

Mathematics of X-ray Computed Tomography: Just Enough Physics and Continuous Theory

Tatiana A. Bubba

Department of Mathematics and Computer Science, University of Ferrara

tatiana.bubba@unife.it

Physical Sciences Summer School

Puerto Varas, 5-8 January 2026

UNIVERSITÀ
DEGLI STUDI
DI FERRARA
- EX LABORE FRUCTUS -

MiVA

European Women
in Mathematics

(Rough) Outline

Lecture 1 – Monday 5th January

- What is tomography? Just enough physics
- A splash of theory on the Radon transform and Filtered Backprojection

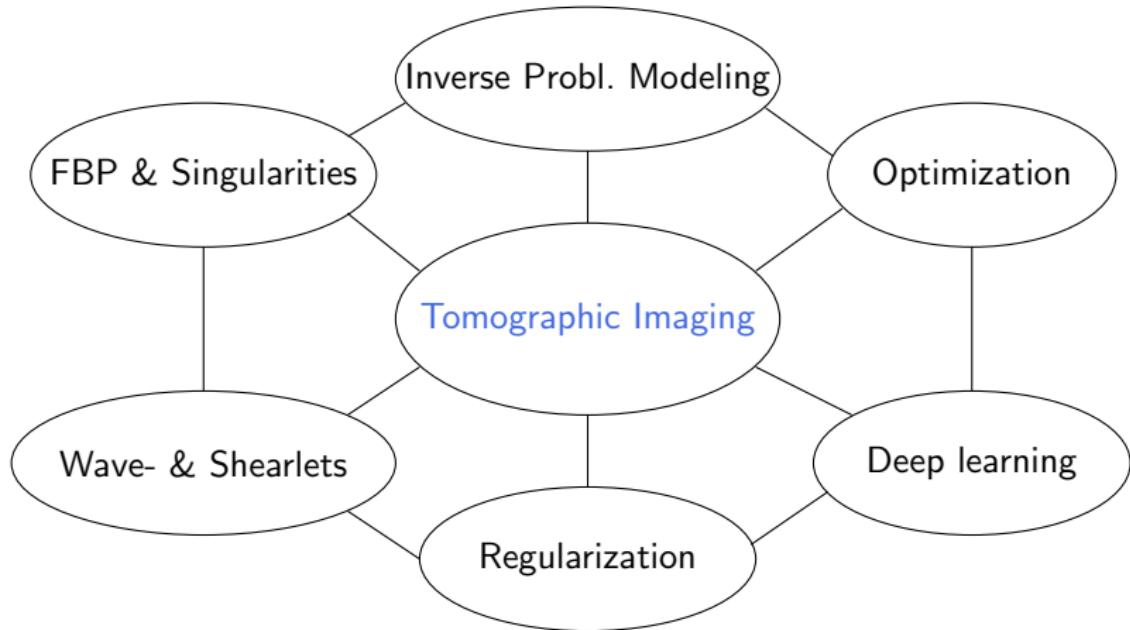
Lecture 2 – Tuesday 6th January

- Regularisation methods to solve (tomographic) inverse problems
- A very fast wavelet tour (of signal processing)

Lecture 3 – Wednesday 7th January

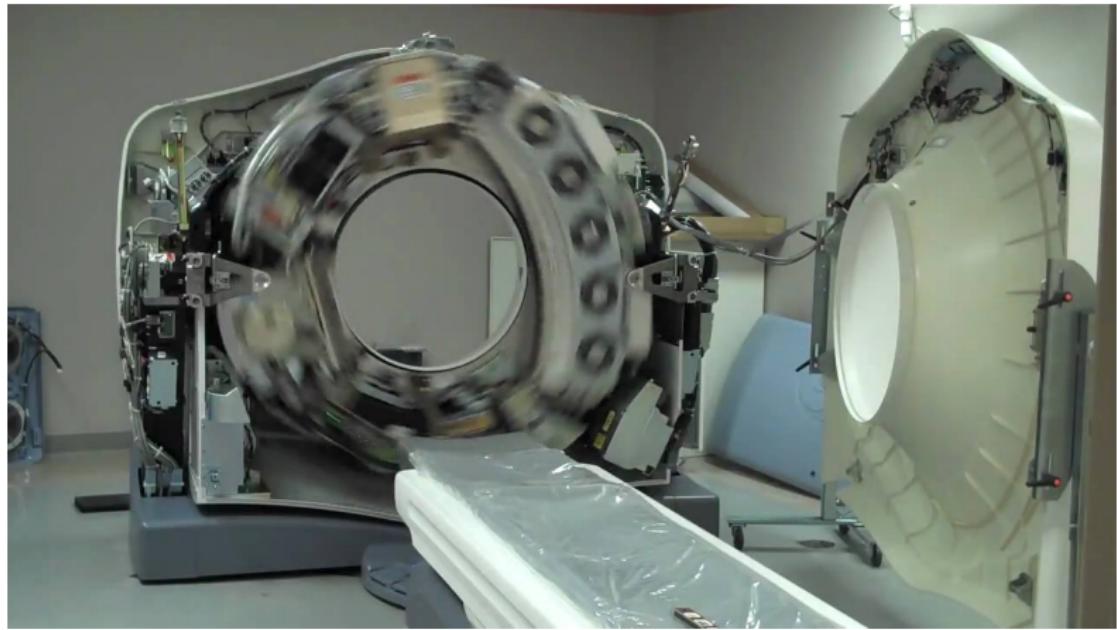
- Nods to convex optimization
- Short introduction to learned reconstruction methods

(Rough) Outline But With a Drawing

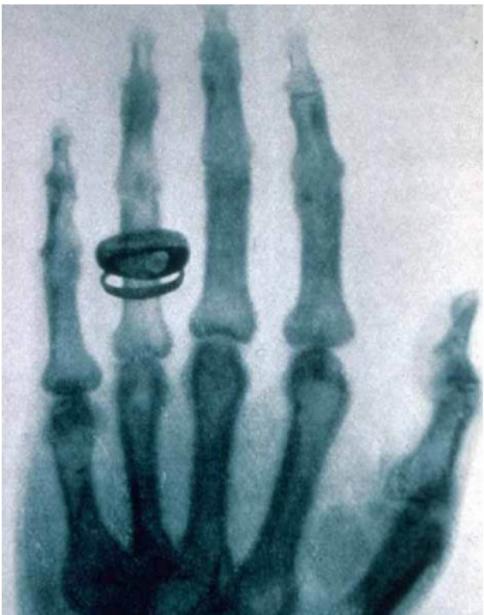


Modern CT Scanners

Modern CT Scanners: Inside



The Story Begins With Röntgen's Discovery of X-rays

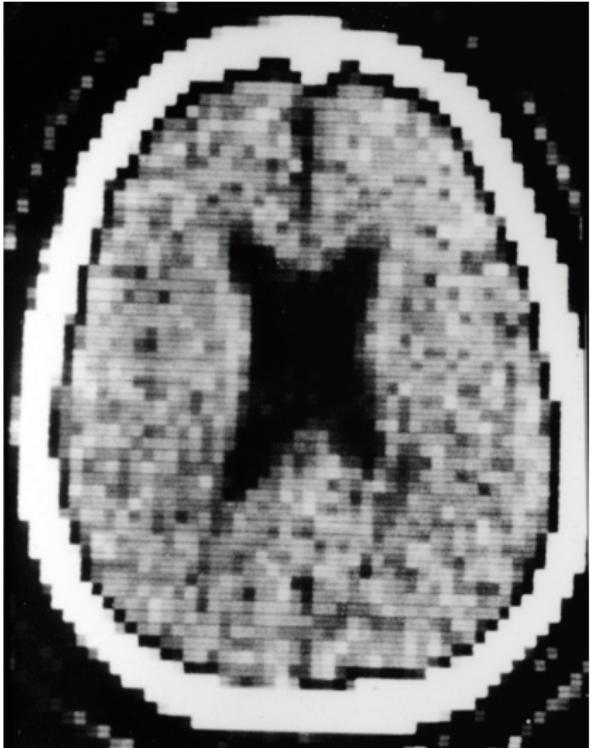


1895: Wilhelm Conrad Röntgen discovers X-rays

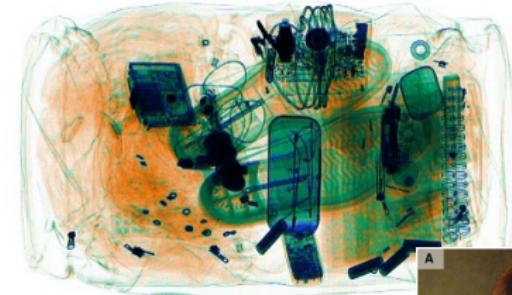
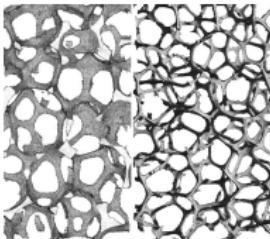
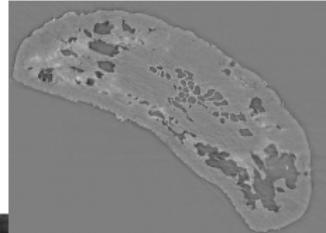
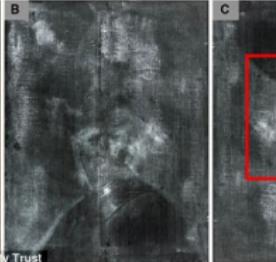
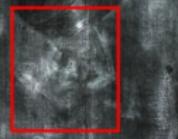
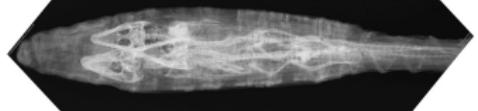
1901: Röntgen is awarded the Nobel Prize in Physics

Several Decades Later ...

1979: Godfrey Hounsfield (top) and Allan McLeod Cormack receive the Nobel prize for developing X-ray tomography.



Nowadays: Deluge of Applications



What is Computed Tomography?

Tomography: derives from *tomos* (a section or slice) and *graphos* (to describe)

CT is a [non-invasive](#) device that provides information about the inside of an object by taking measurements from the outside ([indirect information](#)).

What is Computed Tomography?

Tomography: derives from *tomos* (a section or slice) and *graphos* (to describe)

CT is a [non-invasive](#) device that provides information about the inside of an object by taking measurements from the outside ([indirect information](#)).

What is Computed Tomography?

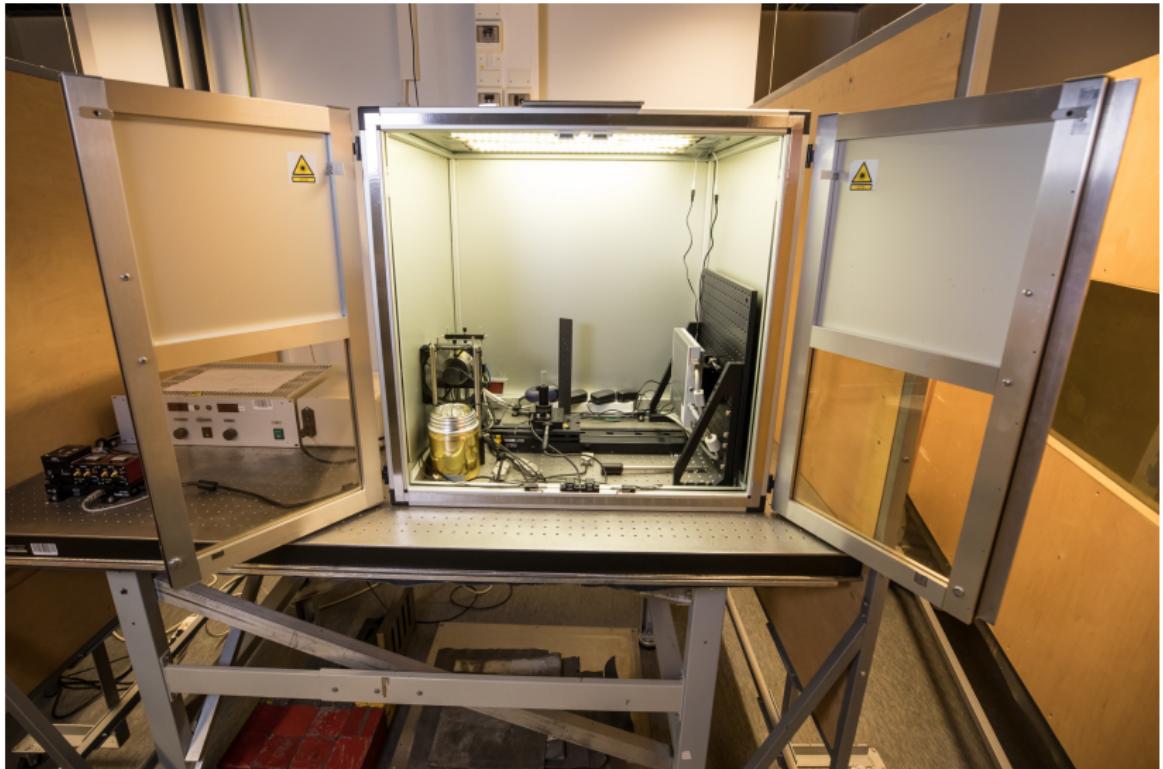
Tomography: derives from *tomos* (a section or slice) and *graphos* (to describe)

CT is a **non-invasive** device that provides information about the inside of an object by taking measurements from the outside (**indirect information**).

At the core:

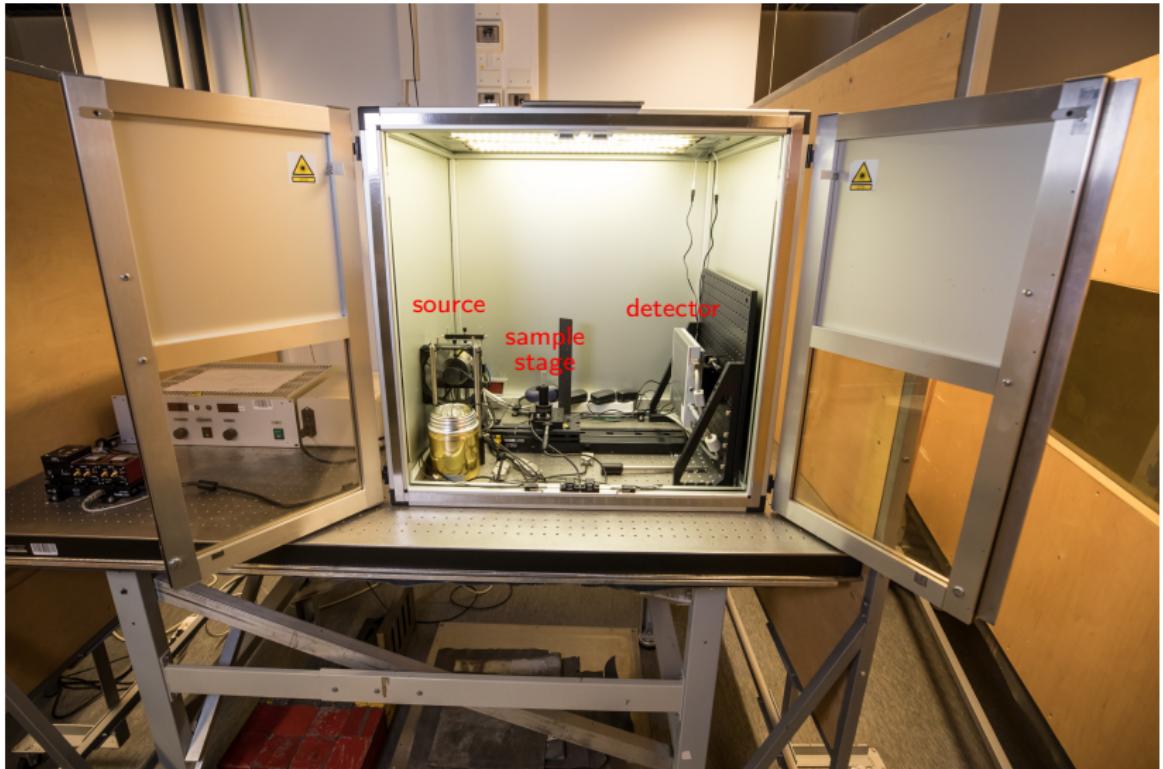
- Measurements are taken exploiting the transmission of waves or particles (e.g., X-rays)
- The intensity of particles transmission is attenuated by the material through which they travel

In Practice: Experimental Imaging Setup



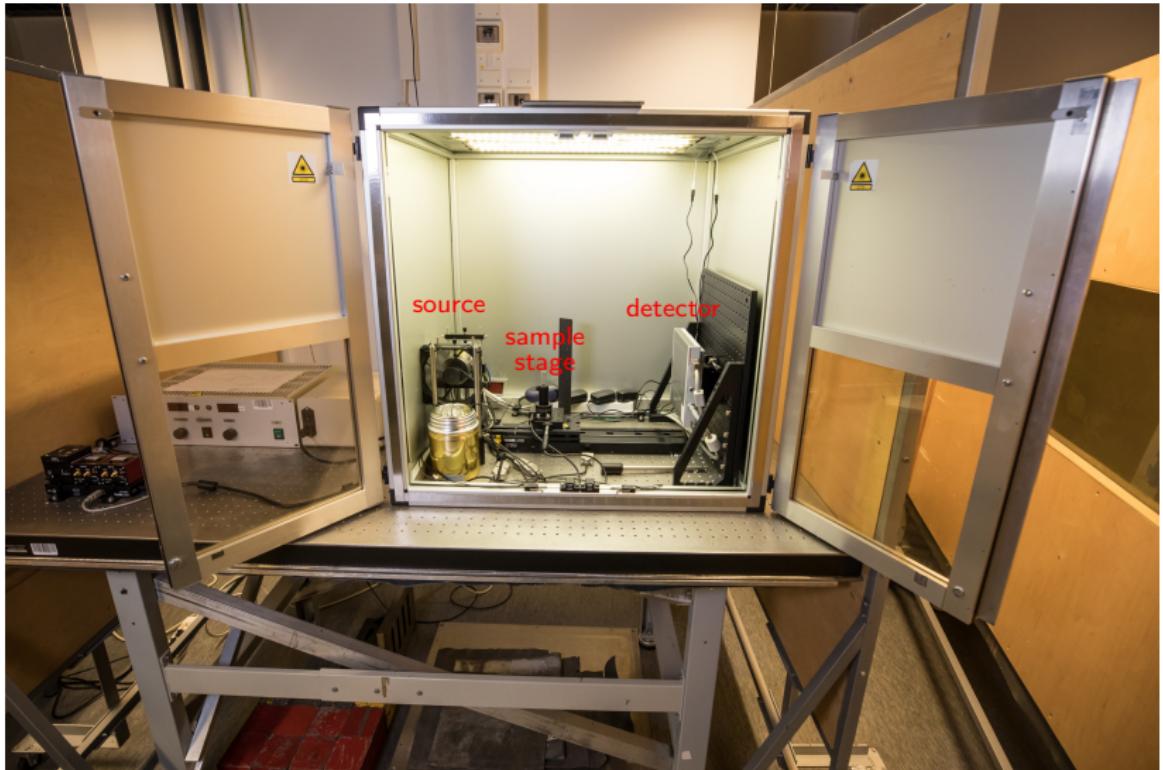
μ CT system at University of Helsinki

In Practice: Experimental Imaging Setup



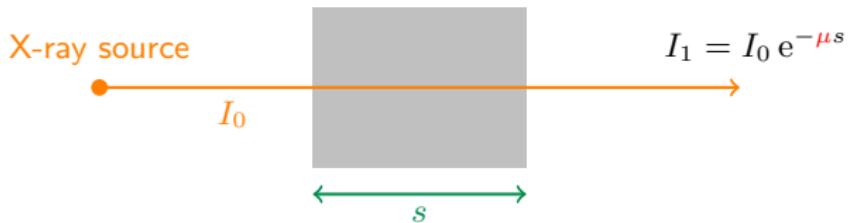
Primary components of μ CT system: source, target, detector

In Practice: Experimental Imaging Setup



Source emits X-rays → passing through the target → measured by detector

Toy Example: A Line Inside Homogeneous Matter

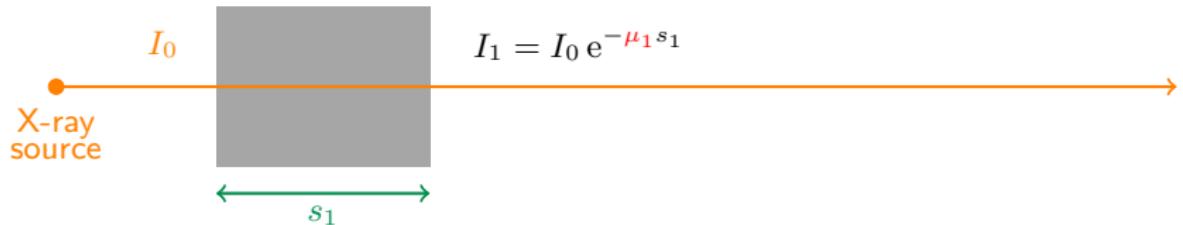
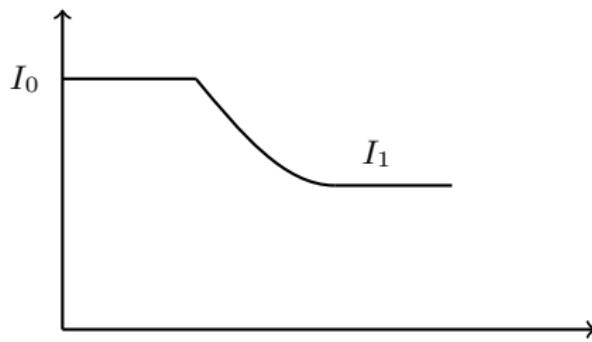


I_0 : initial intensity of the X-ray

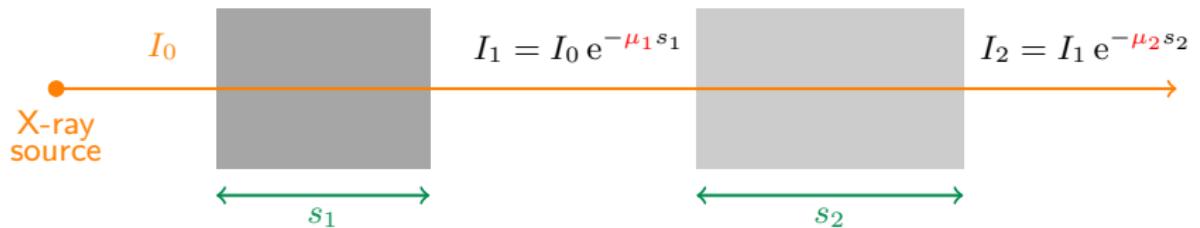
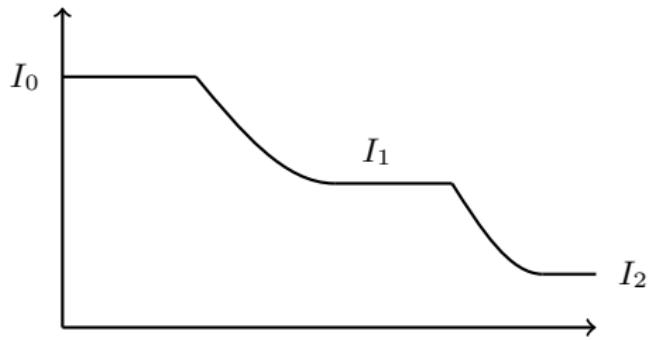
s : length of the path of the X-ray inside the object (particles are assumed to more or less travel in straight lines)

$\mu > 0$: X-ray attenuation coefficient

Toy Example: Two Homogeneous Blocks



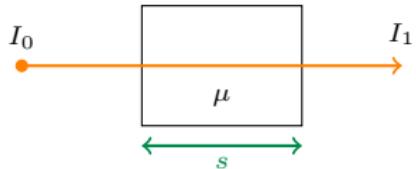
Toy Example: Two Homogeneous Blocks



Absorption in the Target: the Beer-Lambert Law

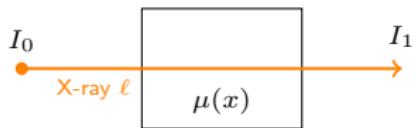
Homogeneous material:

$$I_1 = I_0 e^{-\mu s}$$



Non-homogeneous material:

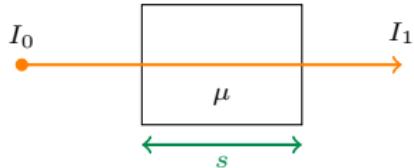
$$I_1 = I_0 e^{-\int_{\ell} \mu(x) dx}$$



Absorption in the Target: Energy Dependence

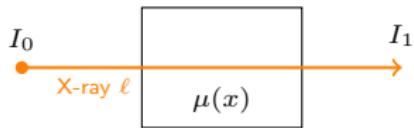
Homogeneous material:

$$I_1 = I_0 e^{-\mu s}$$



Non-homogeneous material:

$$I_1 = I_0 e^{- \int_{\ell} \mu(x) dx}$$



In reality, to accurately describe the physical process an **energy-dependent non-linear integral** model would be necessary:

$$I_1 = \int I_0(E) e^{- \int_{\ell} \mu(E, x) dx} dE$$

Usually, this energy-dependence is neglected and an effective absorption coefficient $\mu_{\text{eff}}(x)$ is assumed.

Imaging at the Detector

The detector measures a resulting X-ray projection image:

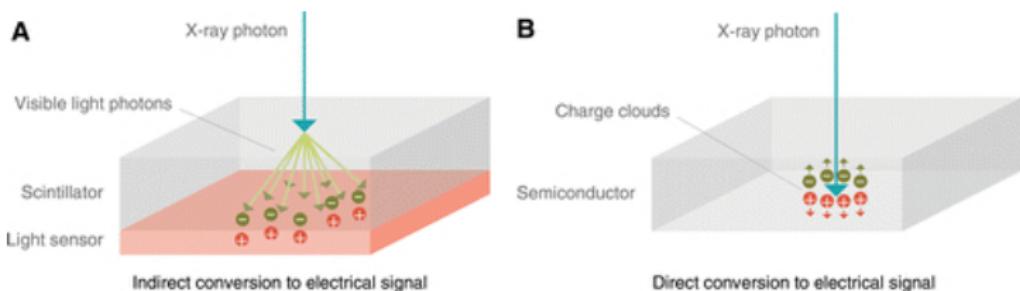
- The most common energy integrating detectors (EIDs) provide a monochromatic image



Imaging at the Detector

The detector measures a resulting X-ray projection image:

- The most common energy integrating detectors (EIDs) provide a monochromatic image
- Photon counting detectors (PCDs) can detect photons of different energies and allow for multi-energy X-ray (nonlinear)



[Image credits: Willemink et al., Radiology, 2018]

Transforming the Measurement for the Inverse Problem

The Beer-Lambert law connects the initial and final intensities of an X-ray:

$$I_1 = I_0 e^{-\int_{\ell} \mu(x) dx} \iff -\log\left(\frac{I_1}{I_0}\right) = \int_{\ell} \mu(x) dx$$

where $-\log(I_1/I_0)$ models the total attenuated energy according the attenuation along the path ℓ .

Transforming the Measurement for the Inverse Problem

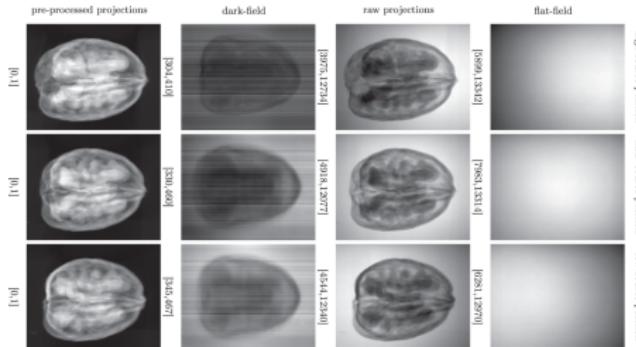
The Beer-Lambert law connects the initial and final intensities of an X-ray:

$$I_1 = I_0 e^{-\int_{\ell} \mu(x) dx} \iff -\log\left(\frac{I_1}{I_0}\right) = \int_{\ell} \mu(x) dx$$

where $-\log(I_1/I_0)$ models the total attenuated energy according the attenuation along the path ℓ .

Before obtaining processed measurements, need to compensate “detector noise”:

- **Dark-field** recorded with source off: detector offset count
- **Flat-field** with source on: the beam profile



[Der Sarkissian et al., Scientific Data, 2019]

Transforming the Measurement for the Inverse Problem

The Beer-Lambert law connects the initial and final intensities of an X-ray:

$$I_1 = I_0 e^{-\int_{\ell} \mu(x) dx} \iff -\log\left(\frac{I_1}{I_0}\right) = \int_{\ell} \mu(x) dx$$

where $-\log(I_1/I_0)$ models the total attenuated energy according the attenuation along the path ℓ .

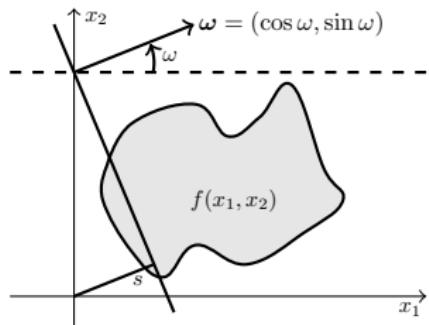
As a result, during a tomographic scan:

- I_0 is known from calibration and I_1 from measurements
- I_1 is measured along many lines $\ell_{(\omega,s)}$ to get many line integral values through the object
- The intensity I_1 is called the *transmission*, while the corresponding $-\log(I_1/I_0)$ is called absorption or **projection**, and a collection of projections is called a **sinogram**

Beer-Lambert Law and Radon Transform

The problem of recovering the attenuation function (linearised measurement) can be mathematically modelled by the **Radon transform**, which can be understood as an integration of the function $f : \mathbb{R}^2 \rightarrow \mathbb{R}_+$ over lines.

Through the identifications $f(\mathbf{x}) = \mu(\mathbf{x})$ and $\mathcal{R}(f) = -\log(I_1/I_0)$, the Beer-Lambert law is connected to the **Radon transform**:

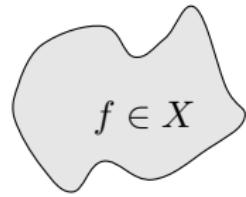


$$\begin{aligned}\mathcal{R}(f)(\omega, s) &= \int_{-\infty}^{\infty} f(s\omega + \tau\omega^\perp) d\tau \\ &= \int_{\ell(\omega, s)} f(\mathbf{x}) d\mathbf{x},\end{aligned}$$

where $\ell = \ell(\omega, s) = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = s\omega + \tau\omega^\perp, \tau \in \mathbb{R}\}$ with $\omega = (\cos(\omega), \sin(\omega))$ and $(\omega, s) \in S^1 \times \mathbb{R}$.

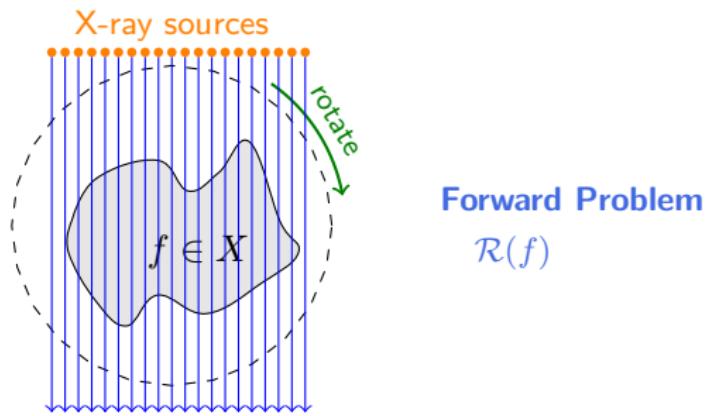
In Practice: How to Formulate CT as a Mathematical Problem

- We aim at imaging a target (e.g., human chest) $f \in X = L^2(\Omega)$ with $f : \mathbb{R}^d \rightarrow \mathbb{R}_+$ in a bounded domain $\Omega \in \mathbb{R}^d$, $d = 2, 3$.



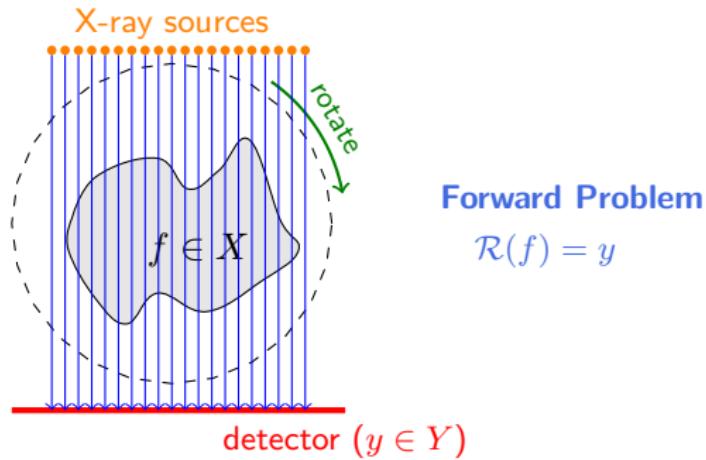
In Practice: How to Formulate CT as a Mathematical Problem

- We aim at imaging a target (e.g., human chest) $f \in X = L^2(\Omega)$ with $f : \mathbb{R}^d \rightarrow \mathbb{R}_+$ in a bounded domain $\Omega \in \mathbb{R}^d$, $d = 2, 3$.
- The process of emitting X-rays that travel through target $f \in X$ is called the **forward problem/model** (\rightsquigarrow Radon transform).



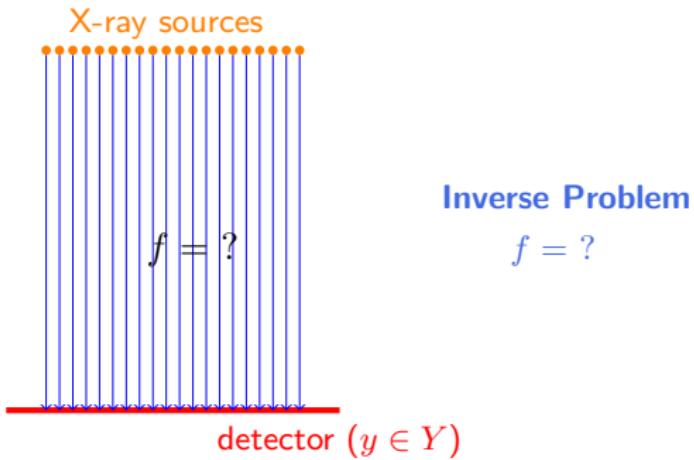
In Practice: How to Formulate CT as a Mathematical Problem

- We aim at imaging a target (e.g., human chest) $f \in X = L^2(\Omega)$ with $f : \mathbb{R}^d \rightarrow \mathbb{R}_+$ in a bounded domain $\Omega \in \mathbb{R}^d$, $d = 2, 3$.
- The process of emitting X-rays that travel through target $f \in X$ is called the **forward problem/model** (\rightsquigarrow Radon transform).
- We then obtain the measured data $y \in Y$ with the X-ray detector.



In Practice: How to Formulate CT as a Mathematical Problem

- We aim at imaging a target (e.g., human chest) $f \in X = L^2(\Omega)$ with $f : \mathbb{R}^d \rightarrow \mathbb{R}_+$ in a bounded domain $\Omega \in \mathbb{R}^d$, $d = 2, 3$.
- The process of emitting X-rays that travel through target $f \in X$ is called the **forward problem/model** (\rightsquigarrow Radon transform).
- We then obtain the measured data $y \in Y$ with the X-ray detector.
- Reconstructing f from the measured data y is then consequently the **inverse problem**.



The Basic Linear Inverse Problem

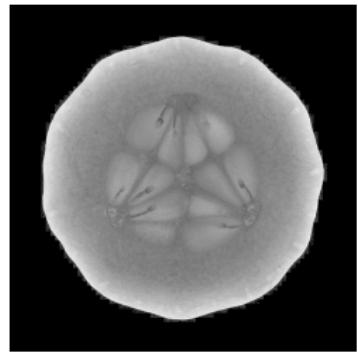
The forward model can be stated as:

$$Af = y^\delta$$

where:

$A : X \rightarrow Y$ The linear forward operator
(defining the *scanning geometry*)

$f \in X$ The unknown/quantity of interest
(*linearised attenuation coefficient*)



unknown/quantity of interest

The Basic Linear Inverse Problem

The forward model can be stated as:

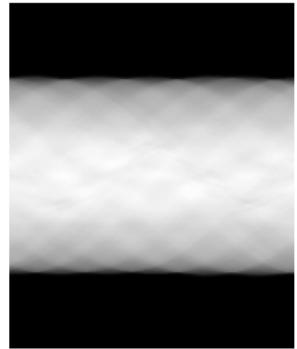
$$Af = y^\delta$$

where:

$A : X \rightarrow Y$ The linear forward operator
(defining the *scanning geometry*)

$f \in X$ The unknown/quantity of interest
(*linearised attenuation coefficient*)

$y \in Y$ Measurement data
(*sinogram*)



measurement data

The Basic Linear Inverse Problem

The forward model can be stated as:

$$Af = y^\delta$$

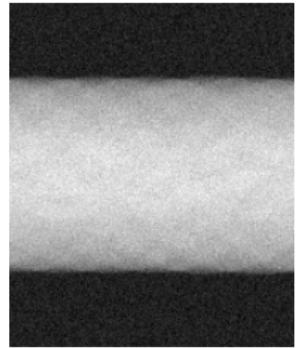
where:

$A : X \rightarrow Y$ The linear forward operator
(defining the [scanning geometry](#))

$f \in X$ The unknown/quantity of interest
([linearised attenuation coefficient](#))

$y^\delta \in Y$ Noisy measurement data
([sinogram](#))

$\epsilon \in Y$ Measurement noise (with $\|\epsilon\|_Y \leq \delta$)



noisy measurement data

The Basic Linear Inverse Problem

The forward model can be stated as:

$$Af = y^\delta$$

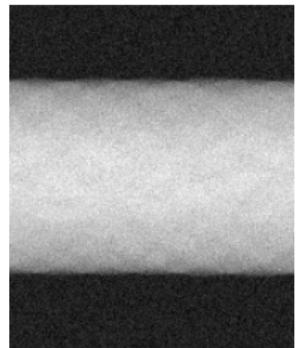
where:

$A : X \rightarrow Y$ The linear forward operator
(defining the *scanning geometry*)

$f \in X$ The unknown/quantity of interest
(*linearised attenuation coefficient*)

$y^\delta \in Y$ Noisy measurement data
(*sinogram*)

$\epsilon \in Y$ Measurement noise (with $\|\epsilon\|_Y \leq \delta$)



noisy measurement data

Inverse problem

Given noisy measurements y^δ , determine f .

III-Posedness and Hadamard's Conditions

The problem

Given y^δ , determine f with $Af = y^\delta$

is well-posed if the following conditions hold true [Hadamard, 1903]:

1. A solution exists ([surjectivity](#))
2. The solution is unique ([injectivity](#))
3. The solution depends continuously on the input ([stability](#))

If one of these conditions fails, the problem is said [ill-posed](#).

A splash of continuous theory: Radon transform

Recall the the Radon transform

$$y(\omega, s) = \mathcal{R}(f)(\omega, s) = \int_{\ell(\omega, s)} f(\mathbf{x}) \, d\mathbf{x}$$

- It is dependent on an **angle** on the unit circle $\omega \in (0, 2\pi]$, with $\omega = (\cos(\omega), \sin(\omega))$, and a **signed distance** $s \in \mathbb{R}$.
- $d\mathbf{x}$ denotes the one-dimensional (Lebesgue) measure along the line $\ell(\omega, s) = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} \cdot \omega = s\}$, i.e., we only integrate over single lines for each ω and s !
- The measurement $y = \mathcal{R}(f)$ is a function defined on the parametrization of the infinite unit cylinder in \mathbb{R}^3 :

$$C^2 = \{(\omega, s) : \omega \in [0, 2\pi), s \in \mathbb{R}\}.$$

- Notice that $\mathcal{R}(f)(\omega, s) = \mathcal{R}(f)(-\omega, -s)$, so we can take $\omega \in (0, \pi]$.

A splash of continuous theory: Radon transform

Recall the the Radon transform

$$y(\omega, s) = \mathcal{R}(f)(\omega, s) = \int_{\ell(\omega, s)} f(\mathbf{x}) \, d\mathbf{x}$$

- ▶ It is dependent on an **angle** on the unit circle $\omega \in (0, 2\pi]$, with $\omega = (\cos(\omega), \sin(\omega))$, and a **signed distance** $s \in \mathbb{R}$.
- ▶ $d\mathbf{x}$ denotes the one-dimensional (Lebesgue) measure along the line $\ell(\omega, s) = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} \cdot \omega = s\}$, i.e., we only integrate over single lines for each ω and s !
- ▶ The measurement $y = \mathcal{R}(f)$ is a function defined on the parametrization of the infinite unit cylinder in \mathbb{R}^3 :

$$C^2 = \{(\omega, s) : \omega \in [0, 2\pi), s \in \mathbb{R}\}.$$

- ▶ Notice that $\mathcal{R}(f)(\omega, s) = \mathcal{R}(f)(-\omega, -s)$, so we can take $\omega \in (0, \pi]$.

Integrating over lines for each angle $\omega = (\cos(\omega), \sin(\omega))$ for $\omega \in (0, \pi]$ results in the sinogram.

Boundedness of the Radon Transform

Given a linear operator $\mathcal{A} : X \rightarrow Y$ between two Banach/Hilbert spaces, we say that the operator is **bounded**, if there exists a constant $C > 0$ such that

$$\|\mathcal{A}f\|_Y \leq C\|f\|_X, \quad \text{for all } f \in X.$$

The smallest such C is the operator norm $\|\mathcal{A}\|_{\text{op}} = \|\mathcal{A}\|_{X \rightarrow Y} = C$. In particular, a **bounded linear operator is continuous**.

Boundedness of the Radon Transform

Given a linear operator $\mathcal{A} : X \rightarrow Y$ between two Banach/Hilbert spaces, we say that the operator is **bounded**, if there exists a constant $C > 0$ such that

$$\|\mathcal{A}f\|_Y \leq C\|f\|_X, \quad \text{for all } f \in X.$$

The smallest such C is the operator norm $\|\mathcal{A}\|_{\text{op}} = \|\mathcal{A}\|_{X \rightarrow Y} = C$. In particular, a **bounded linear operator is continuous**.

Theorem

Let \mathcal{R} be the Radon transform, $\Omega_1 \subset \mathbb{R}^2$ a bounded set and $\text{supp}(f) \subset \Omega_1$, so that the integration reduces to $\ell(\omega, s) \cap \Omega_1$. Then \mathcal{R} is a **bounded linear operator** from $L^2(\Omega_1)$ to $L^2(C^2)$. That is, $\exists c > 0$ such that:

$$\|\mathcal{R}f\|_{L^2(C^2)} \leq c\|f\|_{L^2(\Omega_1)}, \quad \forall f \in L^2(\mathbb{R}^2).$$

The Adjoint Operator or Backprojection

The Radon transform defines the forward operator $X \rightarrow Y$ (image to measurement), **for reconstruction we also need a mapping from $Y \rightarrow X$ (measurement to image)**.

The Adjoint Operator or Backprojection

The Radon transform defines the forward operator $X \rightarrow Y$ (image to measurement), **for reconstruction we also need a mapping from $Y \rightarrow X$ (measurement to image).**

For that purpose, we will first use the **adjoint operator** \mathcal{R}^* , which is defined through the inner product by the relationship:

$$\langle \mathcal{R}g, h \rangle_Y = \langle g, \mathcal{R}^*h \rangle_X, \quad \text{for all } g \in X, h \in Y,$$

where the inner product is the inner product in $L^2(\Omega)$ (where our image f is defined), with $\Omega \subset \mathbb{R}^2$:

$$\langle g, h \rangle_{L^2(\Omega)} = \int_{\Omega} g(z)h(z)dz.$$

The Adjoint Operator or Backprojection

The Radon transform defines the forward operator $X \rightarrow Y$ (image to measurement), **for reconstruction we also need a mapping from $Y \rightarrow X$ (measurement to image).**

For that purpose, we will first use the **adjoint operator** \mathcal{R}^* , which is defined through the inner product by the relationship:

$$\langle \mathcal{R}g, h \rangle_Y = \langle g, \mathcal{R}^*h \rangle_X, \quad \text{for all } g \in X, h \in Y,$$

where the inner product is the inner product in $L^2(\Omega)$ (where our image f is defined), with $\Omega \subset \mathbb{R}^2$:

$$\langle g, h \rangle_{L^2(\Omega)} = \int_{\Omega} g(z)h(z)dz.$$

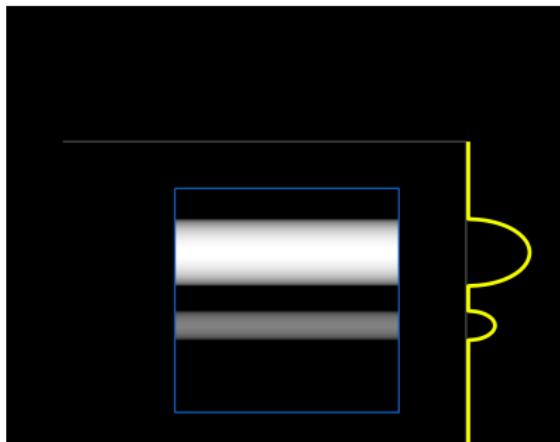
With this we can define the adjoint operator for the Radon transform, commonly referred to as **backprojection**.

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



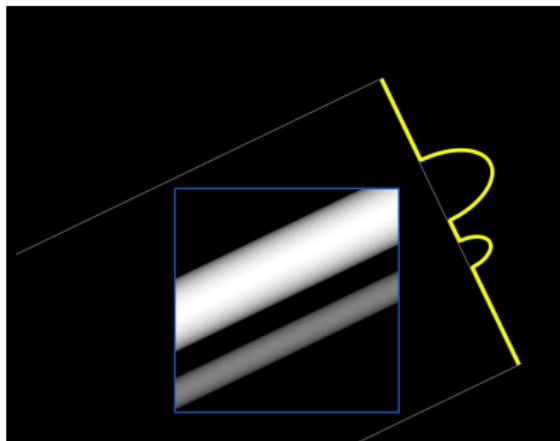
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



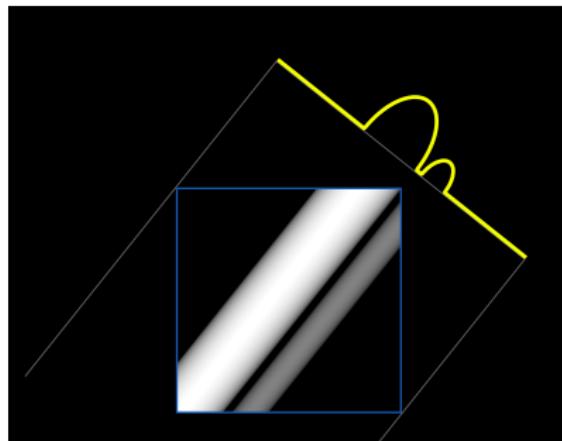
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



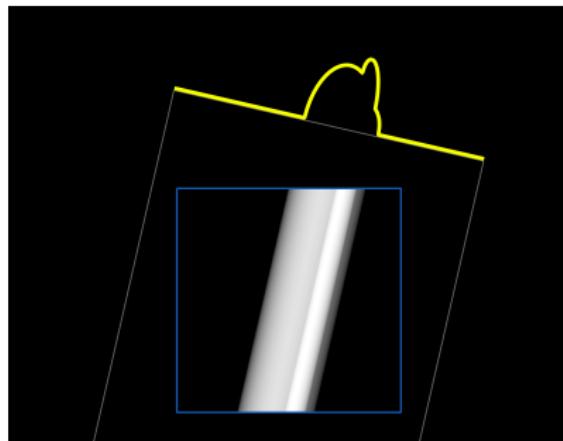
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



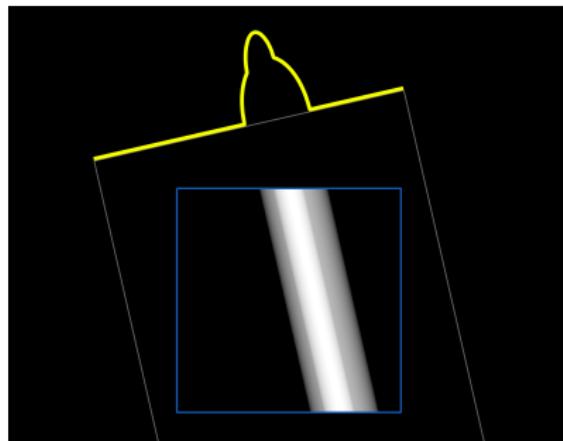
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



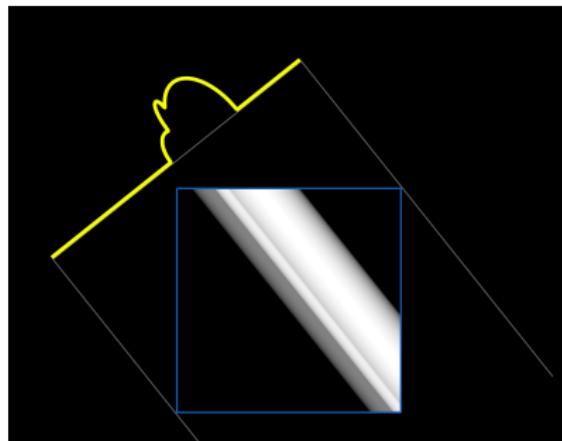
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



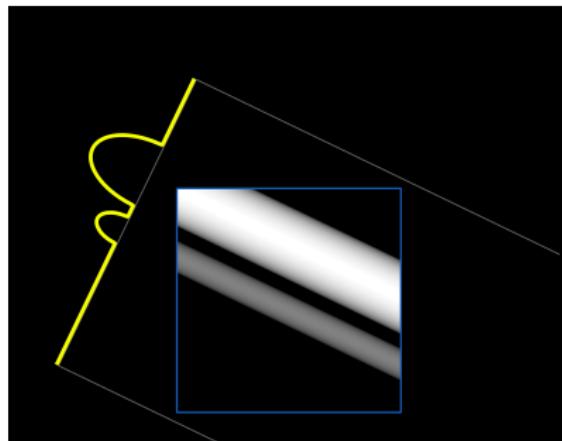
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



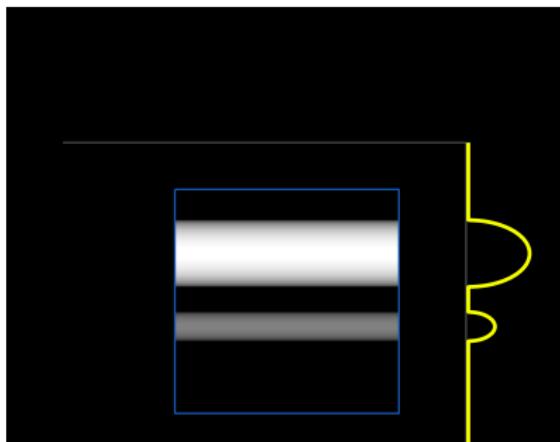
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



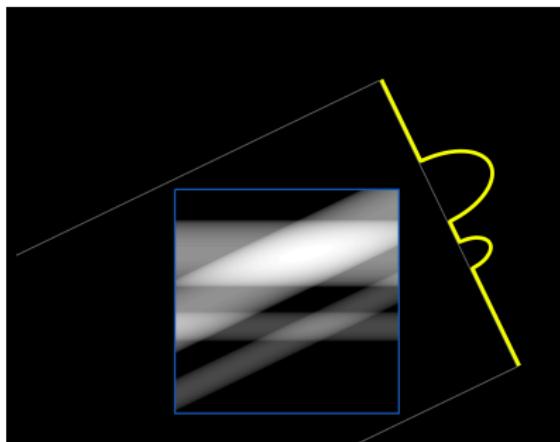
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



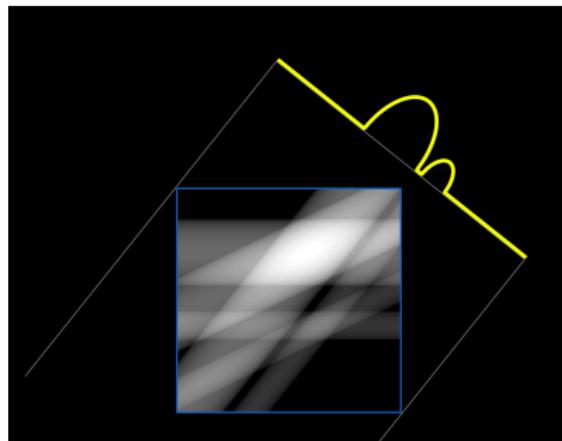
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



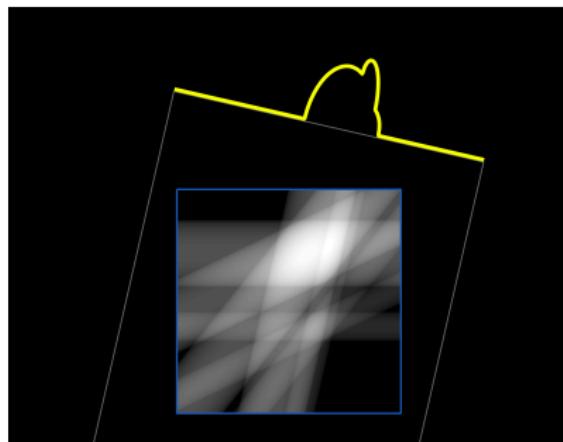
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



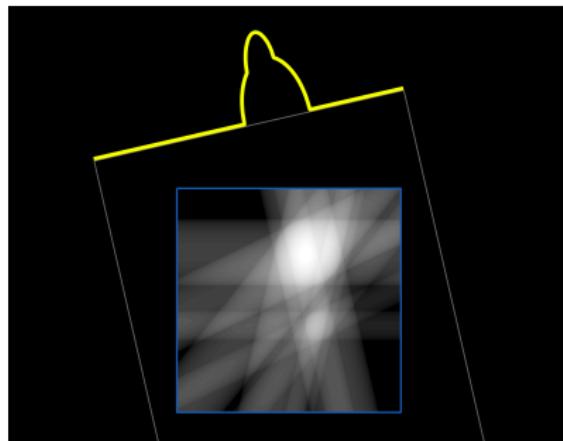
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



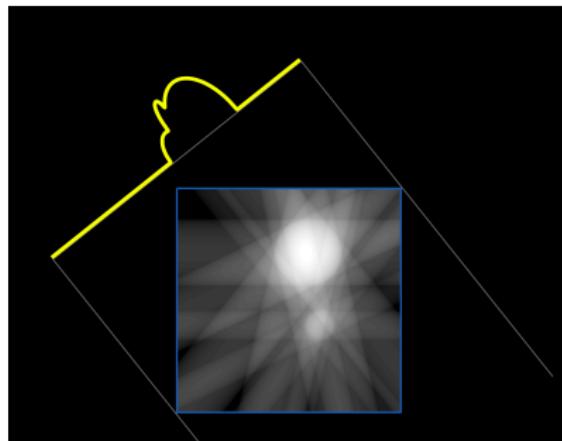
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



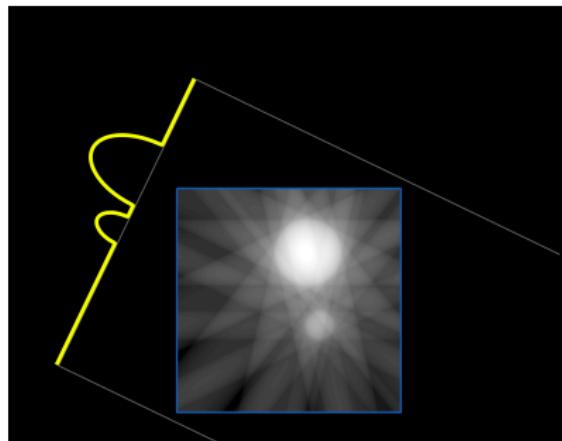
[Image credits: Samuli Siltanen]

The Adjoint Operator or Backprojection

For the functions $f(\mathbf{x})$, with $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, and $y(\omega, s)$ with $(\omega, s) \in S^1 \times \mathbb{R}$, the adjoint \mathcal{R}^* (called **backprojection**) of the Radon transform is given by:

$$(\mathcal{R}^* y)(\mathbf{x}) = \int_0^\pi y(\omega, \mathbf{x} \cdot \omega) d\omega$$

The adjoint \mathcal{R}^* is linear. It can be understood as taking all lines that go through \mathbf{x} and averaging their projection values:



[Image credits: Samuli Siltanen]

Regularity of the Radon Transform

Theorem [2.10 with $n = 2$, $\alpha = 0$, Natterer & Wübbeling 2001]

Let $f \in L^2(\Omega_1)$, then there exist two constants $c, c' > 0$ such that

$$c\|f\|_{L^2(\Omega_1)} \leq \|\mathcal{R}f\|_{H^{1/2}(C^2)} \leq c'\|f\|_{L^2(\Omega_1)}.$$

Roughly speaking, the Radon transform is a continuous linear operator from $L^2(\Omega_1)$ to $H^{1/2}(C^2)$ and hence $\mathcal{R}f$ is smoother than f by half a derivative.

Regularity of the Radon Transform

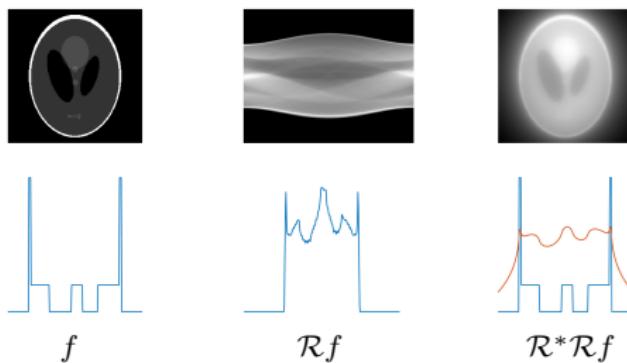
Theorem [2.10 with $n = 2$, $\alpha = 0$, Natterer & Wübbeling 2001]

Let $f \in L^2(\Omega_1)$, then there exist two constants $c, c' > 0$ such that

$$c\|f\|_{L^2(\Omega_1)} \leq \|\mathcal{R}f\|_{H^{1/2}(C^2)} \leq c'\|f\|_{L^2(\Omega_1)}.$$

Roughly speaking, the Radon transform is a continuous linear operator from $L^2(\Omega_1)$ to $H^{1/2}(C^2)$ and hence $\mathcal{R}f$ is smoother than f by half a derivative.

A similar result holds for the backprojection, which means that the projection of f followed by a backprojection, i.e. $\mathcal{R}^*\mathcal{R}f$, smooths f by a full derivative.



III-Posedness of the Radon Transform

✓ **Injectivity.** We have the following result:

Theorem

Let $S_0 \subset S^1$ be a set of **infinite** many directions and let $f \in L^2(\Omega_1)$. If $(\mathcal{R}f)(\omega, \cdot) = 0$ for every $\omega \in S_0$, then $f = 0$.

III-Posedness of the Radon Transform

- ✓ **Injectivity.** We have the following result:

Theorem

Let $S_0 \subset S^1$ be a set of **infinite** many directions and let $f \in L^2(\Omega_1)$. If $(\mathcal{R}f)(\omega, \cdot) = 0$ for every $\omega \in S_0$, then $f = 0$.

However:

Caveat!

This is **not** true for **finitely** many directions!! Which means, this does not hold in the discrete case!

III-Posedness of the Radon Transform

- ✓ **Injectivity.** The infinite dimensional Radon transform is injective.
- ✗ **Surjectivity.** The range of \mathcal{R} is an **infinite** dimensional proper subspace (i.e., $H^{1/2}(C^2)$) of $L^2(C^2)$ (see again Theorem 2.10 in [Natterer & Wübbeling 2001]).

This means that we do not have surjectivity for $\mathcal{R} : L^2(\Omega_1) \rightarrow L^2(C^2)$.

III-Posedness of the Radon Transform

- ✓ **Injectivity.** The infinite dimensional Radon transform is injective.
- ✗ **Surjectivity.** The range of \mathcal{R} is an **infinite** dimensional proper subspace (i.e., $H^{1/2}(C^2)$) of $L^2(C^2)$ (see again Theorem 2.10 in [Natterer & Wübbeling 2001]).

This means that we do not have surjectivity for $\mathcal{R} : L^2(\Omega_1) \rightarrow L^2(C^2)$.

Moreover:

Corollary

The Radon transform is a **compact operator** with infinite-dimensional range and hence it has an open range in $L^2(C^2)$.

- ✗ **Stability.** The range of the Radon transform is open so there is **no stability**.

III-Posedness of the Radon Transform

- ✓ **Injectivity.** The infinite dimensional Radon transform is injective.
- ✗ **Surjectivity.** The Range is a proper subspace (i.e., $H^{1/2}(C^2)$) of $L^2(C^2)$ and hence the Radon transform is **not surjective**.
- ✗ **Stability.** The range of the Radon transform is open so there is **no stability**.

Can We Invert the Radon Transform?

Johann Radon (1887-1956)

How to reconstruct a function from its line integrals:

$$f(P) = -\frac{1}{\pi} \int_0^\infty \frac{d\bar{F}_p(q)}{q}$$

SITZUNG VOM 30. APRIL 1917.

Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten.

Von

JOHANN RADON.

Satz III: Der Wert von f ist durch F eindeutig bestimmt und lässt sich folgendermaßen berechnen:

(III)
$$f(P) = -\frac{1}{\pi} \int_0^\infty \frac{d\bar{F}_p(q)}{q}.$$

[from Johann Radon's 1917 Seminal Paper]

Radon's Inversion Formula: Modern Version

Let $f : \Omega \rightarrow \mathbb{R}$ and $y = \mathcal{R}f$ then, for $\mathbf{x} \in \Omega \subset \mathbb{R}^2$, f can be obtained as:

$$f(\mathbf{x}) = \frac{1}{4\pi^2} \int_0^\pi \int_{\mathbb{R}} \frac{\partial_s y(\boldsymbol{\omega}, s)}{\mathbf{x} \cdot \boldsymbol{\omega} - s} \, ds \, d\omega$$

with $\boldsymbol{\omega} = (\cos(\omega), \sin(\omega))$.

Note: Practical reconstructions are **not** directly based on this formulation. However, similar ingredients are found:

- Integration over s with a function $(\mathbf{x} \cdot \boldsymbol{\omega} - s)^{-1} \rightsquigarrow \text{Convolution}$
- Integration over $\omega \rightsquigarrow \text{Backprojection}$

Convolution Theorem for the Radon Transform

Recall that given two functions $h, k : \mathbb{R}^n \rightarrow \mathbb{R}$:

$$(h * k)(\mathbf{u}) = \int_{\mathbb{R}^n} h(\mathbf{z})k(\mathbf{u} - \mathbf{z}) \, d\mathbf{z} = \int_{\mathbb{R}^n} h(\mathbf{u} - \mathbf{z})k(\mathbf{z}) \, d\mathbf{z}$$

The convolution theorem establishes a connection to the Fourier transform:

$$\mathcal{F}(h * k)(\xi) = \hat{h}(\xi)\hat{k}(\xi)$$

Convolution in image space = Multiplication in Fourier space

Convolution Theorem for the Radon Transform

Recall that given two functions $h, k : \mathbb{R}^n \rightarrow \mathbb{R}$:

$$(h * k)(\mathbf{u}) = \int_{\mathbb{R}^n} h(\mathbf{z})k(\mathbf{u} - \mathbf{z}) \, d\mathbf{z} = \int_{\mathbb{R}^n} h(\mathbf{u} - \mathbf{z})k(\mathbf{z}) \, d\mathbf{z}$$

The convolution theorem establishes a connection to the Fourier transform:

$$\mathcal{F}(h * k)(\xi) = \hat{h}(\xi)\hat{k}(\xi)$$

Convolution in image space = Multiplication in Fourier space

In fact, we can use convolutions to establish a connection between backprojected data and image space.

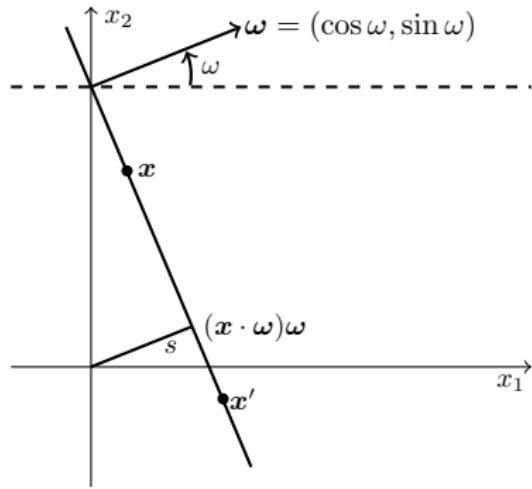
Radon Convolution Theorem

Let $v : C^2 \rightarrow \mathbb{R}$ and $f : \Omega \rightarrow \mathbb{R}$, then we have:

$$(\mathcal{R}^* v) * f = \mathcal{R}^*(v * \mathcal{R}f)$$

Conv. with BP kernel in image space = BP of conv. in data space

Filtered Backprojection – Part I



First of all, notice that for each $z \in \mathbb{R}^2$, we have:

$$\begin{aligned} \exists \tau \in \mathbb{R} \text{ s.t. } (\mathbf{x} \cdot \omega)\omega + \tau\omega^\perp &= \mathbf{x}' \\ \Rightarrow \exists t \in \mathbb{R} \text{ s.t. } \mathbf{x} + t\omega^\perp &= \mathbf{x}' \end{aligned}$$

Then, let's start by computing $\mathcal{R}^* \mathcal{R} f$:

$$\begin{aligned} \mathcal{R}^* \mathcal{R} f(\mathbf{x}) &= \int_0^\pi \mathcal{R} f(\omega, \mathbf{x} \cdot \omega) d\omega = \int_0^\pi \int_{-\infty}^\infty f((\mathbf{x} \cdot \omega)\omega + \tau\omega^\perp) d\tau d\omega \\ &= \int_0^\pi \int_{-\infty}^\infty f(\mathbf{x} + t\omega^\perp) dt d\omega \end{aligned}$$

Filtered Backprojection – Part II

Next, by using polar coordinates we get:

$$\begin{aligned}\mathcal{R}^* \mathcal{R} f(\mathbf{x}) &= \int_0^\pi \int_{-\infty}^\infty f(\mathbf{x} + t\omega^\perp) dt d\omega \\ &= \int_0^{2\pi} \int_0^\infty \frac{f(\mathbf{x} + t\omega^\perp)}{t} t dt d\omega = \int_{\mathbb{R}^2} \frac{f(\mathbf{x} + \mathbf{z})}{\|\mathbf{z}\|} d\mathbf{z}\end{aligned}$$

where $\mathbf{z} = (z_1, z_2)$ with $z_1 = -t \sin(\omega)$ and $z_2 = t \cos(\omega)$.

Filtered Backprojection – Part II

Next, by using polar coordinates we get:

$$\begin{aligned}\mathcal{R}^* \mathcal{R} f(\mathbf{x}) &= \int_0^\pi \int_{-\infty}^\infty f(\mathbf{x} + t\omega^\perp) dt d\omega \\ &= \int_0^{2\pi} \int_0^\infty \frac{f(\mathbf{x} + t\omega^\perp)}{t} t dt d\omega = \int_{\mathbb{R}^2} \frac{f(\mathbf{x} + \mathbf{z})}{\|\mathbf{z}\|} d\mathbf{z}\end{aligned}$$

where $\mathbf{z} = (z_1, z_2)$ with $z_1 = -t \sin(\omega)$ and $z_2 = t \cos(\omega)$.

Then, (with a trivial change of variables) we have:

$$\mathcal{R}^* \mathcal{R} f(\mathbf{x}) = \int_{\mathbb{R}^2} \frac{f(\mathbf{x} + \mathbf{z})}{\|\mathbf{z}\|} d\mathbf{z} = \int_{\mathbb{R}^2} \frac{f(\mathbf{z})}{\|\mathbf{x} - \mathbf{z}\|} d\mathbf{z} = (f * v)(\mathbf{x})$$

where $v(\mathbf{x}) = \frac{1}{\|\mathbf{x}\|}$ and $*$ denotes the convolution defined earlier.

Filtered Backprojection – Part III

Now, notice that $\hat{v}(\xi) = \frac{1}{|\xi|}$, therefore by applying the Fourier transform we get:

$$\mathcal{F}(\mathcal{R}^* \mathcal{R} f)(\xi) = \mathcal{F}(f * v)(\xi) = \hat{f}(\xi) \hat{v}(\xi) = \frac{\hat{f}(\xi)}{|\xi|}$$

Finally, by multiplying both sides by $|\xi|$ and applying the inverse Fourier transform, we end up with:

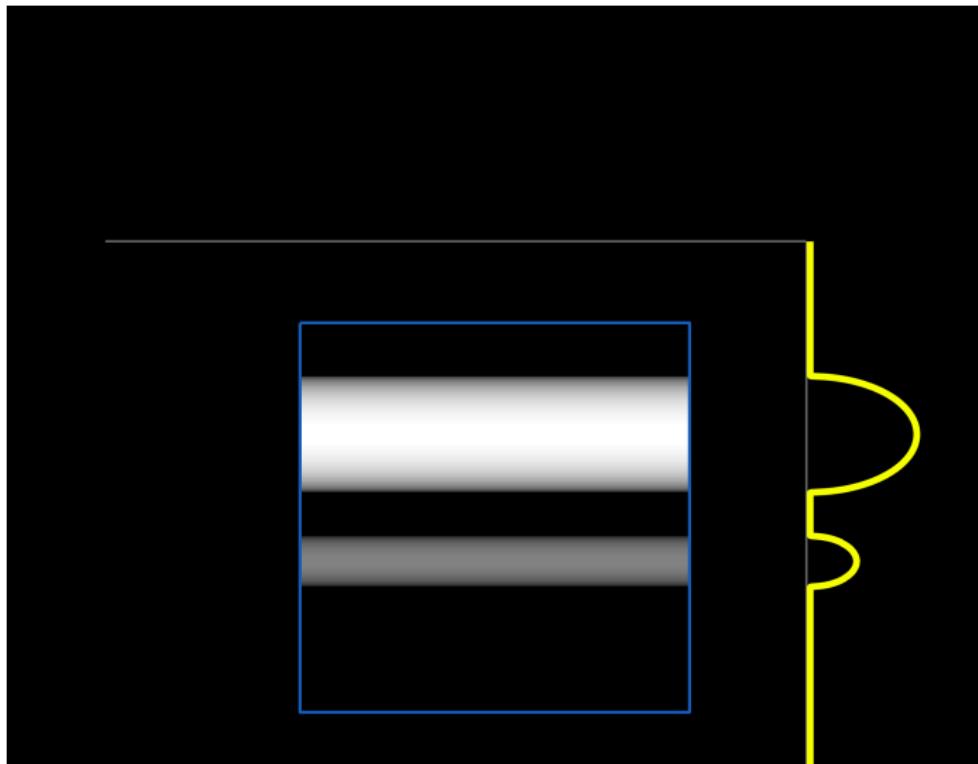
$$\Lambda \mathcal{R}^* \mathcal{R} f(\mathbf{x}) = \mathcal{F}^{-1}(|\xi| \mathcal{F}(\mathcal{R}^* \mathcal{R} f))(\mathbf{x}) = f(\mathbf{x}).$$

Hence, $\Lambda \mathcal{R}^*$ acts as a left inverse for the Radon transform \mathcal{R} , where

$$\Lambda \mathcal{R}^* = \mathcal{F}^{-1} |\xi| \mathcal{F} \mathcal{R}^*$$

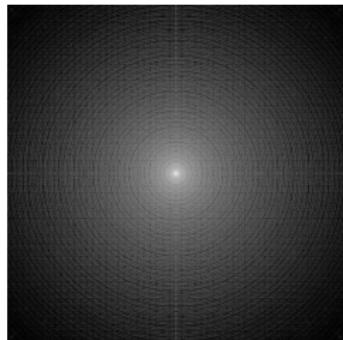
is the **Filtered Backprojection (FBP)** operator. Notice how the FBP operator leverages filtering on top of backprojecting the data: this allows to make singularities sharper.

FBP as Numerical Implementation of Radon Reconstruction Formula



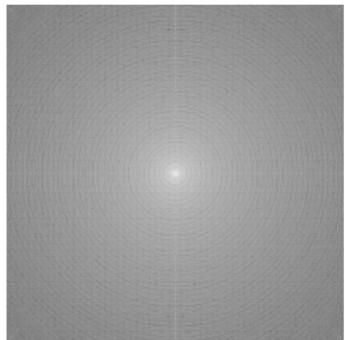
[Video credits: Samuli Siltanen]

FBP as Numerical Implementation of Radon Reconstruction Formula

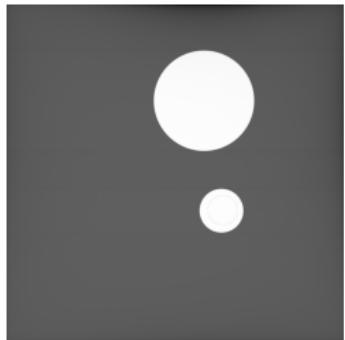


↑FFT

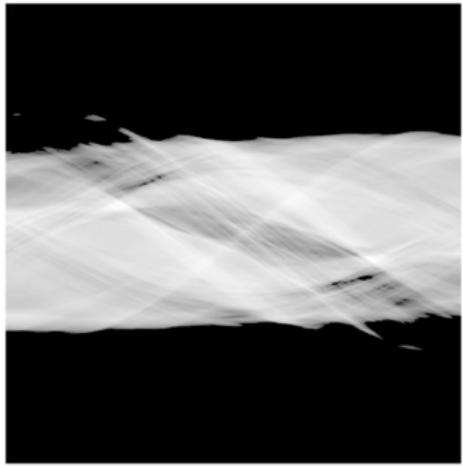
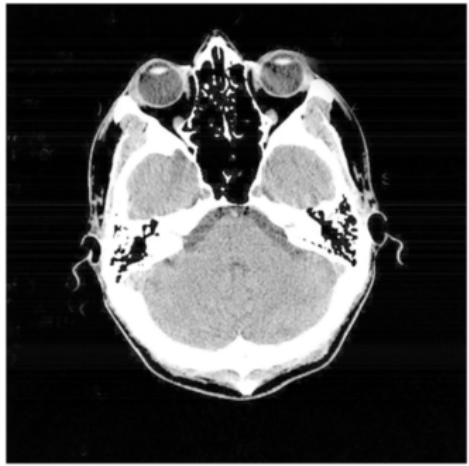
Multiplication with
bandlimited function



↓IFFT

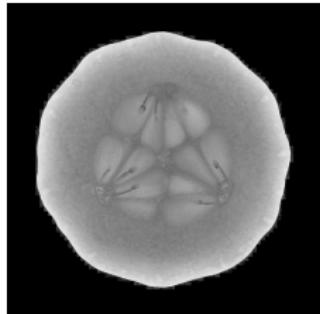


Standard FBP In Action

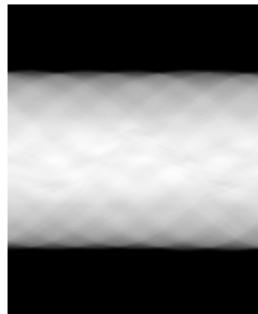


[Video credits: Samuli Siltanen]

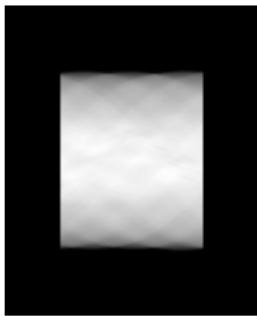
Why Do We Need Other Approaches Than FBP?



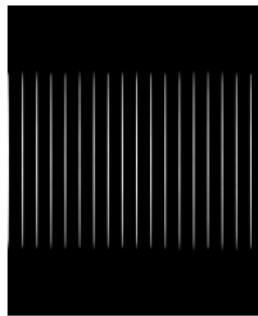
ground truth



Full angle data

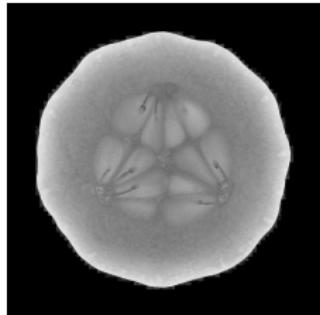


Limited-angle data

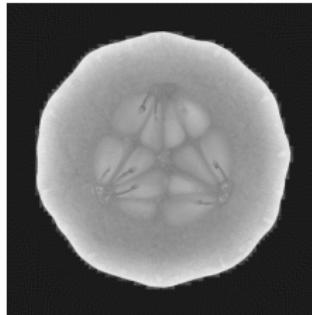


Sparse-angle data

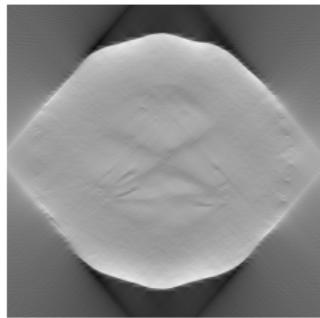
Why Do We Need Other Approaches Than FBP?



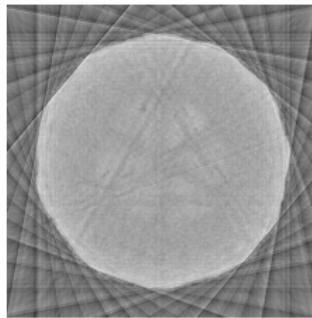
ground truth



FBP from full angle data



FBP from limited-angle data



FBP from sparse-angle data

Why Do We Need Other Approaches Than FBP?

Actually, FBP works well when:

- comprehensive projection data are available
- the target is (assumed) static

Why Do We Need Other Approaches Than FBP?

Actually, FBP works well when:

- comprehensive projection data are available
- the target is (assumed) static

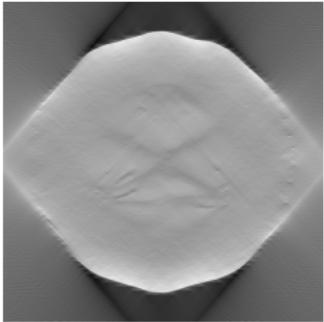
In many practical tomographic applications we wish to:

- lower the X-ray **radiation dose** \rightsquigarrow **Limited Data** tomography
- shorten the scanning **time**
- take into account **non-static** target \rightsquigarrow **Dynamic** tomography
and time-dependance of measurements

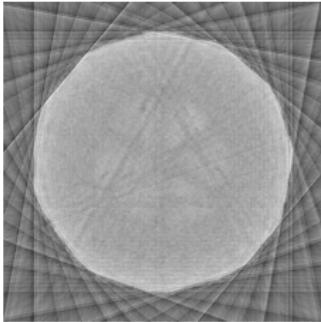
These are severely ill-posed problems and classical strategies like FBP not always suffice!

Limited Data Tomography

Notation: $\mathcal{R}_\Phi = \chi_{\Phi \times \mathbb{R}} \mathcal{R}$, with $\Phi \subset S^1$, denotes both limited data operators.



$$\Phi = [\Gamma, \pi - \Gamma]$$



$$\Phi = [\omega_1 - \eta, \omega_1 + \eta] \cup \dots \cup [\omega_N - \eta, \omega_N + \eta]$$

- ▶ Parts of the edges, associated with specific directions, do **not** appear in the reconstruction
- ▶ Some additional edges appear, along specific lines (**streak artifacts**)
- ▶ Theoretical explanation via **microlocal analysis**
(→ [MiniCourse 5 by Andras Vasy](#))

Microlocal Analysis - Summary

Studies the singularities in functions (e.g., edges in images). Some tools:

- **singular support:** the set of points x_0 near which f is not smooth;
- **wavefront set:** $\text{WF}(f)$ set of pairs (x_0, ξ_0) of locations of jumps and their normal directions.

How does an operator A perturb the singularities of f ?

- **Pseudo-differential op.** (Ψ DO) preserve singularities: $\text{WF}(Af) \subset \text{WF}(f)$
- **Fourier Integral op.** (FIO) can move singularities according to a canonical relation $\text{WF}(Af) \subset C(\text{WF}(f))$

Key examples:

- The Radon transform \mathcal{R} is a FIO (moves singularities along lines), but the normal operator $\mathcal{R}^* \mathcal{R}$ is a elliptic Ψ DO
- For the limited data Radon transform \mathcal{R}_Φ , theory of visibility principles (visible VS invisible singularities & streak artifacts)

Summary & Outlook

What we learned today:

- ▶ Radon transform as mathematical model of tomographic imaging
- ▶ Filtered Backprojection
- ▶ Limited data tomography

What I do not have time to talk about:

- ▶ Other geometries (fan beam)
- ▶ Extension to 3D geometries (cone beam, helical beam)
- ▶ Alternative FBP formulas and how to implement them

Up next:

- ▶ Discretization of the problem
- ▶ A splash of regularization theory of inverse problems

Some References

P.C. Hansen, J.S. Jørgensen and W.R.B. Lionheart (Eds.)

Computed Tomography: Algorithms, Insight, and Just Enough Theory
Society for Industrial and Applied Mathematics, 2021

Other classic books:

- ➡ Buzug: *Computed Tomography: From Photon Statistics to Modern Cone-Beam CT*, 2008
- ➡ Deans, *The Radon Transform and Some of Its Applications*, 1983
- ➡ Epstein, *Introduction to the mathematics of medical imaging*, 2008
- ➡ Kak & Slaney, *Principles of computerized tomographic imaging*, 1988
- ➡ Natterer, *The mathematics of computerized tomography*, 1986
- ➡ Natterer & Wübbeling, *Mathematical Methods in Image Reconstruction*, 2001