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(Rough) Outline

Lecture 1 – Monday 5th January

What is tomography? Just enough physics

A splash of theory on the Radon transform and Filtered Backprojection

Lecture 2 – Tuesday 6th January

Regularisation methods to solve (tomographic) inverse problems

A very fast wavelet tour (of signal processing)

Lecture 3 – Wednesday 7th January

Nods to convex optimization

Short introduction to learned reconstruction methods
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(Rough) Outline But With a Drawing

Tomographic Imaging

FBP & Singularities

Regularization

Deep learningWave- & Shearlets

Optimization

Inverse Probl. Modeling
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Modern CT Scanners
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Modern CT Scanners: Inside
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The Story Begins With Röntgen’s Discovery of X-rays

1895: Wilhelm Conrad Röntgen discovers X-rays

1901: Röntgen is awarded the Nobel Prize in Physics
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Several Decades Later . . .

1979: Godfrey Hounsfield (top) and Allan
McLeod Cormack receive the Nobel prize
for developing X-ray tomography.
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Nowadays: Deluge of Applications
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What is Computed Tomography?

Tomography: derives from tomos (a
section or slice) and graphos (to describe)

CT is a non-invasive device that provides
information about the inside of an object
by taking measurements from the outside
(indirect information).

At the core:

➤ Measurements are taken exploiting the transmission of waves or particles
(e.g., X-rays)

➤ The intensity of particles transmission is attenuated by the material
through which they travel
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In Practice: Experimental Imaging Setup

µCT system at University of Helsinki
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In Practice: Experimental Imaging Setup

detectorsource
sample
stage

Primary components of µCT system: source, target, detector
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In Practice: Experimental Imaging Setup

detectorsource
sample
stage

Source emits X-rays → passing through the target → measured by detector
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Toy Example: A Line Inside Homogeneous Matter

X-ray source

I0

I1 = I0 e
−µs

s

I0: initial intensity of the X-ray

s: length of the path of the X-ray inside the object (particles are assumed to
more or less travel in straight lines)

µ > 0: X-ray attenuation coefficient
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Toy Example: Two Homogeneous Blocks

X-ray
source

I0 I1 = I0 e
−µ1s1

s1

I0

I1

I2
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Toy Example: Two Homogeneous Blocks

X-ray
source

I0 I1 = I0 e
−µ1s1 I2 = I1 e

−µ2s2

s1 s2

I0

I1

I2I2
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Absorption in the Target: the Beer-Lambert Law

Homogeneous material:

I1 = I0 e−µs
µ

I0 I1

s

Non-homogeneous material:

I1 = I0 e−
∫
ℓ µ(x) dx

µ(x)

I0 I1

X-ray ℓ

In reality, to accurately describe the physical process an energy-dependent non-
linear integral model would be necessary:

I1 =

∫
I0(E) e−

∫
ℓ µ(E,x) dxdE

Usually, this energy-dependence is neglected and an effective absorption coeffi-
cient µeff(x) is assumed.
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Absorption in the Target: Energy Dependence

Homogeneous material:

I1 = I0 e−µs
µ

I0 I1

s

Non-homogeneous material:

I1 = I0 e−
∫
ℓ µ(x) dx

µ(x)

I0 I1

X-ray ℓ

In reality, to accurately describe the physical process an energy-dependent non-
linear integral model would be necessary:

I1 =

∫
I0(E) e−

∫
ℓ µ(E,x) dxdE

Usually, this energy-dependence is neglected and an effective absorption coeffi-
cient µeff(x) is assumed.
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Imaging at the Detector

The detector measures a resulting X-ray projection image:

➤ The most common energy integrating detectors (EIDs) provide a
monochromatic image

➤ Photon counting detectors (PCDs) can detect photons of different
energies and allow for multi-energy X-ray (nonlinear)
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Imaging at the Detector

The detector measures a resulting X-ray projection image:

➤ The most common energy integrating detectors (EIDs) provide a
monochromatic image

➤ Photon counting detectors (PCDs) can detect photons of different
energies and allow for multi-energy X-ray (nonlinear)

[Image credits: Willemink et al., Radiology, 2018]
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Transforming the Measurement for the Inverse Problem

The Beer-Lambert law connects the initial and final intensities of an X-ray:

I1 = I0 e−
∫
ℓ µ(x) dx ⇐⇒ − log

(
I1
I0

)
=

∫
ℓ

µ(x) dx

where − log(I1/I0) models the total attenuated energy according the
attenuation along the path ℓ.
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Transforming the Measurement for the Inverse Problem

The Beer-Lambert law connects the initial and final intensities of an X-ray:

I1 = I0 e−
∫
ℓ µ(x) dx ⇐⇒ − log

(
I1
I0

)
=

∫
ℓ

µ(x) dx

where − log(I1/I0) models the total attenuated energy according the
attenuation along the path ℓ.

Before obtaining processed measurements, need to compensate “detector noise”:
➤ Dark-field recorded with source off: detector offset count
➤ Flat-field with source on: the beam profile

[Der Sarkissian et al., Scientific Data, 2019]
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Transforming the Measurement for the Inverse Problem

The Beer-Lambert law connects the initial and final intensities of an X-ray:

I1 = I0 e−
∫
ℓ µ(x) dx ⇐⇒ − log

(
I1
I0

)
=

∫
ℓ

µ(x) dx

where − log(I1/I0) models the total attenuated energy according the
attenuation along the path ℓ.

As a result, during a tomographic scan:

➤ I0 is known from calibration and I1 from measurements

➤ I1 is measured along many lines ℓ(ω,s) to get many line integral values
through the object

➤ The intensity I1 is called the transmission, while the corresponding
− log(I1/I0) is called absorption or projection, and a collection of
projections is called a sinogram
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Beer-Lambert Law and Radon Transform

The problem of recovering the attenuation function (linearised measurement)
can be mathematically modelled by the Radon transform, which can be
understood as an integration of the function f : R2 → R+ over lines.

Through the identifications f(x) = µ(x) and R(f) = − log(I1/I0), the Beer-
Lambert law is connected to the Radon transform:

f(x1, x2)

x1

x2

s

ω

ω = (cosω, sinω)

R(f)(ω, s) =

∫ ∞

−∞
f(sω + τω⊥) dτ

=

∫
ℓ(ω,s)

f(x) dx,

where ℓ = ℓ(ω, s) = {x ∈ R2 : x = sω+τω⊥, τ ∈ R} with ω = (cos(ω), sin(ω))
and (ω, s) ∈ S1 × R.
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In Practice: How to Formulate CT as a Mathematical Problem

➤ We aim at imaging a target (e.g., human chest) f ∈ X = L2(Ω) with
f : Rd → R+ in a bounded domain Ω ∈ Rd, d = 2, 3.

➤ The process of emitting X-rays that travel through target f ∈ X is called
the forward problem/model (⇝ Radon transform).

➤ We then obtain the measured data y ∈ Y with the X-ray detector.

➤ Reconstructing f from the measured data y is then consequently the
inverse problem.

detector (y ∈ Y )

f ∈ X

Forward Problem

X-ray sources
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➤ We aim at imaging a target (e.g., human chest) f ∈ X = L2(Ω) with
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detector (y ∈ Y )detector (y ∈ Y )

rotate
f ∈ X

Forward Problem

R(f) = y
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In Practice: How to Formulate CT as a Mathematical Problem

➤ We aim at imaging a target (e.g., human chest) f ∈ X = L2(Ω) with
f : Rd → R+ in a bounded domain Ω ∈ Rd, d = 2, 3.

➤ The process of emitting X-rays that travel through target f ∈ X is called
the forward problem/model (⇝ Radon transform).

➤ We then obtain the measured data y ∈ Y with the X-ray detector.

➤ Reconstructing f from the measured data y is then consequently the
inverse problem.

detector (y ∈ Y )detector (y ∈ Y )

Inverse Problem

f = ?

X-ray sourcesX-ray sources

f = ?
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The Basic Linear Inverse Problem

The forward model can be stated as:

Af = yδ

where:

A : X → Y The linear forward operator
(defining the scanning geometry)

f ∈ X The unknown/quantity of interest
(linearised attenuation coefficient)

unknown/quantity of interest
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The Basic Linear Inverse Problem

The forward model can be stated as:

Af = yδ

where:

A : X → Y The linear forward operator
(defining the scanning geometry)

f ∈ X The unknown/quantity of interest
(linearised attenuation coefficient)

yδ ∈ Y Noisy measurement data
(sinogram)

ϵ ∈ Y Measurement noise (with ∥ϵ∥Y ≤ δ)

noisy measurement data

Inverse problem

Given noisy measurements yδ, determine f .
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Ill-Posedness and Hadamard’s Conditions

The problem

Given yδ, determine f with Af = yδ

is well-posed if the following conditions hold true
[Hadamard, 1903]:

1. A solution exists (surjectivity)

2. The solution is unique (injectivity)

3. The solution depends continuously on
the input (stability)

If one of these conditions fails, the problem is said
ill-posed.
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A splash of continuous theory: Radon transform

Recall the the Radon transform

y(ω, s) = R(f)(ω, s) =

∫
ℓ(ω,s)

f(x) dx

➤ It is dependent on an angle on the unit circle ω ∈ (0, 2π], with
ω = (cos(ω), sin(ω)), and a signed distance s ∈ R.

➤ dx denotes the one-dimensional (Lebesgue) measure along the line
ℓ(ω, s) = {x ∈ R2 : x · ω = s}, i.e., we only integrate over single lines
for each ω and s!

➤ The measurement y = R(f) is a function defined on the parametrization
of the infinite unit cylinder in R3:

C2 = {(ω, s) : ω ∈ [0, 2π), s ∈ R}.

➤ Notice that R(f)(ω, s) = R(f)(−ω,−s), so we can take ω ∈ (0, π].

Integrating over lines for each angle ω = (cos(ω), sin(ω)) for ω ∈ (0, π] results
in the sinogram.
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Boundedness of the Radon Transform

Given a linear operator A : X → Y between two Banach/Hilbert spaces, we say
that the operator is bounded, if there exists a constant C > 0 such that

∥Af∥Y ≤ C∥f∥X , for all f ∈ X.

The smallest such C is the operator norm ∥A∥op = ∥A∥X→Y = C. In particular,
a bounded linear operator is continuous.

Theorem

Let R be the Radon transform, Ω1 ⊂ R2 a bounded set and supp(f) ⊂ Ω1, so
that the integration reduces to ℓ(ω, s) ∩ Ω1. Then R is a bounded linear
operator from L2(Ω1) to L2(C2). That is, ∃ c > 0 such that:

∥Rf∥L2(C2) ≤ c∥f∥L2(Ω1), ∀ f ∈ L2(R2).
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The Adjoint Operator or Backprojection

The Radon transform defines the forward operator X → Y (image to
measurement), for reconstruction we also need a mapping from Y → X
(measurement to image).

For that purpose, we will first use the adjoint operator R∗, which is defined
through the inner product by the relationship:

⟨Rg, h⟩Y = ⟨g,R∗h⟩X , for all g ∈ X, h ∈ Y,

where the inner product is the inner product in L2(Ω) (where our image f is
defined), with Ω ⊂ R2:

⟨g, h⟩L2(Ω) =

∫
Ω

g(z)h(z)dz.

With this we can define the adjoint operator for the Radon transform, commonly
refereed to as backprojection.
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The Adjoint Operator or Backprojection

For the functions f(x), with x ∈ Ω ⊂ R2, and y(ω, s) with (ω, s) ∈ S1 × R,
the adjoint R∗ (called backprojection) of the Radon transform is given by:

(R∗y)(x) =

∫ π

0

y(ω,x · ω) dω

The adjoint R∗ is linear. It can be understood as taking all lines that go
through x and averaging their projection values:

[Image credits: Samuli Siltanen]
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Regularity of the Radon Transform

Theorem [2.10 with n = 2, α = 0, Natterer & Wübbeling 2001]

Let f ∈ L2(Ω1), then there exist two constants c, c′ > 0 such that

c∥f∥L2(Ω1)
≤ ∥Rf∥H1/2(C2) ≤ c′∥f∥L2(Ω1)

.

Roughly speaking, the Radon transform is a continuous linear operator from
L2(Ω1) to H1/2(C2) and hence Rf is smoother than f by half a derivative.

A similar result holds for the backprojection, which means that the projection of
f followed by a backprojection, i.e. R∗Rf , smooths f by a full derivative.

f Rf R∗Rf
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Ill-Posedness of the Radon Transform

✓ Injectivity. We have the following result:

Theorem

Let S0 ⊂ S1 be a set of infinite many directions and let f ∈ L2(Ω1). If
(Rf)(ω, ·) = 0 for every ω ∈ S0, then f = 0.

✗ Surjectivity.

✗ Stability. The range of the Radon transform is open so there is no
stability.

Tatiana Bubba Mathematics of X-ray Computed Tomography IPPhys2026



Ill-Posedness of the Radon Transform

✓ Injectivity. We have the following result:

Theorem

Let S0 ⊂ S1 be a set of infinite many directions and let f ∈ L2(Ω1). If
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Caveat!

This is not true for finitely many directions!! Which means, this does
not hold in the discrete case!
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Ill-Posedness of the Radon Transform

✓ Injectivity. The infinite dimensional Radon transform is injective.

✗ Surjectivity. The range of R is an infinite dimensional proper subspace
(i.e., H1/2(C2)) of L2(C2) (see again Theorem 2.10 in [Natterer &
Wübbeling 2001]).

This means that we do not have surjectivity for R : L2(Ω1) → L2(C2).

Moreover:

Corollary

The Radon transform is a compact operator with infinite-dimensional
range and hence it has an open range in L2(C2).

✗ Stability. The range of the Radon transform is open so there is no
stability.
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Can We Invert the Radon Transform?

Johann Radon (1887-1956)

How to reconstruct a function from its line
integrals:

f(P ) = − 1

π

∫ ∞

0

dFp(q)

q

[from Johann Radon’s 1917 Seminal Paper]
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Radon’s Inversion Formula: Modern Version

Let f : Ω → R and y = Rf then, for x ∈ Ω ⊂ R2, f can be obtained as:

f(x) =
1

4π2

∫ π

0

∫
R

∂sy(ω, s)

x · ω − s
ds dω

with ω = (cos(ω), sin(ω)).

Note: Practical reconstructions are not directly based on this formulation.
However, similar ingredients are found:

➤ Integration over s with a function (x · ω − s)−1 ⇝ Convolution

➤ Integration over ω ⇝ Backprojection
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Convolution Theorem for the Radon Transform

Recall that given two functions h, k : Rn → R:

(h ∗ k)(u) =
∫
Rn

h(z)k(u− z) dz =

∫
Rn

h(u− z)k(z) dz

The convolution theorem establishes a connection to the Fourier transform:

F(h ∗ k)(ξ) = ĥ(ξ)k̂(ξ)

Convolution in image space = Multiplication in Fourier space

In fact, we can use convolutions to establish a connection between backprojected
data and image space.

Radon Convolution Theorem

Let v : C2 → R and f : Ω → R, then we have:

(R∗v) ∗ f = R∗(v ∗ Rf)

Conv. with BP kernel in image space = BP of conv. in data space
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Filtered Backprojection – Part I

x1

x2

x

x′

s
(x · ω)ω

ω

ω = (cosω, sinω)

First of all, notice that for each
z ∈ R2, we have:

∃ τ ∈ R s.t. (x · ω)ω + τω⊥ = x′

⇒ ∃ t ∈ R s.t. x+ tω⊥ = x′

Then, let’s start by computing R∗Rf :

R∗Rf(x) =

∫ π

0

Rf(ω,x · ω) dω =

∫ π

0

∫ ∞

−∞
f((x · ω)ω + τω⊥) dτdω

=

∫ π

0

∫ ∞

−∞
f(x+ tω⊥)dtdω
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Filtered Backprojection – Part II

Next, by using polar coordinates we get:

R∗Rf(x) =

∫ π

0

∫ ∞

−∞
f(x+ tω⊥)dtdω

=

∫ 2π

0

∫ ∞

0

f(x+ tω⊥)

t
t dtdω =

∫
R2

f(x+ z)

∥z∥ dz

where z = (z1, z2) with z1 = −t sin(ω) and z2 = t cos(ω).

Then, (with a trivial change of variables) we have:

R∗Rf(x) =

∫
R2

f(x+ z)

∥z∥ dz =

∫
R2

f(z)

∥x− z∥ dz = (f ∗ v)(x)

where v(x) = 1
∥x∥ and ∗ denotes the convolution defined earlier.
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Filtered Backprojection – Part III

Now, notice that v̂(ξ) = 1
|ξ| , therefore by applying the Fourier transform we get:

F(R∗Rf)(ξ) = F(f ∗ v)(ξ) = f̂(ξ)v̂(ξ) =
f̂(ξ)

|ξ|

Finally, by multiplying both sides by |ξ| and applying the inverse Fourier trans-
form, we end up with:

ΛR∗Rf(x) = F−1(|ξ|F(R∗Rf))(x) = f(x).

Hence, ΛR∗ acts as a left inverse for the Radon transform R, where

ΛR∗ = F−1|ξ|FR∗

is the Filtered Backprojection (FBP) operator. Notice how the FBP operator
leverages filtering on top of backprojecting the data: this allows to make
singularities sharper.
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FBP as Numerical Implementation of Radon Reconstruction Formula

[Video credits: Samuli Siltanen]
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FBP as Numerical Implementation of Radon Reconstruction Formula

Multiplication with

bandlimited function

FFT IFFT
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Standard FBP In Action

[Video credits: Samuli Siltanen]
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Why Do We Need Other Approaches Than FBP?

ground truth Full angle data

Limited-angle data Sparse-angle data

FBP from full angle data

FBP from limited-angle data FBP from sparse-angle data
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Why Do We Need Other Approaches Than FBP?

Actually, FBP works well when:

➤ comprehensive projection data are available

➤ the target is (assumed) static

In many practical tomographic applications we wish to:

➤ lower the X-ray radiation dose

➤ shorten the scanning time

➤ take into account non-static target
and time-dependance of measurements

⇝

⇝

Limited Data tomography

Dynamic tomography

These are severely ill-posed problems and classical strategies like FBP not always
suffice!
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Limited Data Tomography

Notation: RΦ = χΦ×RR, with Φ ⊂ S1, denotes both limited data operators.

Φ = [Γ, π − Γ] Φ = [ω1−η, ω1+η] ∪ . . . ∪ [ωN−η, ωN+η]

➤ Parts of the edges, associated with specific directions, do not appear in
the reconstruction

➤ Some additional edges appear, along specific lines (streak artifacts)

➤ Theoretical explanation via microlocal analysis
(→ MiniCourse 5 by Andras Vasy)
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Microlocal Analysis - Summary

Studies the singularities in functions (e.g., edges in images). Some tools:

singular support: the set of points x0 near which f is not smooth;

wavefront set: WF(f) set of pairs (x0, ξ0) of locations of jumps and their
normal directions.

How does an operator A perturb the singularities of f?

Pseudo-differential op. (ΨDO) preserve singularities: WF(Af)⊂WF(f)

Fourier Integral op. (FIO) can move singularities according to a
canonical relation WF(Af)⊂C(WF(f))

Key examples:

➤ The Radon transform R is a FIO (moves singularities along lines), but the
normal operator R∗R is a elliptic ΨDO

➤ For the limited data Radon transform RΦ, theory of visibility principles
(visible VS invisible singularities & streak artifacts)
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Summary & Outlook

What we learned today:

➤ Radon transform as mathematical model of tomographic imaging

➤ Filtered Backprojection

➤ Limited data tomography

What I do not have time to talk about:

➤ Other geometries (fan beam)

➤ Extension to 3D geometries (cone beam, helical beam)

➤ Alternative FBP formulas and how to implement them

Up next:

➤ Discretization of the problem

➤ A splash of regularization theory of inverse problems
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