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Introduction

This course focuses on the application of machine learning techniques to
optimal control. Specifically, we will study the problem of construction a
smooth (approximately) optimal Feedback law.

The general content of the course is the following:

@ A brief introduction to optimal control: dynamic programming,
Pontryaguin maximum principle, Hamilton Jacobi-Bellman equation.

@ Learning problems for the synthesis of optimal Feedback laws.
e Convergence analysis of the cost functional (stability and consistency).

@ Approximation of semiconcave functions.
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Introduction

Some question arise:
@ Why should we use Machine Learning at all?
@ Are performance guarantees? Convergence?

@ Which of the multiple methods available is more suitable? Does it
depends on the parameters of the problem?

We will try to answer these question during the course.
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Optimal control

We start by defining the type of control problem we will work with:

(P)yo min J(u, o) := /OOO <€(y(t)) + §|u(t)|2> dt

where y € H1((0, 00); RY) is the unique solution of

y'(t) = f(y(t)) + Bu(t), te(0,00), y(0)=yo.
with
e 5>0,
e Q C RY open, bounded y convex.
o /€ Cl([t, T];Q), £ >0, £(0) =0, V£(0) =0,
o fc CHQ), BecRI*m,
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Optimal control

We start by defining the type of control problem we will work with:
(Phwmin(usse) = [ (1t(0) + J1u0)R ) ot

where y € H((0, 00); RY) is the unique solution of

y'(t) = f(y(t)) + Bu(t), te(0,00), y(0)=yo

@ This is a infinite horizon problem which aims to stabilize the system to
0, in the sense that £(0) = 0.

@ The methods that we will see can be applied to more general type of
problems, but for the ease of the presentation this one.
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Optimal Control

We are interested in finding a solution in form of a Feedback law, that is,
we seek for a function o : RY — R™ such that

y'(t) = f(y(t)) + Bi(y(t)), for all t > 0 and
{ (1)
y(0) = yo

has a solution § € H1((0,00); RY) and u* = dio § is a solution of (P),,.
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Optimal Control

There are classical methods to construct an optimal Feedback law. They
are based on

@ Pontryagin Maximum Principle
@ Dynamic Programming

We point out, that the Pontryagin Maximum Principle does not deliver a
Feedback-law, but is important to understand the methods we will work
with, in particular for the ML based methods.
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Optimal Control

To understand these topics we need to bring up some definitions:

o Lagrangian:
£rup) = [ {0+ Sl 467 ('~ 1)~ Bu) ot

e Adjoint equation and state:
—p' + Vi(y) = Df '(y)p =0

@ The Hamiltonian:

Hy. 0,0) = €y) + S Juf? + 7 - (F(y) + Bu)
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Optimal Control

The Pontryagin maximum principle refers to the following optimality
conditions of (P),,:

( 1

ut = BBTp*, u € L2((0,00); R™M)
d * * * *

(PM) P Df T (y*)p* + VI(y*) =0

d * * * *

s = f(y*) + Bu", y*(0) = yo.

\ t

The first condition is equivalent to:

H(y*7 U*a _p*) = urg]}{r)" H(y*a U,P*) =0.
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Optimal Control

It is important to note that no transversality condition is consider. If
(y*, u*, p*) are regular enough, then we may expect

lim p(t) =0,

t—00

but this will not hold in general.

If the control problem were convex, solving the optimality conditions would
be enough, but this is not the general case. Further, the systems PM is not
easily solvable unless the problems is very simple or there is a good guess.
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Optimal Control

We now turn to dynamic programming. The value function of (P),, is
defined by

V() = in_ J(u,y0)-
00) = o oy T:30)

The core of dynamic programming is the dynamic programming principle or
Bellman principle:

Vie) = min W (T))+/T(£( )+ 2 lu)dt
Y _ueL2((o,T);Rd) y 0 y 2

)
—VO T+ [ () + e

where y is the state associated to v and T is any time horizon in (0, c0).
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Optimal Control

Using the dynamic programming principle and assuming that V is C! we
can arrange the terms to obtain:

T
0= u€L2(r(?]E'71');Rm) % (V(y( T)) - V(yO)) + il,-_/o (E(y) 4 g’up)dt
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Optimal Control

Using the dynamic programming principle and assuming that V is C! we
can arrange the terms to obtain:

)
0— L (V) — Vi) + = /0 () + 2 |uP)dt

N uGLZ(r(?)!r;’);Rm) T T 2

taking T — oo

0= min VV(0) " (F(y0) + Bu) + (£(0) + 5 uf?)
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Optimal Control

solves the so called Hamilton-Jacobi-Bellman equation:

— min H(yo, u, Vv(y0)) = 0, for all yo € RE. (HJB)
uceR™
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Optimal Control

solves the so called Hamilton-Jacobi-Bellman equation:
- rr€1[iRn (vo, u, Vv(yo)) = 0, for all yo € R (HJB)
u m

An implication of this fact, is the verification formula, namely, v* is an

optimal control with associated state y* and adjoint state p* if an only if
1

pr(t) = =VV(y*(1)), u'(t) = —EBTVV(y*)-
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Optimal Control

solves the so called Hamilton-Jacobi-Bellman equation:

- m]{%n H(yo, u, Vv(y)) = 0, for all yp € RY. (HJB)
ucRm

An implication of this fact, is the verification formula, namely, v* is an
optimal control with associated state y* and adjoint state p* if an only if

wa):—vvuwﬂxu%ﬂz—;BTvvwﬁ.

This gives the following formula for the optimal feedback law:

a@)z—;BTvva
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Optimal Control

Classical approaches relies on solving the HJB equation Classical
approaches relies on:

@ Solving the (HJB) equation. this requires to discretize the problem!

@ Use the Verification Formula to construct and optimal Feedback.
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Optimal Control

Classical approaches relies on solving the HJB equation Classical
approaches relies on:

@ Solving the (HJB) equation. this requires to discretize the problem!

@ Use the Verification Formula to construct and optimal Feedback.

But they suffer from the curse of dimensionality!
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Optimal Control

@ We can consider for example the Semi-Lagrangian approach.
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Optimal Control

@ We can consider for example the Semi-Lagrangian approach.

@ In this method the control problem is discretized first:

Donato Vasquez-Varas (DIM)
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Inlu: yo) = f: <f(yi) + §|u;]2) h

i=1
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Optimal Control

@ We can consider for example the Semi-Lagrangian approach.

@ In this method the control problem is discretized first:

Yiv1 = yi + h(f(yi) + Bu;)

[e.9]

Il y0) =3 <f(yi) + §|u;]2) h

i=1

@ From which we obtain a discrete version of the Bellman principle:

Vi(yo) = min, h(£(yo) + g\uF) + Vi(yo + h(f(yo) + Bu)).
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Optimal Control

@ We can try to solve this problem by considering a grid y;” of Q of size
Ay and considering a set of basis functions B, = {¢;}"_; for which
the grid is unisolvent, the equations is replaced by

g

Vhn(yi) = min h(E(y;) + 5|U|2) + Vin(yi + h(f(yi) + Bu))

where V}, , lives in the space generated by B,.
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Optimal Control

@ We can try to solve this problem by considering a grid y;” of Q of size
Ay and considering a set of basis functions B, = {¢;}"_; for which
the grid is unisolvent, the equations is replaced by

g

Vhn(yi) = min h(E(y;) + 5|U|2) + Vin(yi + h(f(yi) + Bu))

where V}, , lives in the space generated by B,.

@ Unisolvent means that for all ¢1, ¢ € the space generated by B, we
have

d1(yi) = d2(yi) for all i = ¢1 = ¢
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Optimal Control

@ Since the grid is unisolvent, this equation determines the coefficientes
of Vi, n. In turns, this could be solve by Picard iterations:

g

Vinjt1(yi) = min h((y;) + S 1ul®) + Vinj(yi + h(F(yi) + Bu))
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Optimal Control

@ Since the grid is unisolvent, this equation determines the coefficientes
of Vi, n. In turns, this could be solve by Picard iterations:

g

Vinjt1(yi) = min h((y;) + S 1ul®) + Vinj(yi + h(F(yi) + Bu))

@ In the case of finite elements we obtain the following error bound:

1
IV = Vinlle@ < € (hz + h) .
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Optimal Control

@ Since the grid is unisolvent, this equation determines the coefficientes
of Vi, n. In turns, this could be solve by Picard iterations:

g

Vinjt1(yi) = min h((y;) + S 1ul®) + Vinj(yi + h(F(yi) + Bu))

@ In the case of finite elements we obtain the following error bound:
1
IV = Vinlle@ < € (hz + h) .
@ This seems to be a nice bound, however, in a high dimensional

context, if we want to bound the space error by € > 0, we need at
d . . : : o
least (%) points! This issue is called the curse of dimensionality.
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Optimal Control

The curse of dimensionality is our main motivation to use machine learning
techniques for solving control problems, although they have some
limitations as well. Some new questions arise

© Which methods exist?

@ Can we give any performance guarantee of the Feedback? In the case

of classical methods there is an error bound but also growths badly
with the dimension.

Before continuing we need to address another important issue we were
forgetting, the solutions of (HJB) equation are not C!. We need to work
we viscosity solutions instead of classical solutions.
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Optimal Control

For v € C(Q2) we consider

) = v(y) —qT - h
DFv:={qcR?: limsup vy +h —vly)—q <0}
h—0 |h|

is called the upper-differential of v at y and

_ —aT-
D~v:={q e R?: liminf Ay = ) = Vi) = €T o > 0}
h—0 |

is called the sub-differential of v at y
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Optimal Control

Some important facts:
@ DTv and D™ v are not empty almost everywhere.

o v is differnetiable at y if and only if

D*v(y) = D™ v(y) = {Vv(y)}.

e DTv(y) and D™ v(y) are convex and closed sets for all y.

e DTv is upper semi-continuous, that is, if y, — y and p, € DT v(y,) is
such p, — p, then
p € Dhv(y).

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 19 /144



Optimal Control

Definition 2

Let us consider F : RY x RY — R, we say that v € C(Q) is a viscosity
solution of

F(y,Vv(y)) =0, ¥y €Q
if for all y € Q

F(y,q) <0, Yq € D"v(y) (sub-solution)

and

F(y,q) >0, Vg € D™ v(y) (super-solution).
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Optimal Control

In the case of HJB equation, it is well known that V is the unique viscosity
solution of (HJB):
— min H(y,u,VV(y)) =0
ueRm

that is

mIiR{n H(y,u,p) >0 forall pe DT V(y)
ueR™

and
min H(y,u,p) <0 forall pe D™ V(y).
ueRm
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Optimal Control

As we mentioned before, V is not differentiable in general, nevertheless it
does have a regularity notion which is connected to the concept of viscosity
solutions:

Definition 3

We say that a function v € C(RQ) is C-semiconcave if x — v(x) — $|x[? is
concave.

A natural regularity assumption for the value function (and the solutions of
HJB) is the semiconcavity.
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Optimal Control

In fact, a semiconcave functions is always kind of a value function:

v € C(Q) is C—semi-concave if and only if there exists {¢;}32, C C?(Q)
with H¢/HC(Q Raxdy < C such that

v(y) = inf di(y).

ieN

This will be important to contruct a parametrization-approximation for
semiconcave functions!
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Optimal Control

Semiconcave functions satisfies the following properties:
Q v is locally Lipschitz in €.
@ The upper differential of v is never empty and

peDv(y) s v(h+y)—viy)+p' -h<ClhP,
V|h| < dist(x, 09).
© v is semiconcave if and only if the largest eigenvalue of V?v is
bounded by C in the sense of distributions:

/ x"V2¢(y)xv(y)dy < C|x|? for all x € RY.
Rd

Q v is C! and twice differentiable almost everywhere.
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Optimal Control

There is a connection with HJB:

If v is semiconcave and v satsifies (HJB) almost everywhere, i.e.,

m]kn H(y,u,Vv(y)) =0 for almost all y € Q
ueR™

then v is a viscosity solution of (HJB) in Q.
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Optimal Control

The semiconcavity of the value function will allow us to study the

convergence of machine learning methods. It also helps to construct a
parametrization.

Donato Vasquez-Varas (DIM) IPPhys2026

January 8, 2026 26 /144



Tabla de contenidos

© ML Algorithms
@ Regression Along Trajectories
e AFLS
@ PINNS

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 26 /144



ML Algorithms

There are many methods in the literature that attempt to solve HJB
equations and/or construct a optimal feedback laws. In the rest of the
course we will consider the followings:

O Regression along trajectories: In this method the optimal feedback
law is obtained by solving the control problem for many initial
conditions and then fit a ML model to approximate the optimal
control, adjoint state or the value function along the trajectories.
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ML Algorithms

There are many methods in the literature that attempt to solve HJB
equations and/or construct a optimal feedback laws. In the rest of the
course we will consider the followings:

O Regression along trajectories: In this method the optimal feedback
law is obtained by solving the control problem for many initial
conditions and then fit a ML model to approximate the optimal
control, adjoint state or the value function along the trajectories.

@ Averaged method: This method lies in the category of unsupervised
ML algorithms. It consists in replacing J by an averaged version (with
respecto to the intial conditions) and parametrized the control.
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ML Algorithms

There are many methods in the literature that attempt to solve HJB
equations and/or construct a optimal feedback laws. In the rest of the
course we will consider the followings:

O Regression along trajectories: In this method the optimal feedback
law is obtained by solving the control problem for many initial
conditions and then fit a ML model to approximate the optimal
control, adjoint state or the value function along the trajectories.

@ Averaged method: This method lies in the category of unsupervised
ML algorithms. It consists in replacing J by an averaged version (with
respecto to the intial conditions) and parametrized the control.

© PINNS: This also can be considered a unsupervised method. This
method tries to directly solve the HIB equation. The fact that we
look for a viscosity solution makes the analysis of this problem very
challenging.
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ML algorithms

To describe the methods we need the concept of setting

Definition 4
We define a setting as a tupple (©, v, P) in which:

@ O s a finite dimensional Banach space, we call this the space of
parameters or parametric space.

e v: 0O C?(Q) is a continuous function. We call it the
parametrization.

@ P: O [0,00) a continuous coersive function, that is,

lim  P(0) = cc.

ll6]le—o00

We call it the penalty function.
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ML algorithms

We can consider the following examples of settings:
e Polynomials: ¢;(x) = x, ©, = R™1, v,(0)(x) = X1 ¢i_1(x)6;,
73,7(9) = 041|9|2 + 012|9|1.
o d-Polynomials For o € N9, ¢, (x) = Hji:l x%i. Defining

Ap={aeN:|a|s < n},
©, =R

va(0)(x) = Z Oapa(x)

aEN,

77,,(9) = a1|9|2 + 062‘9’1.
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ML algorithms

Another important case is the neural network parametrization. We will only
consider the case of Shallow Neural Networks. For 6 = (a1, b1, ag, by) with

a; €R" ag € R™9 by € R" and by € R, we set consider the following
parametrization

v(0) = b1 + Z 817,'@5(3(—)':,- - X+ bO,l')-
i=1

with ¢ : R — R being the activation function. For example

1
¢(x) = max(x,0)?, (x) = T o)’ ¢(x) = tanh(x)
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ML algorithms

In this case the parametric space is © = R” x R x R"*? x R". As for the
penalty functions, typically, the euclidean norm is used. Nevertheless, there
other options, for example

Pa(0) = b1 + > _ la1(lao,i] + [bi])-

i=1

This is norm is connected to the Barron space associated to the activation
function.
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ML algorithm

We know recall the verification formula, which states that the optimal
Feedback must be of the form

1
u=—--B'VV
5

with V the value function of the control problem. The idea is to use the
parametrization to replace the value function in the verification formula,
which delivers the following parametrization for the optimal feedback law:

u(6) = —;BTVV(H)

In general, V represent the gradient with respect to the state variables.

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 32/144



ML algorithm

The three methods we are about to discuss consists in finding a parameter
0* as the solution of a Continuous Learning problem of the following form

min/ L(0,x)f(x)dx + aP(h)
€0 Jq

where L is called the loss function and f is a probability density function
over Q. For simplicity we will assume f(x) = &

For each method, we consider a different choice of loss function, with the

hope that v(0*) delivers an optimal feedback law by means of the
verification formula.
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ML algorithm

Of course, in practice we cannot solve such a problem, because the
integrals involved are intractable. Instead we solve a discrete version. That
is, for a training set J = {y;}; we consider the Monte Carlo
approximation of the learning problem:

N
1
min ; L(6,yi) + aP(6)

where the training set is sampled independently from the distribution
associated to f.
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ML algorithm

The convergence of the discrete problem towards the continues one is
ensured by:

© The Uniform Law of Large Numbers, which states that if
g : X x Y — R is continuous in x, X is a compact subset of R?, and
integrable with respect to Y, then for a iid sample {y;}?°; we have

T
lim sup N Zg(x,y,-) -E, (g(x,))|=0

N—oo yex ]

almost surely.

@ The set of solutions of the continuous learning problem is compact
due to the coersivity of P.
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Regression Along Trajectories

A first attempt to construct an optimal feedback law could be to find

0* € © by minimizing the distance between the optimal feedback law and
our parametrization:

min IQ\/ Z|BT(VV(x) — Vv(8)(x))Pdx + aP(h)

Of course, we do not have access to V/, but we could consider a set of

initial conditions Viain = {y,-},N:1 in ©Q and approximate this problem by
Monte Carlo (or any other integration method):

min Z —|BT (VV(yi) = Vv(0)(yi)]? + aP(0)
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ML algorithm

Again, we do not have direct access to V/, but if we solve the optimal
control problem, we know that

V(yo) = J(u*, %), VV ()= —p*(0).

@ Therefore this approach implies that we need to solve N optimization
problems

o After that, this the Learning problems becomes a simple regression
problem.

@ In some applications N must be very large, and the control problem
could be very expensive to solve.

@ We can leverage the dynamic programming principle.
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Regression Along Trajectories

By the dynamic programming principle we have that if v* is an optimal
control and y* is the corresponding optimal trajectory, then u*\[T’OO) is an
optimal control for P,. 7). Consequently we have

V(Y (T)) = (0| oey ¥ (T)), VV(*(T)) = —p(T),

that is, we know the value function and its gradient along the optimal
trajectory.
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Regression Along Trajectories

In the regression along trajectories approach the idea is to utilize the fact
that we know the value function along the trajectory:

i ) / BT (VV(y*(5:30) — Tv(O)(y* (8 y0))) Pdldyo + aP(0)

where T > 0 is a finite time horizon time horizon and y*(-, yp) is the
optimal trajectory emanating from yg. In practice we have

mm*ZZ*\BT (VV(yig) = V() (yig))]” + aP(6)

where h= T /M and {y,L,} 7, is a discretization of y*(-,y;) at times steps
tj = Jjh.
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Regression Along Trajectories

Now we arrive to the following question: How can we solve the control
control?

© Solve the boundary value problem stemming from the Pontryagin
principle up to time T > 0:

d
57 = )+ Bu, y(0) = yo
d
— P = DFT(y)p+ V() =0, p(T) =0
1T
u=-B"p.
\ B
@ Directly solve the optimization problem by a gradient-Newton type

method.

In both cases we must choose a discretization method for the involved
equations.
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Regression Along Trajectories

We need a discretization method which ensures stability and precision, for

instance the Crank-Nicolson method which is an implicit method second
order method.

@ Discretization of the cost:

M—-1
) = X 8 (S0 +lupeal) + ) + )

j=0

@ Discretization of the dynamics:

h
Yt =Yt 5 (f(y;) + f(yje1) + B(uj + uj11)) -

Donato Vasquez-Varas (DIM) IPPhys2026

January 8, 2026 41 /144



Regression Along Trajectories

In this case, the discrete adjoint state satisfies the following equation:

1 .
(i1 = p) + V) = DF(y;) " (pj-1 + p) = 0 for j < M
h h et —1
pm—1 = =5 (laxd = 5DF (ym)) " Vi(ym)
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Regression Along Trajectories

The regression along trajectories can be seen as a weighted regression.
To see this, we note that by using the following change of variables for
t > 0 fixed

= y*(t, y0), dz = |det(Dy*(t; yg))|dyo

we have
[ [ A BTV ) - o)« ()Pt

/ LIBT(VV(2) - Vv(0)(2) Pe(2)dz

(t:y0):te0, Tliyoc} B

with
1

g(2) - |
( ) {t€[0, T]:3yoEw, z=y*(t,y0)} |det(Dy(t,y0(z)))|

dt.
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Regression Along Trajectories

Let us see some examples. We start by considering a modified version of
the Van der Pol oscillator:

* /1
min/(J (2\y|2+§|u|2> dt

d? d (2)
Ey—u(l )dty Y+ +u

d
y(0) =y, —y(0)=v

dt

with p=3, v = 2. We will consider a reference domain Q = [—10, 10]?
(state and velocity).
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Regression Along Trajectories

To measure the performance of this approach we will consider the following
metrics:

N N
VRMAE =" J(di,y:)/ S V(v)
i=1 i=1

and

N N
CRMSE = "||d; — uf |20, Tyrm)/ D U7 Il 20,7y mem)
i—1 i—1

where {y;}"_, is a set of initial conditions, u! an approximation of the
optimal controls and {; the control given by the Feeedback law applied to
the intial condition y;.
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Regression Along Trajectories

The Van der Pol oscillator is a 2-dimensional example, maybe we can
consider something with a larger dimensionality, for example, the
discretization of a PDE control problem.
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Regression Along Trajectories

We can consider the stabilziation of the Allen Chan equation by a finite
number of actuators:

1 [eS) 5 m o0

H 2
= _ — | dt
w2 (B ey 2/0 ylliz(-11) + 5 .E_ /0 |uil

d d?
a. = (1—y § Ui (3)
s.a = d2y+y )+ ) Xei

1) = S y(61) =0, ¥(0,%) = 0(x)

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 47 / 144



Regression Along Trajectories

@ The uncontrolled system has 3 steady states of interest: y = —1 and
y =1 (stable) and y = 0 (unstable).

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 48 /144



Regression Along Trajectories

To discretize the PDE we use the Chebyshev Spectral Collocation method.

This is not the focus of these lectures, hence we will only sketch the
method.
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Regression Along Trajectories

@ Chebyshev polynomials {¢;}%°, are a Ortogonal basis of Li(—l, 1)
which is the space of square integrable functions using the following

measure 1

v
@ They are given by the following recusive formulas

do(x) =1, ¢1(x), dir1(x) =2x¢i(x) — ¢i-1(x)

@ They are used together with the Chebyshev points:

i
Xj,N = — COS <7TN>

for i € {1,..., N}. These points are unisolvent for the the Chebyshev
polynomials of degree smaller than N.
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Regression Along Trajectories

@ The state is replaced by its Chebyshev truncation:

N
y(t.x) ~ 3 6i(0Vi(t)
0=1

@ The equation is approximated by evaluating it at the Chebyshev
points, which deliver the following finite dimensional system:

%y =vAY;+ Bu+ (1 — y2)y
with

B . — 1 Xin € Wj
I
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Regression Along Trajectories

@ For the setting of the learning problem we consider Polynomials and
NN.
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Regression Along Trajectories

@ For the setting of the learning problem we consider Polynomials and
NN.

@ But we cannot use the full basis of polynomials! (|B,| = n9)
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Regression Along Trajectories

@ For the setting of the learning problem we consider Polynomials and
NN.

@ But we cannot use the full basis of polynomials! (|B,| = n9)

@ Instead we consider the Hyperbolic cross basis:

d
rn:{aeNd:H(a;+1)§n}
i=1

Bn={¢a:aecl,}
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Regression Along Trajectories
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Tabla de contenidos

© ML Algorithms

@ AFLS
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AFLS

We now describe the Averaged Feedback Law Scheme (AFLS), which
consists in:
© Parametrizing the control by the Verification Formula

1

u=—-=-B"Vv(d
5 (9)

@ Minimize a truncated averaged version of the cost:
(1) = [ VrOeiv)d,0
with
T 1
Vr(voiv) :/o (€(y(t:yo,\/))+ 25|BTVV(y(t;yo,V))I> dt

and y(t; yo, v) being the (unique) solution of
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AFLS

The learning problem in the AFLS method is the following:

mlg WJT(V(G)) + aP(0).

The discrete version of this problem is given by

mm—ZVTM yi; v(0)) + aP(0).

where VT ) is obtained, for example, by applying the Crank-Nicolson
scheme.
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AFLS

We have then that V1 u is given by

V(o (@) = (é(m ) + 55 V) + |Vv(yj+1>r2)

and

i =35+ 3 (F05)+ Fgea) = 3887 (V) + Tolpien) )

- T
with h = M-
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AFLS

The corresponding adjoint state is given by
1 1 T
7 (pi-1 = pj) + VEy;) = 5 DF(y;) " (pj + pj-1)
2 2ppT 1
+VIV(0)(y)"BB (5 (pi-1 + py) + Vv(y;)) =0
for j < M and
h 1o T
> Vﬁ(yM)—i-BV v(ym)BB ' Vv(ym)

1

h (DfT(yM) 43

5 VVz(YM)BBT> pm—1+ pm—1 =0
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AFLS

In the continuous case the adjoint is given by

— 5P VHY) = DF) P+ S VAV(Y)BE (p+ V) = 0 and p(T) =0

With the help of the adjoint we have the derivative of the objective
function is

d 1 d
T ((0) =

[w]B ).

From this we can see that the optimality conditions of the learning problem
implies that the solution of the learning problems 6* also solves

VV(Q)BBT(p + Vv(6))dtdyo

9
126 2@\5/ B'(p+ Vv(9))|*dtdyo + aP(6)

which is very similar to the Learning problem of RAT method!
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AFLS

Let us see the performance of this method in same examples as in the case
of the RAT method.
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Tabla de contenidos

© ML Algorithms

@ PINNS
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PINNS

@ The Physics Informed Neural Networks approach (PINNS) try to solve
directly the HJB equation
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PINNS

@ The Physics Informed Neural Networks approach (PINNS) try to solve
directly the HJB equation

@ it is less direct than the other methods, since we do not try to obtain
the feedback from the resolution of a learning problem.
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PINNS

@ The Physics Informed Neural Networks approach (PINNS) try to solve
directly the HJB equation

@ it is less direct than the other methods, since we do not try to obtain
the feedback from the resolution of a learning problem.

@ We first solve the HIB equation with the hope that the solution
approximates the value function of the control problem.
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PINNS

We need to recall that the value function solves the HJB equation:

H(y,Vv(y)):=— min H(y,u,Vv(y))

ueRm™

= —Hy) = V() F(3) + 55 B V()P =0

. in the viscosity sense.

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 61 /144



PINNS

Typically, the PINNS method tries to minimize the square of the equations
residuals. In this case, than means:

min
fco

Kll, /Q (H(u, Vv(0)(y))2dy + aP(6).

However this do not deliver (necessarily) a viscosity solution, instead, it
gives a generalized solution (satisfies HJB a.e.).
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PINNS

It is important to bear in mind that generalized solutions are not unique,
for instance, the distance function to the boundary of € is unique viscosity
solution of

—|VvP=-1inQ,v=00n0Q,

and consequently a generalized solutions. Additionally, v = —v is also a
generalized solution, since it satisfies the equation a.e..
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PINNS

There are two strategies to remedy this problem

e To regularize the equation by adding a viscosity term —eVv?2. This
makes the solution of the problem unique, but its performance is not
clear.

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 64 /144



PINNS

There are two strategies to remedy this problem

e To regularize the equation by adding a viscosity term —eVv?2. This
makes the solution of the problem unique, but its performance is not
clear.

@ To modify the problem using that the viscosity solution is given by:

V(iy) = sup B(x).
#ec2 and is a sub-solution of HIB
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PINNS

Following the second approach we solve:

min !QI/ x) + v max(H(x, Vv(8)(x)), 0)?) + aP(8)

As 7 tend to infinity, the function v(07) (67 solution of the problem) the
term H(x, Vv(0;)(x)) is becoming negative for almost all x € Q.
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PINNS

It is interesting to note that this problem is convex if the parametrization is
linear in the parameters, since

H(x, Vv(0)(x)) = —4(x) — Vv(8)(x) - f(x) + ;ﬂ BTVv(0)(x)?

which would be a quadratic functions in the parameters.
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PINNS

The discrete version of this problem is therefore given by

(r;éig N Z v(x;) + v max(H(x;, Vv(8)(x)),0)?) + aP(6)
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Let us see know the performance of this approach in the same examples as
before.
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Method | Needs data? | Complexity | Convexity | Opt Feedback
RAT Yes Nx M True Yes
AFLS No Nx M False Yes
PINSS No N True False
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@ RAT and AFLS method behaves similarly and they are able to find a
feedback-law.

@ PINNs approach is not able to find an optimal Feedback law.
@ Why? Is this true for any control problem?
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Tabla de contenidos

@ Escape time estimates
o Consistency estimates
@ Comparison: Obstacle problem

@ Convergence Analysis
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Convergence Analysis

As is usual in numerical analsysi, there are two concepts which are
important regarding the convergence of these methods:

© Stability: For a given T >0, v € C?(Q), we say that v is a stable
feedback if y([0, T]; w, v) C Qs (distance § > 0 to the boundary).

© Consistency: We say that a sequence of Feedback laws ¢, € C2(Q) is
consistent if for a given p € [1, 00] there exists 0 < T, — oo such that

V7, (5 6n) + V(y(Thi -, ¢n)) = Vo) = 0

lim
n—oo
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Convergence Analysis

We want to analyze the convergence the methods in the following sense.

Definition 5

Let S, = (©n, v, Pn) be a sequence of setting and consider 0, € ©,, a
sequence of solution for one of the methods with the setting S,. We want
to elucidate under which conditions there exists 0 < T, — oo such that

Jim V7, (3 va(83) = Vllio(e = 0

for given p € [1,00] and w € Q.

As we will see, for this is enough that v,(6}) to be stable and consistent.
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Convergence Analysis

For carrying out the convergence analysis we need the following ingredients
@ Escape time estimates from the reference domain Q.
o Consistency error estimates.

In both cases we will look for reasonable hypotheses (achievable).

Remark 4

The escape time estimates are crucial for ensuring that the trajectories stay
in a domain where we can provide a local approximation of the value
function. This in turns will allow us to use the consistency error estimates
which are of local nature.
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Tabla de contenidos

@ Escape time estimates

@ Convergence Analysis
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Escape time estimates

To be precise the stability condition or hypothesis is the following:

For the tuple (T, ,0,y0) with T >0, ¢ € C?(Q), § > 0, and yp € Qs,
y(:i y0, @) exists on [0, T] and y(t; yo, ) € Qs for all t € [0, T].

What happen if we approximate a stable feedback in w, is it also stable?
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Escape time estimates

Let T > 0 be a time horizon, yy € w, g1 € C?(Q), g € C*(Q) and § > 0,
be such that (T, ug,, 6, o) satisfies Hypothesis 1. Assume that

1Bl Var — Vel 1o (a4 v
% (eTa _ 1) S
ap

)

N S,

where )
a = || Df || oo 5 ;raxa) + ' V=82l 1o (0 5 irex )
4 4

and Df stands for the derivative of f. Then (T, ug, 3, yo) satisfies
Hypothesis 1.
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Escape time estimates

o If the value function is C2(Q) as satisfies Hypothesis 1, then any
sufficiently good approximation of V in C1(Q) will provide a stable
feedback.
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Escape time estimates

o If the value function is C2(Q) as satisfies Hypothesis 1, then any
sufficiently good approximation of V in C1(Q) will provide a stable
feedback.

@ Further more, the escape time from  for the approximation is
bounded from below by

+ apé 4
Iog<“3’2 —i—l)

where ¢ is the error in C1(Q).
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Escape time estimates

e What happen if we cannot control the C!(Q) norm of the
approximation, even worse, if the value function is not Cl(Q)?
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Escape time estimates

e What happen if we cannot control the C!(Q) norm of the
approximation, even worse, if the value function is not Cl(Q)?

@ We can weaken the smoothness of V in exchange of a stronger
stability assumption.
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Escape time estimates

There exist 6 > 0, and w € C'(Q) such that for

ws = {y €Q:wl(y) < sup w(yo) +3},
YoEw

we have that w C ws, W C Q, and 8w5 is of class C*. Moreover ¢ € C(Q2)
is a viscosity super solution of

()T (Fy) — ;BBTW(y)) 0 in w,

i.e. for every y € ws and every g € D~ ¢(y) the following inequality holds
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Escape time estimates

For the next estimates we need to define the following quantities:

~Vw(y)TF(y) + Iw(x)TF()

o, = sup
x€Ews,y€B(x,e)

and
2= s [BO)TVW(x) - B(y) Vw(y)],
XEws,yE€B(x,¢)

for e >0 and w € C}(Q).

™
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Let w C Q, ¢ € C(Q) and § > 0 such that they satisfy Hypothesis 2.

Q@ If¢ e CYQ), consider p € C2(Q), and let T be the maximum T > 0

such that y([0, T];w, ®) C ws. Then the following holds

~ |B? .
75 (196 = Vllcusmn IVWl oz > 6.
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Let w C Q, ¢ € C(Q) and § > 0 such that they satisfy Hypothesis 2.

Q@ If¢ e CYQ), consider p € C2(Q), and let T be the maximum T > 0
such that y([0, T];w, ¢) C ws. Then the following holds

~|BJ?

=

(196 = V8l o I VWl sy = .

Q@ If¢ € Lip(Q), set ¢ = ¢ * p- a mollification of ¢, and let T, be the
maximum T such that y([0, T];w, ¢.) C ws. Then there exists eg
such that all € € (0,e9) we have

o2
Te (0—; + ﬂ“BTV(ﬁ”Lm(wé;Rd)) > 0.

where ol is defined in (79) and o2 in (79).
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Escape time estimates

@ In a) the escape time estimates depends on the C! norm of the
approximation, but it is not require the C? norm to be bounded.

@ In b), for the case where the approximation is given by the
mollification, the lack of regularity of the feedback is compensated by
the extra-smoothnes of the Lyapunov function w.
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Tabla de contenidos

o Consistency estimates
@ Convergence Analysis
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Consistency estimates

We start by assuming that V is C1:

Let v € CL(Q) be a super-solution of (HJB). Consider v € C1'1(Q),
yo € Q, and T such that y(-; yo, V) exists on [0, T] and satisfies
y([0, T]; yo, ug) C Q. Then we have

V1(vo: v) + v(y(T; y0, ) — v(yo)

2 T
< %/0 IVv(y(t: yo, uz)) = V(¥ (t: yo, up))|*dt
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Consistency estimates

For the ease of the presentation we write y = y(+; yo, V), 0 = —%BTVV(V)
and u = —%BTVV()'/).

o We have
€9) + 51 + Vo)) - 5887Y9(7)
< U9) + Slul? + TIG)1) - 5BETVV(7))
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Consistency estimates

For the ease of the presentation we write y = y(+; yo, V), 0 = —%BTVV(V)
and u = —%BTVV()'/).
o We have

€9) + 51 + Vo)) - 5887Y9(7)

_\, B PN | _
<UP) + G P+ VINFE) - 5BBTVV(R))
@ Using that v is a subsolution of HJB we get

b 1

(y) + Slal* + V(@) (F(7) - 5BB V(7))

< =Vv(y) (f(7) - =BBTVv(7))
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Consistency estimates

@ Rearranging the terms:
1
B

< (Vo(z) - V(i) (F(7) - ;BBTW@))

() + 21+ V7) (F(7) — 5 BBTVH(7)
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Consistency estimates

@ Rearranging the terms:
1
B

< (Vo(z) - V(i) (F(7) - ;BBTW(?))

() + 21+ V7) (F(7) — 5 BBTVH(7)

o Adding and subtracting
i _ 1 i
(Vo(y) = Vv()' - 5BBI V()
in the left hand side we get
_ _ - 1 -
€9) + 51 + Vo) (F(7) - 56870(7)
1 _ _
< 2B (Vv(y) = Vu(y)P

(V) - V() (f(y) - ;BBTVW))
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Consistency estimates

@ Rearranging the terms we obtain
_ _ _ 1 _
€9)+ 5 i + V(3 (5) - 5667V 7(7)

< ZIBT(Vv(y) — V(7))

|-
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Consistency estimates

@ Rearranging the terms we obtain
_ _ _ 1 _
€9)+ 5 i + V(3 (5) - 5667V 7(7)

< ZIBT(Vv(y) — V(7))

|-

@ recalling that

d | R
dt =f(y)— ﬂBB Vi(y)

and integrating we arrive at

V1 (y0: ¥) + v(y(T)) — v(x)

’
< /O ;|BT(Vv(y)—W(y>)\2dt
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Consistency estimates

If the value function is not C!, but semi-concave we can still do something.

We recall that a function v € C(Q2) is C-semiconcave if and only if for all
d € R9

dVv?(x)d < C|d|?

in the sense of the distributions.
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Consistency estimates

Let w € Q, let v € C2(Q;RM) be such that there exist a positive constant
C > 0 satisfying

%tr(BBTvzv) < CinQy,

and v is stable. Then for all p € C(;R™)

T eKT_
/ /0 Sy (t; yo, 7)) dedyp <

holds, where

! /Q e

182
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Consistency estimates

For proving this result we just need to use a change of variables an Fubini
Theorem:

@ Using the transformation z = y(t; yo, V), we obtain for a fixed time
t € [0, T] that

) dz
/w Pyt 0, 7))o = /y(t;w) ) |Dyoy(t:y~1(t; 2,9), ¢)|
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Consistency estimates

For proving this result we just need to use a change of variables an Fubini
Theorem:

@ Using the transformation z = y(t; yo, V), we obtain for a fixed time
t € [0, T] that

) dz
/w Pyt 0, 7))o = /y(t;w) ) |Dyoy(t:y~1(t; 2,9), ¢)|

@ The Jacobi formula implies that

|Dyoy(t; yo0,9)| =

oo ([t (0F(v(si0.00) — £ 88T Voly(510.9)) ) )

d|B|?
> exp (—t(dufuL,-,,m;Rdw AL 920 e )))

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 88 /144




Consistency estimates

Plugging this into the change of variables formula we obtain

/ By (£ yo, 7))dyo < exp (tK) / N
w y(tiw,

Since y(t;w, ¢) C Q for all t € [0, T] we conclude that

T ex —
/O /wqb(Y(t;yo,V))dyodtS p(KKT)l/Qgﬁ(z)dz
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Theorem 7

Let v € Lip(Q1) be a super-solution of (HIB) in Q, and let v € C?(Q) be
such that for some constant C > 0

;tr(BBTsz(V)) < C forally € Q.

Let w € Q and Hypothesis 1 holds true with v = v, then the following
inequality holds
1V (5 7) + v (T3 7)) = ) lia)

B2 [eKT —1 a
= |ﬁ‘ < K ) IVv = Vel oz
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Consistency estimates

© The previous result states that if we construct a semiconcave
approxmiation V,, € C?(Q) of V such that VV,, converges to VV in
[2(Q; RY) and it is stable, then we have that it is consistent.
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Consistency estimates

© The previous result states that if we construct a semiconcave
approxmiation V,, € C?(Q) of V such that VV,, converges to VV in
[2(Q; RY) and it is stable, then we have that it is consistent.

@ This justifies the name of the concept (consistency), since if the
feedback approximation converges in H'(Q), then the cost function
also converges to the value function.
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Consistency estimates

© The previous result states that if we construct a semiconcave
approxmiation V,, € C?(Q) of V such that VV,, converges to VV in
[2(Q; RY) and it is stable, then we have that it is consistent.

@ This justifies the name of the concept (consistency), since if the
feedback approximation converges in H'(Q), then the cost function
also converges to the value function.

© |In particular, we can use these result to prove that the mollification of
V provides an stable and consistent feedback law.

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 91 /144



Consistency estimates

© The previous result states that if we construct a semiconcave
approxmiation V,, € C?(Q) of V such that VV,, converges to VV in
[2(Q; RY) and it is stable, then we have that it is consistent.

@ This justifies the name of the concept (consistency), since if the
feedback approximation converges in H'(Q), then the cost function
also converges to the value function.

© |In particular, we can use these result to prove that the mollification of
V provides an stable and consistent feedback law.

© What about the L! convergence of the cost?
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Consistency estimates

To prove the convergence of a consistent sequence of feedback laws we
split the error of the cost functional in two terms:

[ Vr, 001 ) = Voo oo =

/ (V1. (i va) — V(30)) dyo + / (V(50) — V7. (v0: va)) o

w

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 92 /144



Consistency estimates

To prove the convergence of a consistent sequence of feedback laws we
split the error of the cost functional in two terms:

/ 1V, (v0: vi) — V(30)ldyo =

/(VT,,()/o; va) — V(y0)) " dyo ‘|‘/(V(YO) —V7,(v0; va)) Tdyo

w

For the first term in the right-hand side we have, from the monotonicity of
the positive part that:

[ n,mivn) = Vi) de <

[ 1, 0m1v0) + VAT 0. 60)) = Vo))

which converges to 0 from the consistency of the sequence.
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Consistency estimates

For the second term we have the following result:

Proposition 1

Let v, € C*(Q). Then for any 0 < T, — o
- _ U —
lim (V(y0) = Vr,(v0; va)) " = 0

for all yo € Q.
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Consistency estimates

We prove the porposition by contradiction:

@ There exists yp , — yo such that

V(y0,n) = VT1,(Yo,n; V) > € > 0.
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Consistency estimates

We prove the porposition by contradiction:

@ There exists yp , — yo such that

V(y0,n) = VT1,(Yo,n; V) > € > 0.

@ This means that u, = %Vv,,(y(‘;yo,,,, Vn)) satisfies

V1, (0 vn) < V(yo,n) — €
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Consistency estimates

We prove the porposition by contradiction:

@ There exists yp , — yo such that
V(y0,n) — V1,(¥0,n; va) > € > 0.
@ This means that u, = %Vv,,(y(‘;yo,,,, Vn)) satisfies
V7, (yoiva) < V(yon) — €

@ By compactness, we have that v} converges to u* weakly in
L2 ((0,00); R™) and y(; yo.n, u};) strongly in Cioc([0, 00); RY) to
y( yo, u™).
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Consistency estimates

We prove the porposition by contradiction:

@ There exists yp , — yo such that

V(y0,n) = VT1,(Yo,n; V) > € > 0.

@ This means that u, = %Vv,,(y(‘;yo,,,, Vn)) satisfies

V1, (0 vn) < V(yo,n) — €

@ By compactness, we have that v} converges to u* weakly in
L2 ((0,00); R™) and y(; yo.n, u};) strongly in Cioc([0, 00); RY) to
y( yo, u™).

@ This implies that

J(u*;v0) < V() —e < V(n)

which contradicts definition of V.
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Consistency estimates

This implies the convergence of a consistent and stable feedback law:

Theorem 8

Let v, € C?(Q) be a stable in w C Q and consistent sequence of feedback
laws for 0 < T, — oco. Then

Jim [[Vr, (5 vi) = Vi) = 0.
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Consistency estimates

Corollary 1

Let us assume that V is semi-concave and V satisfies Hypothesis 2. Then
V. = V x p. (mollification of V) is stable and consistent. Consequently,
there exists 0 < T, — oo as e — 01 and

tim V7, (5v2) = Vil = 0.

v

Since mollification preserves semi-concavity, this proves that, at least, there
is one stable and consistent Feedback law.

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 96 / 144



Convergence of the AFLS method

How we use this for the convergence of the methods?

@ We need a universal approximation property for the sequence of
settings:

2(0) - ; . —
forall g e C5(Q2): 360,€0,, a, >0, n“j;oHV”(g”) - VHC2(Q) = 0.
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Convergence of the AFLS method

How we use this for the convergence of the methods?

@ We need a universal approximation property for the sequence of
settings:

2(0) - ; L —
forallge C5(Q): 36,€0,, a, >0, n“j;oHV”(g”) - VHC2(Q) =0.

@ This directly proves that the solutions of the AFLS method satisfies

lim / VTn(yo; v,,(Gf,))dyo + a,,’P,,(G:) =0
Q

n—o0

which implies that

im / 1V, (03 va(65)) — V(yo)ldyo = 0
Q

n—oo
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Convergence of the AFLS method

o Hypothesis 1 Vg € C1(Q) 30, € ©, satisfying
I|m,,_,oo||g = v,,(0,,)||C1(§) + Yn - Pn(en) = 07
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Convergence of the AFLS method

Theorem 9
o Hypothesis 1 Vg € C1(Q) 30, € ©, satisfying
Iimn—)oo”g - Vn(en)Hcl(ﬁ) + Yn - Pn(en) =0,

@ Hypothesis 2 (key):3 0 < T, — oo and a consistent sequence
V,, € C? feedback-laws with p =1, i.e.,

lim “VTn('7 an) - VHLl(w) =0,

n—o00

satisfying y ([0, Tp]; w, uy,) C Q,
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Convergence of the AFLS method

o Hypothesis 1 Vg € CY(Q) 30, € ©, satisfying
limpscollg — Vn(en)HCl(ﬁ) + Yn - Pa(0n) = 0,

@ Hypothesis 2 (key):3 0 < T, — oo and a consistent sequence
V,, € C? feedback-laws with p =1, i.e.,

lim “VTn('7 an) - VHLl(w) =0,

n—o00

satisfying y ([0, Tn];w, uy,) C Q,
@ the result: then there exists a k : N +— N and ~, such that the method
converges with settings Sp = (O (), P(n)> Vk(n)) and penalty o = ;.
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Convergence of the AFLS method

The meaning of each hypothesis:

@ The first conditions can be seen as a Universal Approxmiation
Property: we need to have a setting which is able to express
sufficiently well any C2(Q) function.
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Convergence of the AFLS method

The meaning of each hypothesis:

@ The first conditions can be seen as a Universal Approxmiation
Property: we need to have a setting which is able to express
sufficiently well any C2(Q) function.

@ The second one is the Stability-Consistency property: It must exists a
stable and consistent sequence of Feedback-laws. This is ensured if V
is semiconcave and is stable.
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Convergence of the AFLS method

The meaning of each hypothesis:

@ The first conditions can be seen as a Universal Approxmiation
Property: we need to have a setting which is able to express
sufficiently well any C2(Q) function.

@ The second one is the Stability-Consistency property: It must exists a
stable and consistent sequence of Feedback-laws. This is ensured if V
is semiconcave and is stable.

@ But what can we say about the RAT method?
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Convergence Regression along trajectories

o There exists a Banach space (0, ||-|le) such that V € © N C%(Q) and
© is compactly embedded in C(Q).
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Convergence Regression along trajectories

o There exists a Banach space (0, ||-|le) such that V € © N C%(Q) and
© is compactly embedded in C(Q).

e y([0,00); uy,w) C Q.
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Convergence Regression along trajectories

o There exists a Banach space (0, ||-|le) such that V € © N C%(Q) and
© is compactly embedded in C(Q).

e y([0,00); uy,w) C Q.

@ Vg € O there exists a sequence 0, € ©,, satisfying

lim |[va(6h) — glle =0, sup Pn(bn) < .
neN

n—o0
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Convergence Regression along trajectories

o There exists a Banach space (0, ||-|le) such that V € © N C%(Q) and
© is compactly embedded in C(Q).

e y([0,00); uy,w) C Q.

@ Vg € O there exists a sequence 0, € ©,, satisfying

n—o0

lim |[va(6h) — glle =0, sup Pn(bn) < .
neN

o there exist constants C > 0 and o > 0 such that for all n € N and
0 € ©, it holds that

[va(0)lle < CPa(0).
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Convergence Regression along trajectories

@ Under the previous there exist a sequence 6, € © and C > 0 such that

IBT(VVa(0r) = VV)|lcqmmy = O and 521273"(9") <C
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Convergence Regression along trajectories

@ Under the previous there exist a sequence 6, € © and C > 0 such that

IBT(VVa(0r) = VV)|lcqmmy = O and 521273 2(0n) < C

o The result: Setting v, = ||BT(Vva(0n) — VV)HL2 (Q:rm) We have that
the solution of the regression problem 6% with S = (©,, Py, v,) and
penalty a = ~, satisfies

nIi—>ngO||VTn(‘7 an(an)) - V“Loo(w) = 0‘
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Comparison

o The AFLS method will converge in L!(w) if the value function is
smooth and the optimal system is stable.

@ The RAT method convergences in L°°(w) if the value function is
smooth enough, but it is unknown what happen if it is only
semiconcave.
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Tabla de contenidos

@ Comparison: Obstacle problem

@ Convergence Analysis
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Introduction of the example

o Objective: To avoid the ball B(z,0) C R?
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o Objective: To avoid the ball B(z,0) C R?

@ We can control the velocity: y' = u.
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Introduction of the example

o Objective: To avoid the ball B(z,0) C R?

@ We can control the velocity: y' = u.

la(y) = %Iyl2 (1 +ay) (W))

e a>0
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Introduction of the example

o Objective: To avoid the ball B(z,0) C R?

@ We can control the velocity: y' = u.

la(y) = %Iyl2 (1 +ay) (W))

0(s) = { op (k) ifls| <1

0 if [s|] >1

e a>0
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Introduction of the example

Y2

v

— \ / "

Figure: Obstacle problem for « large.

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 104 / 144



Introduction of the example

For a € [0, 00), we consider the following control problem

. B 2
dt+ t dt.
L S F G
y ' =u, y(0)=x

The value function of this problem is denoted by V.
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Value function

Value function and optimal trajectories a:6.25e-02

20 16

15 14

10 1z

05 10

= 00 08
-0.5 06
-1.0 04
-15 0z
-2.0 0.0

-4 -

2 0 2 1
(=)ee(+)
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There are some important properties of this family of problems

© The value function of this problem is locally Semiconcave.
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There are some important properties of this family of problems
© The value function of this problem is locally Semiconcave.

@ The optimal trajectories are uniformly asymptotically stable.
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© The value function of this problem is locally Semiconcave.
@ The optimal trajectories are uniformly asymptotically stable.
© das such that for all o < s, Vi, is C°.
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There are some important properties of this family of problems
© The value function of this problem is locally Semiconcave.
@ The optimal trajectories are uniformly asymptotically stable.
© das such that for all o < s, Vi, is C°.

Q@ dans such that for all @ > as, Vo, is not differentiable.
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There are some important properties of this family of problems
© The value function of this problem is locally Semiconcave.
@ The optimal trajectories are uniformly asymptotically stable.
© das such that for all o < s, Vi, is C°.

Q@ dans such that for all @ > as, Vo, is not differentiable.

@ In the following we compere the two approaches in order to observe in
practice the relevance of the smoothness of the value function.
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Setting

@ For the numerical experiments we have consider w = (—5,5) x (-2, 2).
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@ For the numerical experiments we have consider w = (—5,5) x (-2, 2).

e Different « are considered ranging from the smooth to the
noon-smooth cases.
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@ For the numerical experiments we have consider w = (—5,5) x (-2, 2).

e Different « are considered ranging from the smooth to the
noon-smooth cases.

@ For the parametrization of the feedback-laws we use an orthogonal
polynomial basis of H! . (w) = H!(—5,5) ® H*(—2,2) of degree 20.

mix
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@ The state-space integral is discretize by a regular grid of 10 x 10. We
call this set of initial conditions the training set.
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@ The state-space integral is discretize by a regular grid of 10 x 10. We
call this set of initial conditions the training set.

@ We also consider a finer grid of 20 x 20. We name this grid as the test
set.
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@ The state-space integral is discretize by a regular grid of 10 x 10. We
call this set of initial conditions the training set.

@ We also consider a finer grid of 20 x 20. We name this grid as the test
set.

@ The time integral is approximated by the trapezoid rule and the
differential equations are discretized by Crank Nicholson method.
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@ The state-space integral is discretize by a regular grid of 10 x 10. We
call this set of initial conditions the training set.

@ We also consider a finer grid of 20 x 20. We name this grid as the test
set.

@ The time integral is approximated by the trapezoid rule and the
differential equations are discretized by Crank Nicholson method.

@ The problem is solved by using the training set and then the
performance of approaches is compere in the test set.
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Performance comparison

In order to compere the performance of the two approaches we consider
the following error measures in both the training and test sets.

ZII'V:I |V(y(37 uv(@)) - V(yé)|
Z,N:1 V(yé)

NMAE, =

SV lluvey (Y vgs uuey)) — utllizqo.myE2)

NRMSE, = N
2;21 ””7”L2((0,T);R2)

where u? are the optimal controls.
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Performance comparison NMAEy

CRAT
NMAE 227 NMAE AFLS
350% B B
B training B training
mm test mm test
300% J 2.50%
250% 2.00%
200%
1.50%
150% 1
1.00%
100% 4
0.50%
50% II II
0.00% T T T T
le-03 1e-02 1e-01 1e+00 1le+01 1le+02 1le+03 1e-03 1le-02 1e-01 1e+00 le+01 1le+02 1le+03
« a

Figure: NMAEy,
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Performance comparison NMRSE,,

Ration NRMSE % NRMSE control AFLS
100% mm taining Em vaining
mm test mm test
0% 8.0% |
60% I 6.0% |
20% 1 II II II II 4.0% 4
20% 4 II II II II 2.0% |

0% -

0.0%
le-03 1e-02 1e-01 1e+00 1le+01 1le+02 1le+03 1e-03 1le-02 1e-01 1e+00 le+01 1le+02 1le+03
a a

Figure: NRMSE,
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Tabla de contenidos

© Parametrization of semiconcave
functions
@ Abstract Learning Problem
@ Legendre Learning Problem
@ Examples
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Representation Theorem

A function v € C(Q) L—Lipschitz is C—semi- continuous over Q if and
only if there exists a family {¢;};cz C C?(Q) satisfying

supl| V21| cygace) < € and supl[ Vil g < L
1 1

and

v(x) = rlnelp oi(x), Vx € Q.

Remark: We can assume that / is countable (but not necessarily finite).
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SEE

f(x) o)
3.0
0.4 4
2.5
0.2+
0.0 4 2.0 A
o 702 =15 discontinuity
—0.4 14
1.0 4
—~0.6 1
0.5 1
—~0.84
=1.0 0.0 4
T T T T T T T T T T
-1.0 -05 0.0 05 1.0 -1.0 -05 0.0 0.5 1.0
x x

Figure: For example f(x) = min (x3, 3x%) .
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Tabla de contenidos

© Parametrization of semiconcave
functions
@ Abstract Learning Problem
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Parametrization

The idea is;
@ truncation:
Yn(a) = minicq1 . m ai = Yir1(a) = a1 — (aiv1 — vi(a))+
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Parametrization

The idea is:
@ truncation:
Yn(a) = minicq1 . m ai = Yir1(a) = a1 — (aiv1 — vi(a))+
@ smoothing € > 0 91 .(a) = a1, Yit1.(a) = ait1 — g=(aiy1 — Vi(a)).
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Parametrization

The idea is:
@ truncation:
Yn(a) = minicq1 . m ai = Yir1(a) = a1 — (aiv1 — vi(a))+
@ smoothing € > 0 91 .(a) = a1, Yit1.(a) = ait1 — g=(aiy1 — Vi(a)).
0 ifs<0
0 g.(s)=14 xs? ifse[0,e)
s—5 ifs>¢
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Parametrization

The idea is:
@ truncation:
Yn(a) = minicq1 . m ai = Yir1(a) = a1 — (aiv1 — vi(a))+
@ smoothing € > 0 91 .(a) = a1, Yit1.(a) = ait1 — g=(aiy1 — Vi(a)).

0 ifs<0
0 g.(s)=14 xs? ifse[0,e)
s—5 ifs>¢

@ smoothing ¢;: £ : © — C?(Q) parametrization. ¢; ~ £(6;)
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Parametrization

The idea is:
@ truncation:
Yn(a) = minicq1 . m ai = Yir1(a) = a1 — (aiv1 — vi(a))+
@ smoothing € > 0 91 .(a) = a1, Yit1.(a) = ait1 — g=(aiy1 — Vi(a)).

0 ifs<0
0 g.(s)=14 xs? ifse[0,e)
s—5 ifs>¢

@ smoothing ¢;: £ : © — C?(Q) parametrization. ¢; ~ £(6;)
°o V= zvaa(Q) = ne(&(61),...,£(0n)) for some 6 € ©".
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Learning problem

o (Penalty) P, : ©" — R be a continuous and coercive function
together with a penalty parameter o > 0.

@ (loss function) J(v) |Q\/ (]V

8X, aX,'

Learning problem
For e >0, a > 0, and a setting S = (©,&,P,), we want to solve:

orggn j(&n,a(e)) + aPy(0)

Performance? We provide conditions on a sequence of settings

m — (ema gmy Pn,m)-
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Approximability hypothesis

There exists i > 0 and Csc > 0 independent of m such that

sup [|em(0)ll 2y < CscPam(8)", V0 € O,

i=1,...,n
and there exists ,, € ©" and Cy > 0 satisfying

sup Pn,m(ém) < CVa
meN

and
im ([ n(Em(Oma)s - &m(Omn)) = Vil = O
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Convergence Theorem 1

@ Approximability hypothesis.

e, >0 limpsonem =0, an >0:

lim an + ai (5m + j(i’n,m,am(gm))) =0

m—>00 m

o 0, ¢ ©” a sequence of solutions of the learning problem with S = S,,,.

o Vm - &n,m,sm(ém)
Then V,, is uniformly semi-concave and Lipschitz, and

lim V,, = Vin C(Q).

m—0o0

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 118 /144



Convergence Theorem 2

@ Hypotheses of Convergence Theorem 1.
e Stability hypothesis (Lyapunov function for V).

Then V,, is consistent: for every w € € there exists T,, > 0 such that
limp00 Tm = 00,

y([0, Tm]; w, Vi) C Q for all me N
and

HVTm(’7 Vm) - VHLl(w) =0.

[im
m—o0
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Tabla de contenidos

© Parametrization of semiconcave
functions

@ Legendre Learning Problem
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Legendre Learning Problem

For d > 1 and a € NY:

@ Legendre polynomials:
(n+ 1)Pri1(x) = (2n + 1)xPpy1(x) — nPy_1(x), Po =1, P = x.
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Legendre Learning Problem

For d > 1 and a € NY:

@ Legendre polynomials:
(n+ 1)Pri1(x) = (2n + 1)xPpy1(x) — nPy_1(x), Po =1, P = x.

d
o Po(x) =[] Pas(xi), x € [-1,1]%.
i=1

Donato Vasquez-Varas (DIM) IPPhys2026 January 8, 2026 120 / 144



Legendre Learning Problem

For d > 1 and a € NY:

@ Legendre polynomials:
(n+ 1)Pri1(x) = (2n + 1)xPpy1(x) — nPy_1(x), Po =1, P = x.

d

o Po(x) =[] Pas(xi), x € [-1,1]%.
i=1

o Orthogonality in L2: ¢ € [2((—1,1)9)

_ 2aj +1 o) dx
> cal@)Pa. ca(qs)—(r[ k ) |, Peobse

aeNd i=1
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Legendre Learning Problem

For d > 1 and a € NY:

@ Legendre polynomials:
(n+ 1)Pri1(x) = (2n + 1)xPpy1(x) — nPy_1(x), Po =1, P = x.

d

o Po(x) =[] Pas(xi), x € [-1,1]%.
i=1

o Orthogonality in L2: ¢ € [2((—1,1)9)

_ 2aj +1 o) dx
> cal@)Pa. ca(qs)—(r[ k ) |, Peobse

aeNd i=1

(ai +7i)!

d
o for v < a: [DyPallceraey = |1 Pimi(ar — 7)1

i=1
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For N € N, let us now consider the hyperbolic cross set of indexes:
My i={aeN?:myc(a) < N}

where for a € N9
d

mhe(a) = [ + a).

i=1
Remark: It has been proved that the cardinality of this set does not
increases exponentially with the dimension.
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Let viv = >_ er,, Ca(Vv), then we have

llvn — V||Crn([,1’1]d) < Z |Ca(V)’”Pa||C’"([*171]d)

TI'Hc(Oc)>N

SANEI?”V”H%F”*G—LH)

where

2r+1
HVH ~'rnix((,1’1)) - Z H 2 COt(V) :

a€eNd \i=1
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We consider the following setting.
o Oy = RIMl with T(N) = {a/}I1M]
Ir(V)|

o tn(0) = > Pub
i=1

n TN
o Pan(0t,...,0") = 107111Paill c2((—1,174) -
i—1 j=1
We have
[F(N)]

IEn (@)l c2ragey < D 18Pl c2ragey < Pan(9)
i=1

Remark: if V = minj—1 __,¢; and {¢;}7 4 H6+k((—1, 1)9) for some

mix

k > 0 we can obtain an efficient representation of V!
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Tabla de contenidos

© Parametrization of semiconcave
functions

@ Examples
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e We only consider the case o = 10710 for the sake of simplicity.
e Monte Carlo approximation, 10% samples (training set).
@ 10* samples as test set.

o [! percentage error to asses the performance:

e =) [V(y) = V(y)I/ Y IV(y)l - 100

yeSs ieS

egrady = Y _|VV(y) = V(y)l1/ > [VV(y)l - 100
y€eS €S

where S can be either the training or the test sets, V approximation
and V target.
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Exponential distance

For this example we consider a family of semi-concave functions:

in e 1\ el
Vg = mMmin X ——|X — €
d =, TN &P 73 !

EARA)

@ ¢; is the i—th element of the canonical basis.

@ vy is is semiconcave and globally Lipscthiz continuous.
@ It is non differentiable in the set

Dd:{xERd:|X—ei|=|X—ej|f°ri7éj}-
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Results

Active sets d=2 Level sets d=2
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Figure: Active and level set sets d = 2.
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Results

Level sets degree:30, n:1 Level sets degree:30, n:2
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Figure: Level sets d = 2.
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Results

Level sets degree:30, n:2
1.00 =
0728
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0.656
0.50 F1
0584
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0.00 0.440
0.368
-0.25 -0.25
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Figure: Active and level set sets d =2, n = 2.
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Results

L error d:2
BN training
I test
100 4
g
=
g 10-1 4
@
=~
10-2 4
0.75 1.00 1.25 1.50 175 2.00 2.25
n
(=) (+]
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Results

L1 gradient error d:2

BN training
I test
101_
£
= 1004
o
E
@
=~
101
0.75 1.00 1.25 1.50 175 2.00 2.25
n
(=)
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Obstacle problem

Figure: Obstacle problem for ~ large.

|2

o £,(y) =1 (140 (52))

_ ) exp (—1_152) if |s| <1
° ¥ls) {0 if [s|] >1
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Obstacle problem

Vs (vo) = e (rglréo R2 / Ly (y(t))dt + B/ (t)[dt.

y'=u, y(0) =

Remark: V, is semiconcave but non-differentiable for v > 0 large enough.
In our experiments we take v = 100
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Results

L! Feedback performance

10' 1

g

6 lin

§ 1004 W

o

0 25 50 75 100 125 150 175 200
degree
Figure: [! Feedback performance.
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Optimal trajectories

Optimal trajectories
20

15 B - i e
104
0.5
> 0.0+

—05 4

-1.0 4

~154 e

—-2.0 T T T

Figure: Optimal trajectories.
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Learned trajectories

20 Learned trajectories degree=10

151 S ~ i - LS L I
1.0 4
0.5 4

> 0.0+
—05 4

~1.04

-15 — o /L LA !

-2.0 : T
-4 -2 0 2 4

S
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Learned active sets

Active sets degree:10

(=)e(+)
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Connections with Inverse problems

@ The most direct connection between control and inverse problems is
Mortensen observers.

@ There is a connections between inverse problems, semiconvex
functions and control problems.

o As we will see, if we write the inverse problem as an optimziation
problem, it is possible to use the value function of the inverse
problems as in the case of inverse control.

@ Further, in many ill-conditioned inverse problems the key is to find the
correct regularization or penalty function, where semiconvex functions
are relevant
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Connections with Inverse problems

Let us consider the following inverse problem:

1

min  =||B(z) — p||* + G(u),

veu! z:A(u)z” (2) = pl” + G(u)
e p € RY is a vector of observations.

@ A: U Zis the forward operator associated to the corresponding
direct problem.

e B: Z+ R is the observation operator.
e G: U Ry is a regularizing function.

@ U CR™is an open and bounded set, Z C R" is open and P C R is
compact.
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Connections with Inverse problems

We define the value function for this problem by

_ H 1 2
V(p)_ueu,mz'QA(u)E”B(z) pll* + G(u).

The idea is to use the value function to obtain the solution mapping
u*: P—U.
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Connections with Inverse problems

We have that the optimal solution u*(p) for a given observation p satisfies:
(BA)" - (BAu* — p) +VG(u*) =0
Additionally, we can differentiate (formally) the value function to obtain
VV(p) = (p — BAU").
Combining these two expressions we obtain

—(BA)" -VV(p) + VG(u*) =0
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Connections with Inverse problems

The condition
—(BA)T -V V(p) +VG(u*) =

is equivalent to

gm/n {G(u) = VV(p)" - Bz(u)}

z=Au

which is the same formula that we have in the control problem casel!
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Connections with Inverse problems

We can use the previous formula to propose a parametrization for the
solution mapping of the following form

u; (p) = Fo((BA)" Vvy(p))

and we can try to find the optimal paramter by solving an averaged version
of the inverse problem:

iy [ {éuBAuzs(p) P+ G(uz(p))} F(p)dp+ aP(6).
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Connections with Inverse problems

@ In many inverse problems the key is to use the right regularization.

@ That means that one should choose g wisely according the prior
information realted to the problem.

@ Maybe one can try to learn it!
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Connections with Inverse problems

@ In this case one assumes that G is parametrized by a function Gy, for
0 € © and we replace it to obtain a regularaized inverse problem:

. 1
min =

in 2[1Bz = pl2 + G(0)(v)

@ The regularization should preserves the convexity of the problem. If C
is the smallest eigenvalue of AT BT BA, then Gy should be
C—semiconvex. We can use our approach for this.
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