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(Rough) Outline

Lecture 1 — Monday 5% January
o What is tomography? Just enough physics

@ A splash of theory on the Radon transform and Filtered Backprojection

Lecture 2 — Tuesday 6™ January
@ Regularisation methods to solve (tomographic) inverse problems

@ A very fast wavelet tour (of signal processing)

Lecture 3 — Wednesday 7" January
@ Nods to convex optimization

@ Short introduction to learned reconstruction methods
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(Rough) Outline But With a Drawing

Inverse Probl. Modeling

FBP & Singularities Optimization

Tomographic magng

Deep learning

Wave- & Shearlets

Regularization
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Modern CT Scanners
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Modern CT Scanners: Inside

Tatiana Bubba ics of X-ray C T 1PPhys2026




The Story Begins With Rontgen’s Discovery of X-rays

1895: Wilhelm Conrad Rontgen discovers X-rays
1901: Rontgen is awarded the Nobel Prize in Physics
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Several Decades Later ...

1979: Godfrey Hounsfield (top) and Allan
McLeod Cormack receive the Nobel prize
for developing X-ray tomography.
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Nowadays: Deluge of Applications
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What is Computed Tomography?

What's
inside?

Tomography: derives from tomos (a
section or slice) and graphos (to describe) J

CT is a non-invasive device that provides
information about the inside of an object
by taking measurements from the outside
(indirect information).
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What is Computed Tomography?

Tomography: derives from tomos (a
section or slice) and graphos (to describe) J

CT is a non-invasive device that provides
information about the inside of an object
by taking measurements from the outside
(indirect information).

At the core:

» Measurements are taken exploiting the transmission of waves or particles
(e.g., X-rays)

» The intensity of particles transmission is attenuated by the material
through which they travel
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In Practice: Experimental Imaging Setup

uCT system at University of Helsinki
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In Practice: Experimental Imaging Setup

Primary components of uCT system: source, target, detector
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In Practice: Experimental Imaging Setup

Source emits X-rays — passing through the target — measured by detector
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Toy Example: A Line Inside Homogeneous Matter

X-ray source I =Ipe "

lo

S

Io: initial intensity of the X-ray

s: length of the path of the X-ray inside the object (particles are assumed to
more or less travel in straight lines)

> 0: X-ray attenuation coefficient
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Toy Example: Two Homogeneous Blocks

[O Il = I() e_’“sl

X-ray
source

Io

I

+
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Toy Example: Two Homogeneous Blocks

1o

X-ray
source

Io
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Absorption in the Target: the Beer-Lambert Law

Homogeneous material:

ID Il
_ —us v
Il = Io e o
—
S
Non-homogeneous material:
I
I = Iy e Jen@ de To !
X-ray £ H(I)
of X-ray Ci T p
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Absorption in the Target: Energy Dependence

Homogeneous material:

I[) Il

Il = IO 6_'“8 n

—>
S
Non-homogeneous material:
I
I =1y e~ Jen(@)de o '
w(z)

In reality, to accurately describe the physical process an energy-dependent non-
linear integral model would be necessary:

Il = /IQ(E) e fz#(E,z)dde

Usually, this energy-dependence is neglected and an effective absorption coeffi-
cient pef(x) is assumed.
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Imaging at the Detector

The detector measures a resulting X-ray projection image:

» The most common energy integrating detectors (EIDs) provide a
monochromatic image
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Imaging at the Detector

The detector measures a resulting X-ray projection image:

» The most common energy integrating detectors (EIDs) provide a
monochromatic image

» Photon counting detectors (PCDs) can detect photons of different
energies and allow for multi-energy X-ray (nonlinear)

A X B : :
I irge ¢ I
|
|
Al " a?l.,’a
v d Semiconducior o e
- ] e
e ]
o 00
Indiract conversion to electrical signal Diract conversion to elactrical signal

[Image credits: Willemink et al., Radiology, 2018]
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Transforming the Measurement for the Inverse Problem

The Beer-Lambert law connects the initial and final intensities of an X-ray:

6L =1 6_f‘“(m)dm <~ —10g(%) = /N(J/’)dl’
0 Je

where —log(I1/1o) models the total attenuated energy according the
attenuation along the path /.
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Transforming the Measurement for the Inverse Problem

The Beer-Lambert law connects the initial and final intensities of an X-ray:

6L =1 6_f‘“(m)dm <~ —10g(%) = /N(J/’)dl’
0 Je

where —log(I1/1o) models the total attenuated energy according the
attenuation along the path /.

Before obtaining processed measurements, need to compensate “detector noise”:
» Dark-field recorded with source off: detector offset count
» Flat-field with source on: the beam profile

ol

ol

[Der Sarkissian et al., Scientific Data, 2019]
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Transforming the Measurement for the Inverse Problem

The Beer-Lambert law connects the initial and final intensities of an X-ray:
— Jy n(=) do (5L '
Iy =Ipe ¢ = — log 7= w(z) dx
0 Je

where —log(I1/1o) models the total attenuated energy according the
attenuation along the path /.

As a result, during a tomographic scan:
» Ip is known from calibration and I; from measurements

» I, is measured along many lines /(. ;) to get many line integral values
through the object

» The intensity I; is called the transmission, while the corresponding
—log(I1/Io) is called absorption or projection, and a collection of
projections is called a sinogram

Tatiana Bubba Mat ics of X-ray C T

y 1PPhys2026



Beer-Lambert Law and Radon Transform

can be mathematically modelled by the Radon transform, which can be

The problem of recovering the attenuation function (linearised measurement)
understood as an integration of the function f : R? — R, over lines. J

Through the identifications f(x) = p(x) and R(f) = —log(l1/lv), the Beer-
Lambert law is connected to the Radon transform:

T2 w = (cosw, sinw)

f(@1,22) /
= f(z) de
l(w,s) ’

where £ = f(w,s) = {x € R? : & = sw+Tw™, T € R} with w = (cos(w), sin(w))
and (w,s) € S' x R.
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In Practice: How to Formulate CT as a Mathematical Problem

» We aim at imaging a target (e.g., human chest) f € X = L*(Q) with
f:R? > R, in a bounded domain Q € R?, d = 2,3.
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In Practice: How to Formulate CT as a Mathematical Problem

» We aim at imaging a target (e.g., human chest) f € X = L*(Q) with
f:R? > R, in a bounded domain Q € R?, d = 2,3.

» The process of emitting X-rays that travel through target f € X is called
the forward problem/model (~~ Radon transform).

X-ray sources

N

Forward Problem

R(f)
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=
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In Practice: How to Formulate CT as a Mathematical Problem

» We aim at imaging a target (e.g., human chest) f € X = L*(Q) with
f:R? > R, in a bounded domain Q € R?, d = 2,3.

» The process of emitting X-rays that travel through target f € X is called
the forward problem/model (~~ Radon transform).

» We then obtain the measured data y € Y with the X-ray detector.

X-ray sources
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detector (y € Y)

Forward Problem

R(f) =y
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In Practice: How to Formulate CT as a Mathematical Problem
» We aim at imaging a target (e.g., human chest) f € X = L*(Q) with
f:RY = R, in a bounded domain Q € R¢, d =2, 3.

» The process of emitting X-rays that travel through target f € X is called
the forward problem/model (~~ Radon transform).

» We then obtain the measured data y € Y with the X-ray detector.
» Reconstructing f from the measured data y is then consequently the

inverse problem.

X-ray sources

Inverse Problem

Al 1 — 7

detector (y € Y)
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The Basic Linear Inverse Problem

The forward model can be stated as:
Af =y’
where:

A:X —Y The linear forward operator
(defining the scanning geometry)

f € X  The unknown/quantity of interest
(linearised attenuation coefficient)
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The Basic Linear Inverse Problem

The forward model can be stated as:

where:

A: X =Y
fex
yeyY

Tatiana Bubba

Af =y’

The linear forward operator
(defining the scanning geometry)

The unknown/quantity of interest
(linearised attenuation coefficient)

Measurement data
(sinogram)
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The Basic Linear Inverse Problem

The forward model can be stated as:

where:

A: X =>Y
feX
y‘sGY
ecY

Tatiana Bubba

Af=4°

The linear forward operator
(defining the scanning geometry)

The unknown/quantity of interest
(linearised attenuation coefficient)

Noisy measurement data
(sinogram)

Measurement noise (with ||e|ly < 9)
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The Basic Linear Inverse Problem

The forward model can be stated as:

where:

A: X =>Y
feX
y‘sGY
ecY

Af=4°

The linear forward operator
(defining the scanning geometry)

The unknown/quantity of interest
(linearised attenuation coefficient)

Noisy measurement data
(sinogram) noisy measurement data

Measurement noise (with ||e|ly < 9)

Inverse problem

Given noisy measurements y°, determine f. J

Tatiana Bubba
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lll-Posedness and Hadamard’s Conditions

The problem
Given y°, determine f with Af =°

is well-posed if the following conditions hold true
[Hadamard, 1903]:

1. A solution exists (surjectivity)
2. The solution is unique (injectivity)

3. The solution depends continuously on
the input (stability)

If one of these conditions fails, the problem is said
ill-posed.
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A splash of continuous theory: Radon transform

Recall the the Radon transform

y(w,5) = R(f)(w, ) = / f(x) d

l(w,s)

> It is dependent on an angle on the unit circle w € (0, 2], with
w = (cos(w), sin(w)), and a signed distance s € R.

» dx denotes the one-dimensional (Lebesgue) measure along the line
l(w,s) ={x € R? : & -w=s},ie., weonly integrate over single lines
for each w and s!

» The measurement y = R(f) is a function defined on the parametrization
of the infinite unit cylinder in R3:

C? ={(w,s) : we0,27), s € R}.

» Notice that R(f)(w,s) = R(f)(—w, —s), so we can take w € (0, 7].
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A splash of continuous theory: Radon transform

Recall the the Radon transform

y(w,5) = R(f)(w, ) = / f(x) d

l(w,s)

> It is dependent on an angle on the unit circle w € (0, 2], with
w = (cos(w), sin(w)), and a signed distance s € R.

» dx denotes the one-dimensional (Lebesgue) measure along the line
l(w,s) ={x € R? : & -w=s},ie., weonly integrate over single lines
for each w and s!

» The measurement y = R(f) is a function defined on the parametrization
of the infinite unit cylinder in R3:

C? ={(w,s) : we0,27), s € R}.

» Notice that R(f)(w,s) = R(f)(—w, —s), so we can take w € (0, 7].

Integrating over lines for each angle w = (cos(w), sin(w)) for w € (0, 7| results
in the sinogram. J
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Boundedness of the Radon Transform

Given a linear operator A : X — Y between two Banach/Hilbert spaces, we say
that the operator is bounded, if there exists a constant C' > 0 such that

[Aflly <Cllfllx,  forall feX.

The smallest such C'is the operator norm || Allep = ||A||x—y = C. In particular,
a bounded linear operator is continuous.
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Boundedness of the Radon Transform

Given a linear operator A : X — Y between two Banach/Hilbert spaces, we say
that the operator is bounded, if there exists a constant C' > 0 such that

[Aflly <Cllfllx,  forall feX.

The smallest such C'is the operator norm || Allep = ||A||x—y = C. In particular,
a bounded linear operator is continuous.

Theorem

Let R be the Radon transform, 1 C R? a bounded set and supp(f) C Q1, so
that the integration reduces to £(w, s) N 1. Then R is a bounded linear
operator from L?(Q;) to L?(C?). That is, 3 ¢ > 0 such that:

IRfllL2c2y < cllfllzcay)s vV fe L2(R2)-
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The Adjoint Operator or Backprojection

The Radon transform defines the forward operator X — Y (image to
measurement), for reconstruction we also need a mapping from Y — X
(measurement to image).
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The Adjoint Operator or Backprojection

The Radon transform defines the forward operator X — Y (image to
measurement), for reconstruction we also need a mapping from Y — X
(measurement to image).

For that purpose, we will first use the adjoint operator R*, which is defined
through the inner product by the relationship:

(Rg,h)y = {g,R"h)x, forall ge X, hey,

where the inner product is the inner product in L?*(Q) (where our image f is
defined), with Q C R*:

(9, h) L2 =/Qg(z)h(z)dz.
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The Adjoint Operator or Backprojection

The Radon transform defines the forward operator X — Y (image to
measurement), for reconstruction we also need a mapping from Y — X
(measurement to image).

For that purpose, we will first use the adjoint operator R*, which is defined
through the inner product by the relationship:

(Rg,h)y = {g,R"h)x, forall ge X, hey,

where the inner product is the inner product in L?*(Q) (where our image f is
defined), with Q C R*:

(9, h) L2 =/Qg(z)h(z)dz.

With this we can define the adjoint operator for the Radon transform, commonly
refereed to as backprojection.
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The Adjoint Operator or Backprojection

For the functions f(x), with € Q C R?, and y(w, s) with (w,s) € S* x R,
the adjoint R* (called backprojection) of the Radon transform is given by:

Rp@ = [ vw.2-w) do

The adjoint R™ is linear. It can be understood as taking all lines that go
through @ and averaging their projection values:

[Image credits: Samuli Siltanen]
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The Adjoint Operator or Backprojection

For the functions f(x), with € Q C R?, and y(w, s) with (w,s) € S* x R,
the adjoint R* (called backprojection) of the Radon transform is given by:

Rp@ = [ vw.2-w) do

The adjoint R™ is linear. It can be understood as taking all lines that go
through @ and averaging their projection values:

\/V{\

[Image credits: Samuli Siltanen]
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The Adjoint Operator or Backprojection

For the functions f(x), with € Q C R?, and y(w, s) with (w,s) € S* x R,
the adjoint R* (called backprojection) of the Radon transform is given by:

Rp@ = [ ywe-w) do

The adjoint R™ is linear. It can be understood as taking all lines that go
through @ and averaging their projection values:

e

[Image credits: Samuli Siltanen]
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The Adjoint Operator or Backprojection

For the functions f(x), with € Q C R?, and y(w, s) with (w,s) € S* x R,
the adjoint R* (called backprojection) of the Radon transform is given by:
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The Adjoint Operator or Backprojection

For the functions f(x), with € Q C R?, and y(w, s) with (w,s) € S* x R,
the adjoint R* (called backprojection) of the Radon transform is given by:
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Regularity of the Radon Transform
Theorem [2.10 with n = 2, o = 0, Natterer & Wiibbeling 2001]

Let f € L?(£1), then there exist two constants ¢, ¢/ > 0 such that

cllfllize@ny < NIRFlgrzezy < Ellfllz2 @)

Roughly speaking, the Radon transform is a continuous linear operator from
L?(1) to HY?(C?) and hence R is smoother than f by half a derivative.
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Regularity of the Radon Transform
Theorem [2.10 with n = 2, o = 0, Natterer & Wiibbeling 2001]

Let f € L*(Q1), then there exist two constants ¢, ¢’ > 0 such that

CHfHL?(Ql) < ||Rf||H1/2(02) < C/Hf||L2(Ql)~

Roughly speaking, the Radon transform is a continuous linear operator from
L?(1) to HY?(C?) and hence R is smoother than f by half a derivative.

A similar result holds for the backprojection, which means that the projection of
f followed by a backprojection, i.e. R*Rf, smooths f by a full derivative.

_
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lll-Posedness of the Radon Transform

v Injectivity. We have the following result:

Theorem

Let So C S* be a set of infinite many directions and let f € L*(Q4). If
(Rf)(w,-) =0 for every w € So, then f = 0.
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lll-Posedness of the Radon Transform

v/ Injectivity. We have the following result:

Theorem

Let So C S* be a set of infinite many directions and let f € L*(Q4). If
(Rf)(w,-) =0 for every w € So, then f = 0.

However:

Caveat!

This is not true for finitely many directions!! Which means, this does
not hold in the discrete case!
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lll-Posedness of the Radon Transform

v/ Injectivity. The infinite dimensional Radon transform is injective.

X Surjectivity. The range of R is an infinite dimensional proper subspace
(i.e., HY?(C?)) of L?(C?) (see again Theorem 2.10 in [Natterer &
Wiibbeling 2001]).

This means that we do not have surjectivity for R : L*(€2;) — LQ(C2).J
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lll-Posedness of the Radon Transform

Injectivity. The infinite dimensional Radon transform is injective.

X Surjectivity. The range of R is an infinite dimensional proper subspace
(i.e., HY?(C?)) of L?(C?) (see again Theorem 2.10 in [Natterer &
Wiibbeling 2001]).

This means that we do not have surjectivity for R : L*(€2;) — LQ(C2).J

Moreover:

Corollary

The Radon transform is a compact operator with infinite-dimensional
range and hence it has an open range in L?(C?).

X Stability. The range of the Radon transform is open so there is no
stability.
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lll-Posedness of the Radon Transform

Injectivity. The infinite dimensional Radon transform is injective.

X Surjectivity. The Range is a proper subspace (i.e., Hl/Q(CQ)) of L*(C?)
and hence the Radon transform is not surjective.

X Stability. The range of the Radon transform is open so there is no
stability.
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Can We Invert the Radon Transform?

How to reconstruct a function from its line

integrals:
__1 [T dFq)
)= [

SITZUNG VOM 30. APRIL 1917.
Uber die Bestimmung von Funktionen durch ihre
Integralwerte lings gewisser Mannigfaltigkeiten.
Von

Jouaxx Rapox.

Satz IT1: Der Wert von f ist durch F cindeutig bestimmt und
Vit sich folgendermafen berechnen:

5 0
() f(B) = — L / "c(’
s

Johann Radon (1887-1956) [from Johann Radon’s 1917 Seminal Paper]
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Radon’s Inversion Formula: Modern Version

Let f: Q — R and y = Rf then, for x € Q C R?, f can be obtained as:

Osy(w, 5)
fle) = 47r2 / o s ds dw

with w = (cos(w), sin(w)).

Note: Practical reconstructions are not directly based on this formulation.

However, similar ingredients are found:

—1

> Integration over s with a function (z -w —s)”" ~» Convolution

» Integration over w ~~ Backprojection
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Convolution Theorem for the Radon Transform

Recall that given two functions h, k: R" — R:

(hxk)(u) = h(z)k(u — z) dz = h(u — 2)k(z) dz

R”" R"™

The convolution theorem establishes a connection to the Fourier transform:

F(h*k)(€) = h(&k(E)

Convolution in image space = Multiplication in Fourier space
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Convolution Theorem for the Radon Transform

Recall that given two functions h, k: R" — R:

(h*k)(u) = h(z)k(u —z) dz = h(u — z)k(z) dz

R” R"

The convolution theorem establishes a connection to the Fourier transform:

F(h*k)(€) = h(&k(E)

Convolution in image space = Multiplication in Fourier space

In fact, we can use convolutions to establish a connection between backprojected
data and image space.

Radon Convolution Theorem

Let v: C? > R and f:Q — R, then we have:

(R*v) * f = R*(v*Rf)
Conv. with BP kernel in image space = BP of conv. in data space
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Filtered Backprojection — Part |

T2 w = (cosw, sinw)
\_—7.

First of all, notice that for each
z € R?, we have:

JreRst (¢ ww+Tw" =’

(- w)w = JteRst x+itw =2

x1
&’

Then, let’s start by computing R*R f:

R'Rf(z /wamw /
/

(- w)w+ Tw™) drdw

f s
/ (@ + tw™ ) dtdw

88
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Filtered Backprojection — Part Il

Next, by using polar coordinates we get:
R*Rf(x) :/ / f(@ + tw™)dtdw
0 —o0
27 o 1
:/ / f(Ltw)tdtdw:/ flztz) .
o Jo t R2

(]

where z = (21, z2) with 21 = —tsin(w) and z2 = t cos(w).
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Filtered Backprojection — Part Il

Next, by using polar coordinates we get:

R*Rf(x // Flx + tw™b)dtdw

27
:/ / [zt tw) tdtdw:/ fatz),,
o Jo t R =]l

2
where z = (21, z2) with 21 = —tsin(w) and z2 = t cos(w).

Then, (with a trivial change of variables) we have:

RERf () = Mdz:/R )~ () (@)

z2[l=]l 2 [l — z]|

where v(z) = m and * denotes the convolution defined earlier.
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Filtered Backprojection — Part Il

Now, notice that ¥(§) = il therefore by applying the Fourier transform we get:

FRRAE) = F(f 5 0)(©) = f(e)0(e) = £

Finally, by multiplying both sides by |£| and applying the inverse Fourier trans-
form, we end up with:

AR'Rf(x) = F (€| F(R*R)) (@) = f ().

Hence, AR acts as a left inverse for the Radon transform R, where
AR* = F ' ¢|FR”

is the Filtered Backprojection (FBP) operator. Notice how the FBP operator
leverages filtering on top of backprojecting the data: this allows to make
singularities sharper.

Tatiana Bubba Mat ics of X-ray C T y IPPhys2026




FBP as Numerical Implementation of Radon Reconstruction Formula

[Video credits: Samuli Siltanen]
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FBP as Numerical Implementation of Radon Reconstruction Formula

Multiplication with

bandlimited function
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Standard FBP In Action

[Video credits: Samuli Siltanen]
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Why Do We Need Other Approaches Than FBP?

ground truth Full angle data

Limited-angle data Sparse-angle data
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Why Do We Need Other Approaches Than FBP?

ground truth FBP from full angle data

FBP from limited-angle data  FBP from sparse-angle data
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Why Do We Need Other Approaches Than FBP?

Actually, FBP works well when:
» comprehensive projection data are available

> the target is (assumed) static
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Why Do We Need Other Approaches Than FBP?

Actually, FBP works well when:
» comprehensive projection data are available

> the target is (assumed) static

In many practical tomographic applications we wish to:
» lower the X-ray radiation dose .
W y radiatt ~ Limited Data tomography
» shorten the scanning time
» take into account non-static target ~ Dynamic tomography
and time-dependance of measurements

These are severely ill-posed problems and classical strategies like FBP not always
suffice!
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Limited Data Tomography

Notation: Rs = yaxrR, with & C S!, denotes both limited data operators.

®=[Inm—T] P = [wi—n,wi+n|U...U[wy—n,wn+7]

» Parts of the edges, associated with specific directions, do not appear in
the reconstruction

» Some additional edges appear, along specific lines (streak artifacts)

» Theoretical explanation via microlocal analysis
(— MiniCourse 5 by Andras Vasy)

ics of X-ray C Te IPPhys2026
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Microlocal Analysis - Summary

Studies the singularities in functions (e.g., edges in images). Some tools:
o singular support: the set of points xo near which f is not smooth;

o wavefront set: WF(f) set of pairs (zo, o) of locations of jumps and their
normal directions.

How does an operator A perturb the singularities of f7
o Pseudo-differential op. (¥DO) preserve singularities: WF(Af)C WE(f)

o Fourier Integral op. (FIO) can move singularities according to a
canonical relation WF(Af)CC(WF(f))

Key examples:

» The Radon transform R is a FIO (moves singularities along lines), but the
normal operator R*R is a elliptic ¥DO

» For the limited data Radon transform R, theory of visibility principles
(visible VS invisible singularities & streak artifacts)
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Summary & Outlook

What we learned today:
» Radon transform as mathematical model of tomographic imaging
» Filtered Backprojection
» Limited data tomography

What | do not have time to talk about:
» Other geometries (fan beam)
» Extension to 3D geometries (cone beam, helical beam)

» Alternative FBP formulas and how to implement them

Up next:
» Discretization of the problem

» A splash of regularization theory of inverse problems
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