Ω and approximate this problem by
Monte Carlo (or any other integration method):

min
θ∈Θ

1

N

N∑
i=1

1

β
|B⊤(∇V (yi )−∇v(θ)(yi ))|2 + αP(θ)
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ML algorithm

Again, we do not have direct access to V , but if we solve the optimal
control problem, we know that

V (y0) = J(u∗, y0), ∇V (y0) = −p∗(0).

Therefore this approach implies that we need to solve N optimization
problems

After that, this the Learning problems becomes a simple regression
problem.

In some applications N must be very large, and the control problem
could be very expensive to solve.

We can leverage the dynamic programming principle.
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Regression Along Trajectories

By the dynamic programming principle we have that if u∗ is an optimal
control and y∗ is the corresponding optimal trajectory, then u∗|[T ,∞) is an
optimal control for Py∗(T ). Consequently we have

V (y∗(T )) = J(u∗|[T ,∞) , y
∗(T )), ∇V (y∗(T )) = −p∗(T ),

that is, we know the value function and its gradient along the optimal
trajectory.
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Regression Along Trajectories

In the regression along trajectories approach the idea is to utilize the fact
that we know the value function along the trajectory:

min
θ∈Θ

1

|ω|

∫
ω

∫ T

0

1

β
|B⊤(∇V (y∗(t; y0))−∇v(θ)(y∗(t; y0)))|2dtdy0 + αP(θ)

where T > 0 is a �nite time horizon time horizon and y∗(·, y0) is the
optimal trajectory emanating from y0. In practice we have

min
θ∈Θ

h

N

N∑
i=1

M∑
j=1

1

β
|B⊤(∇V (yi ,j)−∇v(θ)(yi ,j))|2 + αP(θ)

where h = T/M and {yi ,j}Mj=1 is a discretization of y∗(·, yi ) at times steps
tj = jh.
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Regression Along Trajectories

Now we arrive to the following question: How can we solve the control
control?

1 Solve the boundary value problem stemming from the Pontryagin
principle up to time T > 0:

d

dt
y = f (y) + Bu, y(0) = y0

− d

dt
p − Df ⊤(y)p +∇ℓ(y) = 0, p(T ) = 0

u =
1

β
B⊤p.

2 Directly solve the optimization problem by a gradient-Newton type
method.

In both cases we must choose a discretization method for the involved
equations.
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Regression Along Trajectories

We need a discretization method which ensures stability and precision, for
instance the Crank-Nicolson method which is an implicit method second
order method.

1 Discretization of the cost:

JM(u, y0) =
M−1∑
j=0

h

2

(
β

2
(|uj |2 + |uj+1|2) + ℓ(yj) + ℓ(yj+1)

)
2 Discretization of the dynamics:

yj+1 = yj +
h

2
(f (yj) + f (yj+1) + B(uj + uj+1)) .
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Regression Along Trajectories

In this case, the discrete adjoint state satis�es the following equation:

1

h
(pj−1 − pj) +∇ℓ(yj)− Df (yj)

⊤(pj−1 + pj) = 0 for j < M

pM−1 = −h

2
(Id×d − h

2
Df ⊤(yM))−1∇ℓ(yM)
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Regression Along Trajectories

The regression along trajectories can be seen as a weighted regression.
To see this, we note that by using the following change of variables for
t > 0 �xed

z = y∗(t, y0), dz = |det(Dy∗(t; y∗0 ))|dy0
we have ∫

ω

∫ T

0

1

β
|B⊤(∇V (y∗(t; y0))−∇v(θ)(y ∗ (t; y0)))|2dtdy0

=

∫
{y∗(t;y0):t∈[0,T ];y0∈Ω}

1

β
|B⊤(∇V (z)−∇v(θ)(z)|2g(z)dz

with

g(z) =

∫
{t∈[0,T ]:∃y0∈ω, z=y∗(t,y0)}

1

|det(Dy(t, y0(z)))|
dt.
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Regression Along Trajectories

Let us see some examples. We start by considering a modi�ed version of
the Van der Pol oscillator:

min

∫ ∞

0

(
1

2
|y |2 + β

2
|u|2
)
dt

d2

dt2
y = µ(1− y2)

d

dt
y − y + γy3 + u

y(0) = y0,
d

dt
y(0) = v .

(2)

with µ = 3
2
, γ = 4

5
. We will consider a reference domain Ω = [−10, 10]2

(state and velocity).
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Regression Along Trajectories

To measure the performance of this approach we will consider the following
metrics:

VRMAE =
N∑
i=1

J(ûi , yi )/
N∑
i=1

V (yi )

and

CRMSE =
N∑
i=1

∥ûi − u∗i ∥L2((0,T );Rm)/

N∑
i=1

∥u∗i ∥L2((0,T );Rm)

where {yi}Ni=1 is a set of initial conditions, u∗i an approximation of the
optimal controls and ûi the control given by the Feeedback law applied to
the intial condition yi .
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Regression Along Trajectories

The Van der Pol oscillator is a 2-dimensional example, maybe we can
consider something with a larger dimensionality, for example, the
discretization of a PDE control problem.
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Regression Along Trajectories

We can consider the stabilziation of the Allen Chan equation by a �nite
number of actuators:

min
u∈L2((0,∞);Rm)

1

2

∫ ∞

0

∥y∥L2(−1,1) +
β

2

m∑
i=1

∫ ∞

0

|ui |2dt

s.a.
d

dt
y = ν

d2

dx2
y + y(1− y2) +

m∑
i=1

χωiui

d

dx
y(t,−1) =

d

dx
y(t, 1) = 0, y(0, x) = y0(x)

(3)
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Regression Along Trajectories

The uncontrolled system has 3 steady states of interest: y = −1 and
y = 1 (stable) and y = 0 (unstable).
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Regression Along Trajectories

To discretize the PDE we use the Chebyshev Spectral Collocation method.
This is not the focus of these lectures, hence we will only sketch the
method.
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Regression Along Trajectories

Chebyshev polynomials {ϕi}∞i=1 are a Ortogonal basis of L2µ(−1, 1)
which is the space of square integrable functions using the following
measure

µ =
1√

1− x2
.

They are given by the following recusive formulas

ϕ0(x) = 1, ϕ1(x), ϕi+1(x) = 2xϕi (x)− ϕi−1(x)

They are used together with the Chebyshev points:

xi ,N = − cos

(
π
i

N

)
for i ∈ {1, . . . ,N}. These points are unisolvent for the the Chebyshev
polynomials of degree smaller than N.
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Regression Along Trajectories

The state is replaced by its Chebyshev truncation:

y(t, x) ≈
N∑

0=1

ϕi (x)Yi (t)

The equation is approximated by evaluating it at the Chebyshev
points, which deliver the following �nite dimensional system:

d

dt
Y = νAYi + Bu + (1− Y2)Y

with

Bi ,j =

{
1 xi ,n ∈ ωj

0 xi ,n /∈ ωj

Donato Vásquez-Varas (DIM) IPPhys2026 January 8, 2026 51 / 144



Regression Along Trajectories

For the setting of the learning problem we consider Polynomials and
NN.

But we cannot use the full basis of polynomials! (|Bn| = nd)

Instead we consider the Hyperbolic cross basis:

Γn = {α ∈ Nd :
d∏

i=1

(αi + 1) ≤ n}

B̃n = {ϕα : α ∈ Γn}
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Regression Along Trajectories

Figure: Polynomials basses.
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AFLS

We now describe the Averaged Feedback Law Scheme (AFLS), which
consists in:

1 Parametrizing the control by the Veri�cation Formula

u = − 1

β
B⊤∇v(θ)

2 Minimize a truncated averaged version of the cost:

JT (v) =

∫
ω
VT (y0; v)dy0

with

VT (y0; v) =

∫ T

0

(
ℓ(y(t; y0, v)) +

1

2β
|B⊤∇v(y(t; y0, v))|

)
dt

and y(t; y0, v) being the (unique) solution of

d

dt
y = f (y)− 1

β
BB⊤∇v(y), y(0) = y0.
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AFLS

The learning problem in the AFLS method is the following:

min
θ∈Θ

1

|ω|
JT (v(θ)) + αP(θ).

The discrete version of this problem is given by

min
θ∈Θ

1

N

N∑
i=1

VT ,M(yi ; v(θ)) + αP(θ).

where VT ,M is obtained, for example, by applying the Crank-Nicolson
scheme.
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AFLS

We have then that VT ,M is given by

VT ,M(y0; v(θ)) =
M∑
j=1

h

2

(
ℓ(yj) + ℓ(yj+1) +

1

2β
|∇v(yj+1)|2 + |∇v(yj+1)|2

)

and

yj+1 = yj +
h

2

(
f (yj) + f (yj+1)−

1

2
BB⊤(∇v(yi ) +∇v(yi+1+))

)
with h = T

M .
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AFLS

The corresponding adjoint state is given by

1

h
(pj−1 − pj) +∇ℓ(yj)−

1

2
Df (yj)

⊤(pj + pj−1)

+∇2v(θ)(yj)
2BB⊤(

1

2
(pj−1 + pj) +∇v(yj)) = 0

for j < M and

h

2

(
∇ℓ(yM) +

1

β
∇2v(yM)BB⊤∇v(yM)

)
−h

2

(
Df ⊤(yM) +

1

β
∇v2(yM)BB⊤

)
pM−1 + pM−1 = 0
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AFLS

In the continuous case the adjoint is given by

− d

dt
p +∇ℓ(y)− Df (y)⊤p +

1

β
∇2v(y)BB⊤(p +∇v) = 0 and p(T ) = 0.

With the help of the adjoint we have the derivative of the objective
function is

d

dθ
J (v(θ)) =

1

|ω|β

∫
ω

d

dθ
∇v(θ)BB⊤(p +∇v(θ))dtdy0

From this we can see that the optimality conditions of the learning problem
implies that the solution of the learning problems θ∗ also solves

min
θ∈Θ

1

2|ω|β

∫
ω
|B⊤(p +∇v(θ))|2dtdy0 + αP(θ)

which is very similar to the Learning problem of RAT method!
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AFLS

Let us see the performance of this method in same examples as in the case
of the RAT method.
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PINNS

The Physics Informed Neural Networks approach (PINNS) try to solve
directly the HJB equation

it is less direct than the other methods, since we do not try to obtain
the feedback from the resolution of a learning problem.

We �rst solve the HJB equation with the hope that the solution
approximates the value function of the control problem.

Donato Vásquez-Varas (DIM) IPPhys2026 January 8, 2026 60 / 144



PINNS

The Physics Informed Neural Networks approach (PINNS) try to solve
directly the HJB equation

it is less direct than the other methods, since we do not try to obtain
the feedback from the resolution of a learning problem.

We �rst solve the HJB equation with the hope that the solution
approximates the value function of the control problem.

Donato Vásquez-Varas (DIM) IPPhys2026 January 8, 2026 60 / 144



PINNS

The Physics Informed Neural Networks approach (PINNS) try to solve
directly the HJB equation

it is less direct than the other methods, since we do not try to obtain
the feedback from the resolution of a learning problem.

We �rst solve the HJB equation with the hope that the solution
approximates the value function of the control problem.

Donato Vásquez-Varas (DIM) IPPhys2026 January 8, 2026 60 / 144



PINNS

We need to recall that the value function solves the HJB equation:

H(y ,∇v(y)) := − min
u∈Rm

H(y , u,∇v(y))

= −ℓ(y)−∇v(y) · f (y) + 1

2β
|B⊤∇v(y)|2 = 0

... in the viscosity sense.
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PINNS

Typically, the PINNS method tries to minimize the square of the equations
residuals. In this case, than means:

min
θ∈Θ

1

|Ω|

∫
Ω
(H(u,∇v(θ)(y)))2dy + αP(θ).

However this do not deliver (necessarily) a viscosity solution, instead, it
gives a generalized solution (satis�es HJB a.e.).
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PINNS

It is important to bear in mind that generalized solutions are not unique,
for instance, the distance function to the boundary of Ω is unique viscosity
solution of

−|∇v |2 = −1 in Ω , v = 0 on ∂Ω,

and consequently a generalized solutions. Additionally, ṽ = −v is also a
generalized solution, since it satis�es the equation a.e..

Donato Vásquez-Varas (DIM) IPPhys2026 January 8, 2026 63 / 144



PINNS

There are two strategies to remedy this problem

To regularize the equation by adding a viscosity term −ε∇v2. This
makes the solution of the problem unique, but its performance is not
clear.

To modify the problem using that the viscosity solution is given by:

V (y) = sup
ϕ∈C2 and is a sub-solution of HJB

ϕ(x).
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PINNS

Following the second approach we solve:

min
θ∈Θ

1

|Ω|

∫
Ω

(
−v(x) + γmax(H(x ,∇v(θ)(x)), 0)2

)
+ αP(θ)

As γ tend to in�nity, the function v(θ∗γ) (θ
∗
γ solution of the problem) the

term H(x ,∇v(θ∗γ)(x)) is becoming negative for almost all x ∈ Ω.
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PINNS

It is interesting to note that this problem is convex if the parametrization is
linear in the parameters, since

H(x ,∇v(θ)(x)) = −ℓ(x)−∇v(θ)(x) · f (x) + 1

2β
|B⊤∇v(θ)(x)|2

which would be a quadratic functions in the parameters.
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PINNS

The discrete version of this problem is therefore given by

min
θ∈Θ

1

N

N∑
i=1

(
−v(xi ) + γmax(H(xi ,∇v(θ)(xi )), 0)

2
)
+ αP(θ)
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PINNS

Let us see know the performance of this approach in the same examples as
before.
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Summary

Method Needs data? Complexity Convexity Opt Feedback

RAT Yes N ×M True Yes

AFLS No N ×M False Yes

PINSS No N True False
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Summary

RAT and AFLS method behaves similarly and they are able to �nd a
feedback-law.

PINNs approach is not able to �nd an optimal Feedback law.

Why? Is this true for any control problem?
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Convergence Analysis

As is usual in numerical analsysi, there are two concepts which are
important regarding the convergence of these methods:

1 Stability: For a given T > 0, v ∈ C 2(Ω), we say that v is a stable
feedback if y([0,T ];ω, v) ⊂ Ωδ (distance δ > 0 to the boundary).

2 Consistency: We say that a sequence of Feedback laws ϕn ∈ C 2(Ω) is
consistent if for a given p ∈ [1,∞] there exists 0 < Tn → ∞ such that

lim
n→∞

∥VTn(·;ϕn) + V (y(Tn; ·, ϕn))− V ∥Lp(ω) = 0.
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Convergence Analysis

We want to analyze the convergence the methods in the following sense.

De�nition 5

Let Sn = (Θn, vn,Pn) be a sequence of setting and consider θ∗n ∈ Θn a

sequence of solution for one of the methods with the setting Sn. We want

to elucidate under which conditions there exists 0 < Tn → ∞ such that

lim
n→∞

∥VTn(·; vn(θ∗n))− V ∥Lp(ω) = 0

for given p ∈ [1,∞] and ω ⋐ Ω.

As we will see, for this is enough that vn(θ
∗
n) to be stable and consistent.
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Convergence Analysis

For carrying out the convergence analysis we need the following ingredients

Escape time estimates from the reference domain Ω.

Consistency error estimates.

In both cases we will look for reasonable hypotheses (achievable).

Remark 4

The escape time estimates are crucial for ensuring that the trajectories stay

in a domain where we can provide a local approximation of the value

function. This in turns will allow us to use the consistency error estimates

which are of local nature.
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Escape time estimates

To be precise the stability condition or hypothesis is the following:

Hypothesis 1

For the tuple (T , ϕ, δ, y0) with T > 0, ϕ ∈ C 2(Ω), δ > 0, and y0 ∈ Ωδ,

y(·; y0, ϕ) exists on [0,T ] and y(t; y0, ϕ) ∈ Ωδ for all t ∈ [0,T ].

What happen if we approximate a stable feedback in ω, is it also stable?
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Escape time estimates

Lemma 3

Let T > 0 be a time horizon, y0 ∈ ω, g1 ∈ C 2(Ω), g2 ∈ C 2(Ω) and δ > 0,
be such that (T , ug2 , δ, y0) satis�es Hypothesis 1. Assume that

|B|2∥∇g1 −∇g2∥L∞(Ω δ
4
;Rd )

aβ

(
eTa − 1

)
≤ δ

2
,

where

a = ∥Df ∥L∞(Ω δ
4
;Rd×d ) +

|B|2

β
∥∇2g2∥L∞(Ω δ

4
;Rd×d ),

and Df stands for the derivative of f . Then (T , ug1 ,
δ
2
, y0) satis�es

Hypothesis 1.
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Escape time estimates

If the value function is C 2(Ω) as satis�es Hypothesis 1, then any
su�ciently good approximation of V in C 1(Ω) will provide a stable
feedback.

Further more, the escape time from Ω for the approximation is
bounded from below by

T̂ε ≥
1

a
log

(
aβδ

|B|2
ε−1 + 1

)
where ε is the error in C 1(Ω).
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Escape time estimates

What happen if we cannot control the C 1(Ω) norm of the
approximation, even worse, if the value function is not C 1(Ω)?

We can weaken the smoothness of V in exchange of a stronger
stability assumption.
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Escape time estimates

Hypothesis 2

There exist δ̃ > 0, and w ∈ C 1(Ω) such that for

ωδ̃ := {y ∈ Ω : w(y) < sup
y0∈ω

w(y0) + δ̃},

we have that ω ⊂ ωδ̃, ωδ̃ ⊂ Ω, and ∂ωδ̃ is of class C 1. Moreover ϕ ∈ C (Ω)
is a viscosity super solution of

−∇w(y)⊤(f (y)− 1

β
BB⊤∇ϕ(y)) = 0 in ωδ̃,

i.e. for every ȳ ∈ ωδ̃ and every q ∈ D−ϕ(ȳ) the following inequality holds

∇w(ȳ)⊤(f (ȳ)− 1

β
BB⊤(ȳ)q) ≤ 0.
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Escape time estimates

For the next estimates we need to de�ne the following quantities:

σ1ε = sup
x∈ωδ,y∈B(x ,ε)

∣∣∣−∇w(y)⊤f (y) +∇w(x)⊤f (x)
∣∣∣

and
σ2ε = sup

x∈ωδ,y∈B(x ,ε)

∣∣∣B(x)⊤∇w(x)− B(y)⊤∇w(y)
∣∣∣ ,

for ε > 0 and w ∈ C 1(Ω).

Donato Vásquez-Varas (DIM) IPPhys2026 January 8, 2026 79 / 144



Lemma 4

Let ω ⊂ Ω, ϕ ∈ C (Ω) and δ > 0 such that they satisfy Hypothesis 2.

(a) If ϕ ∈ C 1(Ω), consider ϕ̂ ∈ C 2(Ω), and let T̂ be the maximum T > 0
such that y([0,T ];ω, ϕ̂) ⊂ ωδ. Then the following holds

T̂
|B|2

β

(
∥∇ϕ−∇ϕ̂∥C(ωδ;Rd )∥∇w∥C(ωδ;Rd )

)
≥ δ.

(b) If ϕ ∈ Lip(Ω), set ϕε = ϕ ∗ ρε a molli�cation of ϕ, and let Tε be the

maximum T such that y([0,T ];ω, ϕε) ⊂ ωδ. Then there exists ε0
such that all ε ∈ (0, ε0) we have

Tε

(
σ1ε +

σ2ε
β
∥B⊤∇ϕ∥L∞(ωδ;Rd )

)
≥ δ.

where σ1ε is de�ned in (79) and σ2ε in (79).
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Escape time estimates

In a) the escape time estimates depends on the C 1 norm of the
approximation, but it is not require the C 2 norm to be bounded.

In b), for the case where the approximation is given by the
molli�cation, the lack of regularity of the feedback is compensated by
the extra-smoothnes of the Lyapunov function w .
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Consistency estimates

We start by assuming that V is C 1:

Lemma 5

Let v ∈ C 1(Ω) be a super-solution of (HJB). Consider v̄ ∈ C 1,1(Ω),
y0 ∈ Ω, and T such that y(·; y0, v̄) exists on [0,T ] and satis�es

y([0,T ]; y0, uv̄ ) ⊂ Ω. Then we have

VT (y0; v̄) + v(y(T ; y0, v̄))− v(y0)

≤ |B|2

β

∫ T

0

|∇v(y(t; y0, uv̄ ))−∇v̄(y(t; y0, uv̄ ))|2dt
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Consistency estimates

For the ease of the presentation we write ȳ = y(·; y0, v̄), ū = − 1
βB

⊤∇v̄(ȳ)

and u = − 1
βB

⊤∇v(ȳ).

We have

ℓ(ȳ) +
β

2
|ū|2 +∇v̄(ȳ)(f (ȳ)− 1

β
BB⊤∇v̄(ȳ))

≤ ℓ(ȳ) +
β

2
|u|2 +∇v̄(ȳ)(f (ȳ)− 1

β
BB⊤∇v(ȳ))

Using that v is a subsolution of HJB we get

ℓ(ȳ) +
β

2
|ū|2 +∇v̄(ȳ)⊤(f (ȳ)− 1

β
BB⊤∇v̄(ȳ))

≤ −∇v(ȳ)⊤(f (ȳ)− 1

β
BB⊤∇v(ȳ))

+∇v̄(ȳ)⊤(f (ȳ)− 1

β
BB⊤∇v(ȳ))
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Consistency estimates

Rearranging the terms:

ℓ(ȳ) +
β

2
|ū|2 +∇v̄(ȳ)⊤(f (ȳ)− 1

β
BB⊤∇v̄(ȳ))

≤ (∇v̄(ȳ)−∇v(ȳ))⊤(f (ȳ)− 1

β
BB⊤∇v(ȳ))

Adding and subtracting

(∇v̄(ȳ)−∇v(ȳ))⊤ · 1
β
BB⊤∇v̄(ȳ)

in the left hand side we get

ℓ(ȳ) +
β

2
|ū|2 +∇v̄(ȳ)⊤(f (ȳ)− 1

β
BB⊤∇v̄(ȳ))

≤ 1

β
|B⊤(∇v(ȳ)−∇v̄(ȳ))|2

+(∇v̄(ȳ)−∇v(ȳ))⊤
(
f (ȳ)− 1

β
BB⊤∇v̄(ȳ)

)
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Consistency estimates

Rearranging the terms we obtain

ℓ(ȳ) +
β

2
|ū|2 +∇v(ȳ)⊤(f (ȳ)− 1

β
BB⊤∇v̄(ȳ))

≤ 1

β
|B⊤(∇v(ȳ)−∇v̄(ȳ))|2

recalling that
d

dt
ȳ = f (ȳ)− 1

β
BB⊤∇v̄(ȳ)

and integrating we arrive at

VT (y0; v̄) + v(ȳ(T ))− v(y0)

≤
∫ T

0

1

β
|B⊤(∇v(ȳ)−∇v̄(ȳ))|2dt
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Consistency estimates
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Consistency estimates

If the value function is not C 1, but semi-concave we can still do something.
We recall that a function v ∈ C (Ω) is C -semiconcave if and only if for all
d ∈ Rd

d∇v2(x)d ≤ C |d |2

in the sense of the distributions.
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Consistency estimates

Lemma 6

Let ω ⋐ Ω, let v̄ ∈ C 2(Ω;RM) be such that there exist a positive constant

C > 0 satisfying
1

β
tr(BB⊤∇2v̄) ≤ C in Ω1,

and v̄ is stable. Then for all ϕ ∈ C (Ω;R+)∫
ω

∫ T

0

ϕ(y(t; y0, v̄))dtdy0 ≤
eKT − 1

K

∫
Ω
ϕ(z)dz

holds, where

K = d

(
|B|2

β
C + ∥f ∥Lip(Ω;Rd )

)
.
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Consistency estimates

For proving this result we just need to use a change of variables an Fubini
Theorem:

Using the transformation z = y(t; y0, v̄), we obtain for a �xed time
t ∈ [0,T ] that∫

ω
ϕ(y(t; y0, v̄))dy0 =

∫
y(t;ω)

ϕ(z)
dz

|Dy0y(t; y
−1(t; z , ϕ), ϕ)|

The Jacobi formula implies that

|Dy0y(t; y0, ϕ)| =

exp

(∫ t

0

tr

(
Df (y(s; y0, ϕ))−

1

β
BB⊤∇v̄(y(s; y0, ϕ))

)
ds

)
≥ exp

(
−t

(
d∥f ∥Lip(Ω;Rd ) +

d |B|2

β
∥∇2v̄∥L∞(Ω;Rd×d )

))
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Consistency estimates

Plugging this into the change of variables formula we obtain∫
ω
ϕ(y(t; y0, v̄))dy0 ≤ exp (tK )

∫
y(t;ω,ϕ)

ϕ(z)dz .

Since y(t;ω, ϕ) ⊂ Ω for all t ∈ [0,T ] we conclude that∫ T

0

∫
ω
ϕ(y(t; y0, v̄))dy0dt ≤

exp(KT )− 1

K

∫
Ω
ϕ(z)dz
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Theorem 7

Let v ∈ Lip(Ω1) be a super-solution of (HJB) in Ω, and let v̄ ∈ C 2(Ω) be
such that for some constant C > 0

1

β
tr(BB⊤∇2v̄(v)) ≤ C for all y ∈ Ω.

Let ω ⋐ Ω and Hypothesis 1 holds true with v = v̄ , then the following

inequality holds

∥(VT (·; v̄) + v(y(T ; ·, v̄))− v)+∥L1(ω)

≤ |B|2

β

(
eKT − 1

K

)
∥∇v −∇v̄∥2L2(Ω;Rd )
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Consistency estimates

1 The previous result states that if we construct a semiconcave
approxmiation Vn ∈ C 2(Ω) of V such that ∇Vn converges to ∇V in
L2(Ω;Rd) and it is stable, then we have that it is consistent.

2 This justi�es the name of the concept (consistency), since if the
feedback approximation converges in H1(Ω), then the cost function
also converges to the value function.

3 In particular, we can use these result to prove that the molli�cation of
V provides an stable and consistent feedback law.

4 What about the L1 convergence of the cost?
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Consistency estimates

To prove the convergence of a consistent sequence of feedback laws we
split the error of the cost functional in two terms:∫

ω
|VTn(y0; vn)− V (y0)|dy0 =∫

ω
(VTn(y0; vn)− V (y0))

+dy0 +

∫
ω
(V (y0)− VTn(y0; vn))

+dy0
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ω
(VTn(y0; vn)− V (y0))

+dy0 +

∫
ω
(V (y0)− VTn(y0; vn))

+dy0

For the �rst term in the right-hand side we have, from the monotonicity of
the positive part that:∫

ω
(VTn(y0; vn)− V (y0))

+dy0 ≤∫
ω
(VTn(y0; vn) + V (y(Tn; y0, ϕn))− V (y0))

+dy0

which converges to 0 from the consistency of the sequence.
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Consistency estimates

For the second term we have the following result:

Proposition 1

Let vn ∈ C 2(Ω). Then for any 0 < Tn → ∞

lim
n→∞

(V (y0)− VTn(y0; vn))
+ = 0

for all y0 ∈ Ω.
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Consistency estimates

We prove the porposition by contradiction:

There exists y0,n → y0 such that

V (y0,n)− VTn(y0,n; vn) > ε > 0.

This means that un = 1
β∇vn(y(·; y0,n, vn)) satis�es

VTn(y0; vn) ≤ V (y0,n)− ε

By compactness, we have that u∗n converges to u∗ weakly in
L2loc((0,∞);Rm) and y(; y0,n, u

∗
n) strongly in Cloc([0,∞);Rd) to

y(; y0, u
∗).

This implies that

J(u∗; y0) ≤ V (y0)− ε < V (y0)

which contradicts de�nition of V .
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Consistency estimates

This implies the convergence of a consistent and stable feedback law:

Theorem 8

Let vn ∈ C 2(Ω) be a stable in ω ⊂ Ω and consistent sequence of feedback

laws for 0 < Tn → ∞. Then

lim
n→∞

∥VTn(·; vn)− V ∥L1(ω) = 0.
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Consistency estimates

Corollary 1

Let us assume that V is semi-concave and V satis�es Hypothesis 2. Then

Vε = V ∗ ρε (molli�cation of V ) is stable and consistent. Consequently,

there exists 0 < Tε → ∞ as ε→ 0+ and

lim
ε→0+

∥VTε(·; vε)− V ∥L1(ω) = 0.

Since molli�cation preserves semi-concavity, this proves that, at least, there
is one stable and consistent Feedback law.
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Convergence of the AFLS method

How we use this for the convergence of the methods?

We need a universal approximation property for the sequence of
settings:

for all g ∈ C 2(Ω) : ∃ θn ∈ Θn, αn > 0, lim
n→∞

∥vn(θn)−V ∥C2(Ω) = 0.

This directly proves that the solutions of the AFLS method satis�es

lim
n→∞

∫
Ω
VTn(y0; vn(θ

∗
n))dy0 + αnPn(θ

∗
n) = 0

which implies that

lim
n→∞

∫
Ω
|VTn(y0; vn(θ

∗
n))− V (y0)|dy0 = 0
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Convergence of the AFLS method

Theorem 9

Hypothesis 1 ∀g ∈ C 1(Ω) ∃θn ∈ Θn satisfying

limn→∞∥g − vn(θn)∥C1(Ω) + γn · Pn(θn) = 0,

Hypothesis 2 (key):∃ 0 < Tn → ∞ and a consistent sequence

Vn ∈ C 2 feedback-laws with p = 1, i.e.,

lim
n→∞

∥VTn(·, uVn)− V ∥L1(ω) = 0,

satisfying y([0,Tn];ω, uVn) ⊂ Ω,

the result: then there exists a k : N 7→ N and γn such that the method

converges with settings Sn = (Θk(n),Pk(n), vk(n)) and penalty α = γn.
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Convergence of the AFLS method

The meaning of each hypothesis:

The �rst conditions can be seen as a Universal Approxmiation
Property: we need to have a setting which is able to express
su�ciently well any C 2(Ω) function.

The second one is the Stability-Consistency property: It must exists a
stable and consistent sequence of Feedback-laws. This is ensured if V
is semiconcave and is stable.

But what can we say about the RAT method?
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Convergence Regression along trajectories

There exists a Banach space (Θ, ∥·∥Θ) such that V ∈ Θ ∩ C 2(Ω) and
Θ is compactly embedded in C 1(Ω).

y([0,∞); uV , ω) ⊂ Ω.

∀g ∈ Θ there exists a sequence θn ∈ Θn satisfying

lim
n→∞

∥vn(θn)− g∥Θ = 0, sup
n∈N

Pn(θn) <∞.

there exist constants C > 0 and σ > 0 such that for all n ∈ N and
θ ∈ Θn it holds that

∥vn(θ)∥Θ ≤ CPn(θ)
σ.
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Convergence Regression along trajectories

Under the previous there exist a sequence θn ∈ Θ and C > 0 such that

∥B⊤(∇vn(θn)−∇V )∥C(Ω;Rm) = 0 and sup
n∈N

Pn(θn) ≤ C

The result: Setting γn = ∥B⊤(∇vn(θn)−∇V )∥2L2(Ω;Rm) we have that

the solution of the regression problem θ∗n with S = (Θn,Pn, vn) and
penalty α = γn satis�es

lim
n→∞

∥VTn(·, uvn(θn))− V ∥L∞(ω) = 0.
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Comparison

The AFLS method will converge in L1(ω) if the value function is
smooth and the optimal system is stable.

The RAT method convergences in L∞(ω) if the value function is
smooth enough, but it is unknown what happen if it is only
semiconcave.
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Introduction of the example

Objective: To avoid the ball B(z , σ) ⊂ R2

We can control the velocity: y ′ = u.

α > 0

ℓα(y) =
1

2
|y |2

(
1+ αψ

(
|y − z |
σ

))

ψ(s) =

{
exp

(
− 1

1−s2

)
if |s| < 1

0 if |s| ≥ 1
,
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Introduction of the example

z1
y1

y2

Figure: Obstacle problem for α large.
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Introduction of the example

For α ∈ [0,∞), we consider the following control problem

min
u ∈ L2((0,∞);R2),
y ′ = u, y(0) = y0

∫ ∞

0

ℓα(y(t))dt +
β

2

∫ ∞

0

|u(t)|2dt.

The value function of this problem is denoted by Vα.
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Value function
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Properties

There are some important properties of this family of problems

1 The value function of this problem is locally Semiconcave.

2 The optimal trajectories are uniformly asymptotically stable.

3 ∃αs such that for all α < αs , Vα is C∞.

4 ∃αns such that for all α > αns , Vα is not di�erentiable.

5 In the following we compere the two approaches in order to observe in
practice the relevance of the smoothness of the value function.
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Setting

For the numerical experiments we have consider ω = (−5, 5)× (−2, 2).

Di�erent α are considered ranging from the smooth to the
noon-smooth cases.

For the parametrization of the feedback-laws we use an orthogonal
polynomial basis of H1

mix(ω) = H1(−5, 5)⊗ H1(−2, 2) of degree 20.
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Discretization

The state-space integral is discretize by a regular grid of 10× 10. We
call this set of initial conditions the training set.

We also consider a �ner grid of 20× 20. We name this grid as the test
set.

The time integral is approximated by the trapezoid rule and the
di�erential equations are discretized by Crank Nicholson method.

The problem is solved by using the training set and then the
performance of approaches is compere in the test set.
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Performance comparison

In order to compere the performance of the two approaches we consider
the following error measures in both the training and test sets.

NMAEV =

∑N
i=1 |V(y i0, uv(θ))− V (y i0)|∑N

i=1 V (y i0)

NRMSEu =

∑N
i=1∥uv(θ)(y(·; y i0, uv(θ)))− u∗i ∥L2((0,T );R2)∑N

i=1∥u∗i ∥L2((0,T );R2)

where u∗i are the optimal controls.
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Performance comparison NMAEV

Figure: NMAEV
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Performance comparison NMRSEu

Figure: NRMSEu
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Representation Theorem

Theorem

A function v ∈ C (Ω) L−Lipschitz is C−semi- continuous over Ω if and
only if there exists a family {ϕi}i∈I ⊂ C 2(Ω) satisfying

sup
i∈I

∥∇2ϕi∥C(Ω;Rd×d ) ≤ C and sup
i∈I

∥∇ϕi∥C(Ω;Rd ) ≤ L.

and
v(x) = min

i∈I
ϕi (x), ∀x ∈ Ω.

Remark: We can assume that I is countable (but not necessarily �nite).
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Example

Figure: For example f (x) = min
(
x3, 1

2
x2
)
.
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Parametrization

The idea is:

truncation:
ψn(a) = mini∈{1,...,n} ai ⇒ ψi+1(a) = ai+1 − (ai+1 − ψi (a))+

smoothing ε > 0 ψ1,ε(a) = a1, ψi+1,ε(a) = ai+1 − gε(ai+1 − ψi ,ε(a)).

gε(s) =


0 if s < 0
1
2εs

2 if s ∈ [0, ε)
s − ε

2
if s ≥ ε

smoothing ϕi : ξ : Θ 7→ C 2(Ω) parametrization. ϕi ≈ ξ(θi )

V ≈ ψ̃n,ε(θ) = ψn,ε(ξ(θ1), . . . , ξ(θn)) for some θ ∈ Θn.
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gε(s) =


0 if s < 0
1
2εs

2 if s ∈ [0, ε)
s − ε

2
if s ≥ ε

smoothing ϕi : ξ : Θ 7→ C 2(Ω) parametrization. ϕi ≈ ξ(θi )

V ≈ ψ̃n,ε(θ) = ψn,ε(ξ(θ1), . . . , ξ(θn)) for some θ ∈ Θn.
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Learning problem

(Penalty) Pn : Θn 7→ R be a continuous and coercive function
together with a penalty parameter α > 0.

(loss function) J (v) =
1

|Ω|

∫
Ω

(
|V − v |+

d∑
i=1

∣∣∣∣∂V∂xi − ∂v

∂xi

∣∣∣∣
)
dx

Learning problem

For ε > 0, α > 0, and a setting S = (Θ, ξ,Pn), we want to solve:

min
θ∈Θn

J (ψ̃n,ε(θ)) + αPn(θ)

Performance? We provide conditions on a sequence of settings
Sm = (Θm, ξm,Pn,m).
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Approximability hypothesis

There exists µ > 0 and CSC > 0 independent of m such that

sup
i=1,...,n

∥ξm(θi )∥C2(Ω) ≤ CSCPn,m(θ)
µ, ∀θ ∈ Θn,

and there exists θ̃m ∈ Θn
m and CV > 0 satisfying

sup
m∈N

Pn,m(θ̃m) ≤ CV ,

and
lim

m→∞
∥ψn(ξm(θm,1), . . . , ξm(θm,n))− V ∥C(Ω) = 0.
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Convergence Theorem 1

Approximability hypothesis.

εm > 0, limm→∞ εm = 0, αm > 0:

lim
m→∞

αm +
1

αm

(
εm + J (ψ̃n,m,εm(θ̃m))

)
= 0

θ̂m ∈ Θn
m a sequence of solutions of the learning problem with S = Sm.

Vm = ψ̃n,m,εm(θ̂m)

Then Vm is uniformly semi-concave and Lipschitz, and

lim
m→∞

Vm = V in C (Ω).
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Convergence Theorem 2

Hypotheses of Convergence Theorem 1.

Stability hypothesis (Lyapunov function for V ).

Then Vm is consistent: for every ω ⋐ Ω there exists Tm > 0 such that
limn→∞ Tm = ∞,

y([0,Tm];ω,Vm) ⊂ Ω for all m ∈ N

and
lim

m→∞
∥VTm(·,Vm)− V ∥L1(ω) = 0.
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Legendre Learning Problem

For d > 1 and α ∈ Nd :

Legendre polynomials:
(n + 1)Pn+1(x) = (2n + 1)xPn+1(x)− nPn−1(x), P0 = 1, P1 = x .

Pα(x) =
d∏

i=1

Pαi (xi ), x ∈ [−1, 1]d .

Orthogonality in L2: ϕ ∈ L2((−1, 1)d)

∑
α∈Nd

cα(ϕ)Pα, cα(ϕ) =

(∏
i=1

2αi + 1

2

)∫
(−1,1)d

Pα(x)ϕ(x)dx .

for γ ≤ α: ∥DγPα∥C([−1,1]d ) =
d∏

i=1

(αi + γi )!

2γiγi !(αi − γi )!
.
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For N ∈ N, let us now consider the hyperbolic cross set of indexes:

ΓN := {α ∈ Nd : πHC (α) ≤ N}

where for α ∈ Nd

πHC (α) =
d∏

i=1

(1+ αi ).

Remark: It has been proved that the cardinality of this set does not
increases exponentially with the dimension.
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Let vN =
∑

α∈ΓN cα(v), then we have

∥vN − v∥Cm([−1,1]d ) ≤
∑

πHC (α)>N

|cα(v)|∥Pα∥Cm([−1,1]d )

≤ 1

Nk+ 3
4

∥v∥H̃2m+2+k
mix ((−1,1))

where

∥v∥2
H̃r
mix ((−1,1))

=
∑
α∈Nd

(
d∏

i=1

2αi + 1

2

)2r+1

cα(v)
2.
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We consider the following setting.

ΘN = R|Γ(N)| with Γ(N) = {αi}|Γ(N)|
i=1 .

ξN(θ) =

|Γ(N)|∑
i=1

Pαi θi .

Pn,N(θ
1, . . . , θn) =

n∑
i=1

|Γ(N)|∑
j=1

|θji |∥Pαi∥C2([−1,1]d ).

We have

∥ξN(θj)∥C2([−1,1]d ) ≤
|Γ(N)|∑
i=1

|θji |∥Pαi∥C2([−1,1]d ) ≤ Pn,N(θ)

Remark: if V = mini=1,...,n ϕi and {ϕi}ni=1 ⊂ H̃6+k
mix ((−1, 1)d) for some

k ≥ 0 we can obtain an e�cient representation of V !

Donato Vásquez-Varas (DIM) IPPhys2026 January 8, 2026 123 / 144



Tabla de contenidos

1 Introduction

2 Optimal Control

3 ML Algorithms
Regression Along Trajectories
AFLS
PINNS

4 Convergence Analysis

Escape time estimates
Consistency estimates
Comparison: Obstacle problem

5 Parametrization of semiconcave
functions
Abstract Learning Problem
Legendre Learning Problem
Examples

Donato Vásquez-Varas (DIM) IPPhys2026 January 8, 2026 123 / 144



We only consider the case α = 10−10 for the sake of simplicity.

Monte Carlo approximation, 104 samples (training set).

104 samples as test set.

L1 percentage error to asses the performance:

eL1 =
∑
y∈S

|V (y)− V̂ (y)|/
∑
i∈S

|V (y)| · 100

egradL1 =
∑
y∈S

|∇V (y)− V̂ (y)|1/
∑
i∈S

|∇V (y)|1 · 100

where S can be either the training or the test sets, V̂ approximation
and V target.
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Exponential distance

For this example we consider a family of semi-concave functions:

vd = min
i=1,...,d

exp

(
−1

2
|x − ei |2

)
ei is the i−th element of the canonical basis.

vd is is semiconcave and globally Lipscthiz continuous.

It is non di�erentiable in the set

Dd = {x ∈ Rd : |x − ei | = |x − ej | for i ̸= j}.
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Results

Figure: Active and level set sets d = 2.
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Results

Figure: Level sets d = 2.
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Results

Figure: Active and level set sets d = 2, n = 2.
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Results
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Results
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Obstacle problem

z1
y1

y2

Figure: Obstacle problem for γ large.

ℓγ(y) =
|y |2
2

(
1+ γψ

(
|y−z|
σ

))
ψ(s) =

{
exp

(
− 1

1−s2

)
if |s| < 1

0 if |s| ≥ 1
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Obstacle problem

Vγ(y0) = min
u ∈ L2((0,∞);R2),
y ′ = u, y(0) = y0

∫ ∞

0

ℓγ(y(t))dt +
β

2

∫ ∞

0

|u(t)|2dt.

Remark: Vγ is semiconcave but non-di�erentiable for γ > 0 large enough.
In our experiments we take γ = 100
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Results

Figure: L1 Feedback performance.
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Optimal trajectories

Figure: Optimal trajectories.
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Learned trajectories
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Learned active sets
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Connections with Inverse problems

The most direct connection between control and inverse problems is
Mortensen observers.

There is a connections between inverse problems, semiconvex
functions and control problems.

As we will see, if we write the inverse problem as an optimziation
problem, it is possible to use the value function of the inverse
problems as in the case of inverse control.

Further, in many ill-conditioned inverse problems the key is to �nd the
correct regularization or penalty function, where semiconvex functions
are relevant
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Connections with Inverse problems

Let us consider the following inverse problem:

min
u∈U, z=A(u)

1

2
∥B(z)− p∥2 + G (u),

p ∈ Rd is a vector of observations.

A : U 7→ Z is the forward operator associated to the corresponding
direct problem.

B : Z 7→ Rd is the observation operator.

G : U 7→ R+ is a regularizing function.

U ⊂ Rm is an open and bounded set, Z ⊂ Rn is open and P ⊂ Rd is
compact.
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Connections with Inverse problems

We de�ne the value function for this problem by

V (p) = min
u∈U, z=A(u)

1

2
∥B(z)− p∥2 + G (u).

The idea is to use the value function to obtain the solution mapping
u∗ : P 7→ U.
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Connections with Inverse problems

We have that the optimal solution u∗(p) for a given observation p satis�es:

(BA)⊤ · (BAu∗ − p) +∇G (u∗) = 0

Additionally, we can di�erentiate (formally) the value function to obtain

∇V (p) = (p − BAu∗).

Combining these two expressions we obtain

−(BA)⊤ · ∇V (p) +∇G (u∗) = 0
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Connections with Inverse problems

The condition
−(BA)⊤ · ∇V (p) +∇G (u∗) = 0

is equivalent to

u∗(p) = arg min
u∈U,z=Au

{G (u)−∇V (p)⊤ · Bz(u)}

which is the same formula that we have in the control problem case!
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Connections with Inverse problems

We can use the previous formula to propose a parametrization for the
solution mapping of the following form

u∗θ(p) = Fθ((BA)
⊤∇vθ(p))

and we can try to �nd the optimal paramter by solving an averaged version
of the inverse problem:

min
θ∈Θ

∫
P

{
1

2
∥BAu∗θ(p)− p∥2 + G (u∗θ(p))

}
f (p)dp + αP(θ).
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Connections with Inverse problems

In many inverse problems the key is to use the right regularization.

That means that one should choose g wisely according the prior
information realted to the problem.

Maybe one can try to learn it!
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Connections with Inverse problems

In this case one assumes that G is parametrized by a function Gθ, for
θ ∈ Θ and we replace it to obtain a regularaized inverse problem:

min
u∈U,z=Au

1

2
∥Bz − p∥2 + Gθ(θ)(u)

The regularization should preserves the convexity of the problem. If C
is the smallest eigenvalue of A⊤B⊤BA, then Gθ should be
C−semiconvex. We can use our approach for this.
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