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Brief Recap: The Tomographic Inverse Problem

Recall the tomographic inverse problem:

given noisy measurements yδ = Rf, determine f

where R : X → Y is the Radon transform (linear forward operator), f ∈ X is
the unknown (quantity of interest), yδ ∈ Y is the noisy measurement with
ϵ ∈ Y , such that ∥ϵ∥Y ≤ δ, measurement noise.

In practice, to represent the scanned object and projection data in a computer
we need to discretize:

➤ Sinogram (measured data): already discrete (finite set of angles, finite set
of detectors)

➤ Object: this discretization can be freely chosen, for instance pixels (in 2D)
or voxels (in higher dimensions)

➤ Forward model (Radon transform): there are various approaches to
discretize (compute or approximate) the line integrals
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In Practice: Discretization
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We discretise the domain Ω into n = N2 pixels. Then, the approximation for
the line integral over the line ℓi is given by:

yi =

n∑
j=1

rijfj ⇐⇒ y = Rf

where f ∈ Rn, y ∈ Rm and R : Rn → Rm with R = (rij)i,j=1,...,n, being rij
the distance that the line ℓi travels in the jth pixel.
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Briefly About Noise in CT

The intensity I1 in the Beer-Lambert law (− log(I1/I0) =
∫
ℓ
µ(x) dx) can be

understood as the number of transmitted photons in a interval of time. This
can be modelled as a Poisson random variable, namely the probability that k
photons are transmitted is:

P(x = k) =
λk

k!
e−λ

where λ is the expected value of the number of transmitted photons.

In practice, for large number of photons a Poisson distribution can be closely
approximated by a Gaussian distribution, with constant mean and varying stan-
dard deviation (the standard deviation decays with increasing intensity).

This means that in practice in the discrete linear model of CT we consider
Gaussian noise:

Rf = y + ϵ = yδ

where ϵ ∈ Rm, with ∥ϵ∥ ≤ δ is the noise on the data.
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Direct and Inverse Problem: Discrete Version

Object f Data yDirect problem: R

Direct problem: given object f , determine data y

Inverse problem: given noisy data yδ, recover object f
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How to Solve the Discrete Inverse Problem?

data

?

object

R

R⊤?R−1?R−1

Tatiana Bubba Mathematics of X-ray Computed Tomography IPPhys2026



How to Solve the Discrete Inverse Problem?

data

?

object

R

R⊤?

R−1?R−1

Can we simply use the “discrete adjoint”? For matrices this is simply the
transpose and its definition follows directly from that of the inner product:

⟨Rg,h⟩ = (R⊤g)⊤h = g⊤R⊤h = g⊤(R⊤h) = ⟨g,R⊤h⟩.
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How to Solve the Discrete Inverse Problem?
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?

object

R

R⊤?

R−1?

R−1

Can we use the inverse?
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How to Solve the Discrete Inverse Problem?

data

?

object

R

R⊤?R−1?

R−1

Can we use the inverse? This is in general not even defined (R is not a square
matrix)!
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Recall the Singular Value Decomposition (SVD)

If R ∈ Rm×n, there exist unitary matrices U ∈ Rm×m and V ∈ Rn×n such
that:

R = UΣVT = U


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σmin(m,n)

 V⊤

where σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0 are the so-called singular values of R
and if we write:

U = (u1, . . . ,um) and V = (v1, . . . ,vn)

the ui and vi are, respectively, the left and right singular vectors associated
with σi, for i = 1, . . . ,min(m,n).

The SVD can be written also as a sum of matrices of rank equal to 1:

R = UΣV⊤ =

min(m,n)∑
i=1

σi uiv
⊤
i
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The Moore-Penrose Pseudoinverse

The Moore-Penrose pseudoinverse is defined to be the matrix:

R† = VΣ† U⊤ = V

(
Σ−1

k 0
0 0

)
U⊤

where

Σk =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σk

 .

In particular, we have:
R†y ⊥ ker(R)

and

∥R∥2 = σ1, ∥R†∥2 =
1

σk
and cond(R) = ∥R∥2 ∥R†∥2 =

σ1

σk
.
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Can We Use the Pseudoinverse to Solve Our Inverse Problem?

object data

R

Data with 0.1% relative noiseOriginal phantom: values between

0 (black) and 1 (white)

Pseudoinverse reconstruction:
values between −14.9 and 18.5

R†
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The Problem is Still Ill-posedness

Put it simply, we have:

➤ Surjectivity (existence): this fails when m > n (more measurements than
image pixels) since range(R) < m and range(R)⊥ is nontrivial.

➤ Injectivity (uniqueness): this fails when m < n (more unknowns than
measurements) since dim(ker(R)) > 0.

➤ Stability: this fails when the condition number of R is large.

The Moore-Penrose pseudoinverse takes care only of conditions 1 and 2, that is
there always exists a minimum norm solution given by:

f† = R†yδ =

k∑
i=1

u⊤
i y

δ

σi
vi.

Condition 3 is trickier and requires a deeper understanding of its connection to
the SVD.

Tatiana Bubba Mathematics of X-ray Computed Tomography IPPhys2026



The Problem is Still Ill-posedness

Put it simply, we have:

➤ Surjectivity (existence): this fails when m > n (more measurements than
image pixels) since range(R) < m and range(R)⊥ is nontrivial.

➤ Injectivity (uniqueness): this fails when m < n (more unknowns than
measurements) since dim(ker(R)) > 0.

➤ Stability: this fails when the condition number of R is large.

The Moore-Penrose pseudoinverse takes care only of conditions 1 and 2, that is
there always exists a minimum norm solution given by:

f† = R†yδ =
k∑

i=1

u⊤
i y

δ

σi
vi.

Condition 3 is trickier and requires a deeper understanding of its connection to
the SVD.

Tatiana Bubba Mathematics of X-ray Computed Tomography IPPhys2026



Ill-posedness & SVD

The singular values decay to zero, with no gap in the spectrum. The decay rate
determines how difficult the problem is to solve.
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Ill-posedness & SVD: Limited Data Problems

➤ The discretization of the Radon transform (with dense angular sampling)
gives a mildly ill-posed problem.

➤ Singular values decrease faster with sparse (left) and limited (right) angles.
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Ill-posedness & SVD: the Role of Noise

No noise With noise

When there is no noise, the singular values σi and the coefficients |u⊤
i y| both

level off at the machine precision.

When there is noise, the coefficients |u⊤
i y

δ| level off at the noise level, and only
a few SVD components are reliable.
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Ill-Conditioned Problems

Discrete ill-posed problems are characterized by system matrices with a large
condition number: these problems are called ill-conditioned. This translates
into the solution being very sensitive to errors in the data.

If y are the noiseless data and yδ = y+ ϵ the noisy data, classical perturbation
theory leads to the bound:

∥f gt − f∥2
∥f gt∥2

≤ cond(R)
δ

∥f gt∥2

Since cond(R) = σ1/σk is large, the pseudoinverse solution f† = R†yδ can be
very far from the true solution f gt.
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Illustration of Ill-conditioning of Tomography

R

R

Difference 0.00254

Difference 0.00124Difference 0.00004
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The Geometry of Ill-Conditioned Problems

Object Space

Rn = span{v1, . . . ,vn}
Data Space

Rm = span{u1, . . . ,um}

= f gt y = Rf gt =

yδ = y + ϵ

f† = R†yδ
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How to Cure Ill-posedness?

How to Cure Ill-posedness? Robust Solution: Regularization

Object Space

Rn = span{v1, . . . ,vn}
Data Space

Rm = span{u1, . . . ,um}

= f gt y = Rf gt =

yδ = y + ϵ

We need to define a family of continuous functions Γα : Rm → Rn so that the
reconstruction error ∥Γα(δ)(y

δ)− f gt∥2 vanishes asymptotically as δ → 0.
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Regularization Theory of Inverse Problems

A classic strategy is the theory of regularization of inverse problems, which applies
to more general inverse problems with any (linear) forward operator A : X → Y .
It requires two ingredients:

(1) A family of regularization functionals Γα : Rm → Rn varying with α > 0:

Γαy → A†y as α→ 0, ∀y ∈ Rm.

We only focus on linear regularization functionals, which can therefore be
represented by a matrix in Rm×n.

(2) A suitable parameter choice rule α = α(δ) ensuring

Γα(δ)y
δ → A†y as δ → 0, ∀yδ : ∥yδ − y∥ ≤ δ ∀y ∈ Rm

A desirable property is that Γα are more stable than A†: ∥Γα∥ ≤ ∥A†∥ ∀α > 0.

Remark

A parameter choice α = α(δ) is defined a priori, since it holds for any y and
any perturbation yδ. There are also a posteriori (heuristic) rules α = α(δ,yδ).

Tatiana Bubba Mathematics of X-ray Computed Tomography IPPhys2026



Regularization 101: Back to SVD

In the following we always assume A = R, but the regularization
strategies we introduce apply to more general inverse problems with
any (linear) forward operator A : Rn → Rm.

Recall that the Moore-Penrose pseudoinverse solution is given by

f† =

k∑
i=1

u⊤
i y

δ

σi
vi.

When dealing with noisy data, we have:

u⊤
i y

δ = u⊤
i y + u⊤

i ϵ ≈

{
u⊤

i y |u⊤
i y| > |u⊤

i ϵ|

u⊤
i ϵ |u⊤

i y| < |u⊤
i ϵ|

Notice that the “noisy” components |u⊤
i y

δ| are those for which |u⊤
i y| is small

and they correspond to the smallest singular values σi.
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Regularization 101: Truncated SVD (TSVD)

The simplest regularization technique is to discard the SVD coefficients
corresponding to the smallest singular values. This is called truncated SVD:

fTSVD =

r∑
i=1

u⊤
i y

δ

σi
vi

where the truncation parameter r is dictated by the coefficients |u⊤
i y

δ|, not
the singular values.

In practice, r has to be chosen as the index i where |u⊤
i y

δ| start to “level off”
due to the noise.

It is clear that the condition number for the TSVD solution is:

σ1

σr
<

σ1

σk
= cond(R).
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Naive Reconstruction (Moore-Penrose Pseudoinverse)

Truncated SVD

Original phantom f†: RE = 100%

fTSVD: RE = 35%
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Where TSVD Stands in The Geometry of Ill-Conditioned Problems

Object Space

Rn = span{v1, . . . ,vn}
Data Space

Rm = span{u1, . . . ,um}

= f gt y = Rf gt =

yδ = y + ϵ

f† = R†yδ

= fTSVD
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TSVD as Spectral Filtering

We can regard the TSVD also as the result of a filtering operation, namely:

fTSVD =

r∑
i=1

u⊤
i y

δ

σi
vi =

min(m,n)∑
i=1

ϕTSVD
i

u⊤
i y

δ

σi
vi

where r is the truncation parameter and

ϕTSVD
i =

{
1 i = 1, . . . , r

0 elsewhere

are the filter factors associated with the method.

These are called spectral filtering methods because the SVD basis can be re-
garded as a spectral basis, since the vectors ui and vi are the eigenvectors of
R⊤R and RR⊤.
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Another Filtering Strategy: Tikhonov Regularization

Let’s now consider the following filter factors:

ϕTIKH
i =


σ2
i

σ2
i +α2 i = 1, . . . ,min(m,n)

0 else

which yield the reconstruction method:

fTIKH =

min(m,n)∑
i=1

ϕTIKH
i

u⊤
i y

δ

σi
vi =

min(m,n)∑
i=1

σi (u
⊤
i y

δ)

σ2
i + α2

vi.

This choice of the filters result in a regularization technique called Tikhonov
regularization and α > 0 is the so-called regularization parameter.

The parameter α acts in the same way as the parameter r in the TSVD method:
it controls which/how many SVD components we want to damp or filter.
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Tikhonov Regularization: Minimization Formulation

➤ Recall that the Moore-Penrose pseudoinverse solution is given by:

f† =
m∑
i=1

u⊤
i y

δ

σi
vi = argmin

f

∥∥Rf − yδ
∥∥2

2

where the last step states that is equivalent to finding the least squares
solution. We want

∥∥Rf − yδ
∥∥2

2
small, but also avoid that becomes 0!

➤ Let’s look also at the norm of the Moore-Penrose solution f†:

∥f†∥22 =
m∑
i=1

(u⊤
i y

δ)2

σ2
i

.

This can become unrealistically large when the magnitude of the noise in
some direction ui greatly exceeds the magnitude of the singular value σi.

Tikhonov regularization combines these two desiderata by looking at solving
the minimization problem:

fTIKH = argmin
f∈Rn

{∥∥Rf − yδ
∥∥2

2
+ α

∥∥f∥∥2

2

}
.
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Tikhonov Regularization

In particular, by looking at the minimization problem

fTIKH = argmin
f∈Rn

1

2

{∥∥Rf − yδ
∥∥2

2
+ α

∥∥f∥∥2

2

}
we notice that:

➤ By selecting α = 0 we retrieve the Moore-Pensore solution f†.

➤ By taking α→ ∞, the solution of the minimization problem tends to
f = 0: Tikhonov regularization penalizes solutions with large norms.

Therefore, by tuning the regularization parameter α > 0 we can ensure that:

➤ The residual RfTIKH − yδ is small, but it does not become zero.

➤ The norm of the solution fTIKH is bounded.

In general, choosing the regularization parameter α is not a trivial task and
there is no rule of thumbs. Usually, it is a combination of good heuristics and
prior knowledge of the noise in the observations.
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Influence of the Choice of α in Tikhonov Regularization

Original phantom fTIKH: α = 103

fTIKH: α = 102fTIKH: α = 10fTIKH: α = 1fTIKH: α = 10−1fTIKH: α = 10−2fTIKH: α = 10−3
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Normal Equation and Stacked Form for Tikhonov Regularization

The Tikhonov solution can be also formulated as a linear least squares problem:

fTIKH = argmin
f∈Rn

1

2

{∥∥∥∥ [ R√
α In

]
f −

[
yδ

0

] ∥∥∥∥2

2

}
.

This is called stacked form. If we denote by R̃ =

[
R√
α In

]
and ỹδ =

[
yδ

0

]
then the least square solution of the stacked form satisfies the normal equations:

R̃
⊤
R̃f = R̃

⊤
ỹδ.

It is easy to check that R̃
⊤
R̃ = R⊤R + α In and R̃

⊤
ỹδ = R⊤yδ, which

yields the following result.

Theorem [Tikhonov regularization]

The one-parameter family of functionals {Γα}α>0 defined by

Γα = (R⊤R+ α In)
−1R⊤ ⇔ fTIKH = (R⊤R+ α In)

−1R⊤yδ

is a linear regularization algorithm (i.e., it satisfies conditions (1) and (2)).
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fTIKH = argmin
f∈Rn

1

2

{∥∥∥∥ [ R√
α In

]
f −

[
yδ

0

] ∥∥∥∥2

2

}
.

This is called stacked form. If we denote by R̃ =

[
R√
α In

]
and ỹδ =

[
yδ

0

]
then the least square solution of the stacked form satisfies the normal equations:

R̃
⊤
R̃f = R̃

⊤
ỹδ.

It is easy to check that R̃
⊤
R̃ = R⊤R + α In and R̃

⊤
ỹδ = R⊤yδ, which

yields the following result.

Theorem [Tikhonov regularization]

The one-parameter family of functionals {Γα}α>0 defined by

Γα = (R⊤R+ α In)
−1R⊤ ⇔ fTIKH = (R⊤R+ α In)

−1R⊤yδ

is a linear regularization algorithm (i.e., it satisfies conditions (1) and (2)).
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Naive Reconstruction (Moore-Penrose Pseudoinverse)

Original phantom f†: RE = 100%
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Truncated SVD Regularization

Original phantom fTSVD: RE = 35%
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Tikhonov Regularization

Original phantom fTIKH: RE = 32%
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Where Tikhonov Solution Stands in The Geometry of
Ill-Conditioned Problems

Object Space

Rn = span{v1, . . . ,vn}
Data Space

Rm = span{u1, . . . ,um}

= f gt y = Rf gt =

yδ = y + δ

f† = R†yδ

fTSVD

fTIKH
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Variational Regularization

In general, a minimization problem of the form:

Γα(y
δ) = argmin

f∈Rn

{
1

2

∥∥Rf − yδ
∥∥2

2
+ α Reg(f)

}
is called variational formulation.

Main ingredients:

➤ Data fidelity (or data fitting) term:
∥∥Rf − yδ

∥∥2

2
keeps the estimation of

the solution close to the data under the forward physical system

➤ Regularization parameter: α > 0 controls the trade-off between a good fit
and the requirements from the regularization

➤ Regularization term: Reg(f) incorporates a priori information or
assumptions on the unknown f . A non exhaustive list:

Tikhonov regularization: ∥f∥22
Generalized Tikhonov regularization: ∥Lf∥22
Compress sensing or sparse regularization: ∥f∥0 or ∥f∥1 or ∥Ψf∥1
Indicator functions of constraints sets: ιR+

(f)

A combination of the above
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Sparse Regularization

Finding the sparsest solution:

argmin
f∈Rn

{
1

2

∥∥Rf − yδ
∥∥2

2
+ α∥Ψf∥0

}
is known as Compress Sensing (CS). The problem above is NP-hard, since it
requires a combinatorial search of exponential size for considering all possible
supports.

Under certain conditions on Ψf (and the forward operator), replacing ℓ0 norm
with ℓ1 norm yields “similar” results. This relaxation leads to a convex problem:

argmin
f∈Rn

{
1

2
∥Rf − yδ∥22 + α∥Ψf∥1

}
.

which is at the basis of optimization-based methods for CS.
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About the Convex Relaxation

The formulation

argmin
f∈Rn

{
1

2

∥∥Rf − yδ
∥∥2

2
+ α∥Ψf∥1

}
.

it is more easily solvable, but still nonsmooth. Also, it is convex, but not strictly
convex. So why not using Tikhonov regularization?

x1

x2

x1

x2

|x1|2 + |x2|2 = const |x1|+ |x2| = const
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(Constrained) Wavelet-based Regularization

If we take Ψ = W as the matrix associated with a certain wavelet transform,
the variational formulation:

fWLET = argmin
f∈Rn

{
1

2

∥∥Rf − yδ
∥∥2

2
+ α ∥Wf∥1

}
promotes sparsity on the wavelet coefficients.

In many cases, it is beneficial to include in the model a nonnegativity constraint:

argmin
f∈Rn

{
1

2

∥∥Rf − yδ
∥∥2

2
+ ιR≥0

(f)

}
or argmin

f≥0

{
1

2

∥∥Rf − yδ
∥∥2

2

}
,

where the inequality is meant component-wise. The nonnegative constraint can
also be coupled with other regularisers:

fWLET
+ = argmin

f≥0

{
1

2

∥∥Rf − yδ
∥∥2

2
+ α ∥Wf∥1

}
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Naive Reconstruction (Moore-Penrose Pseudoinverse)

Original phantom f†: RE = 100%
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Tikhonov Regularization

Original phantom fTIKH: RE = 32%
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Nonnegativity Constrained Tikhonov Regularization

Original phantom fTIKH
+ : RE = 13%
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Nonnegativity Constrained Wavelet-based Regularization

Original phantom fWLET
+ : RE = 26%
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Nonnegativity Constrained Total Variation Regularization

Original phantom fTV
+ : RE = 3%
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A Bit About Wavelets

Wavelets arose in 1980s to overcome some of the limitations of Fourier analysis.
They are a very common choice in CS approaches since they still model images
quite adequately.

Similarly to Fourier series, the idea is to “break” a signal into building blocks,
but unlike Fourier series the building blocks are localized not only in the frequency
domain but also in the space domain.

Time-frequency plane for the Time-frequency plane for the

Fourier Transform. wavelet transform.
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Building a Wavelet System in 1D

Different families of wavelets can be generated by considering different “parents”:

➤ The scaling function ϕ ∈ L2(R2), a low-pass filter, provides a rougher
version of the signal itself

➤ The (mother) wavelet ψ ∈ L2(R2), a high-pass filter, describes the details
in the signal

An example

Haar scaling function: Haar wavelet:

0 1

(x)

1

0 1/2 1

1

-1

(x)

ϕ(x) =

{
1 0 < x < 1

0 else
ψ(x) =

{
1 0 ≤ x < 1

2

−1 1
2
≤ x < 1
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Building a Wavelet System in 1D

A wavelet system is generated by applying to both “parents” two operators:

➤ Isotropic dilation: DMψ(x) = 2−
j
2ψ(2jx), with j ∈ Z scaling parameter

➤ Translation: Tkψ(x) = ψ(x− k), with k ∈ Z location parameter

Then, the elements of a wavelet system are given by:

ψjk(x) =
{
TkDjψ(x) = 2−

j
2ψ(2jx− k) : (j, k) ∈ Z× Z

}
and similarly for the scaling function. The wavelets coefficients are the result of
the wavelet transform:

W : f −→ Wf(j, k) = ⟨f, ψjk⟩

and set Vj = span {ϕjk, k ∈ Z} and Wj = span {ψjk, k ∈ Z}, 1D wavelet
analysis relies on the decomposition:

fj+1 = fj + wj , where fj =
∑
k∈Z

⟨f, ϕjk⟩ϕjk and wj =
∑
k∈Z

⟨f, ψjk⟩ψjk.

In practical applications these are computed using the language of filters, with
convolutions and downsampling and upsampling operations.
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2D Wavelets

By considering tensor products, from the scaling and wavelet functions we get
1 scaling function but 3 wavelet functions (horizontal, vertical & diagonal):

Φ(x) = ϕ(x1)ϕ(x2),

and

Ψ1(x) = ϕ(x1)ψ(x2), Ψ2(x) = ψ(x1)ϕ(x2), Ψ3(x) = ψ(x1)ψ(x2).

Similarly to the 1D case, one defines the approximation space Vj and the wavelet
spaces W1

j , W
2
j , and W3

j as the following linear span in L2(R2):

Vj = span {Φjk, k ∈ Z2}, Wλ
j = span {Ψλ

jk, k ∈ Z2}

where λ = 1, 2, 3. Therefore, 2D wavelet analysis relies on the decomposition
Vj+1 = Vj ⊕W1

j ⊕W2
j ⊕W3

j , which yields:

fj+1 = fj +

3∑
λ=1

wλ
j , where fj =

∑
k∈Z2

⟨f,Φjk⟩Φjk and wλ
j =

∑
k∈Z2

⟨f,Ψλ
jk⟩Ψλ

jk.

Then, one iterates on fj as in the 1D case. Filter-wise, this amounts to applying
the 1D filters first on the rows and then on the columns of the 2D signal.

Tatiana Bubba Mathematics of X-ray Computed Tomography IPPhys2026



An Example: Haar Wavelet Transform of the Square Phantom

1-level Haar wavelet transform

2-level Haar wavelet transform3-level Haar wavelet transform
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An Example: Haar Wavelet Transform of the Square Phantom

1-level Haar wavelet transform2-level Haar wavelet transform

3-level Haar wavelet transform
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An Example: Haar Wavelet Transform of a Walnut
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Sparse Image Representation With Wavelets

Our goal: Use a wavelet representation of signals to extract their key features
efficiently - a few coefficients carry most of the information. How to quantify it?

Approximation error - linear and nonlinear

Consider a sequence of approximations UN of a space U (either L2[0, 1] or
L2[0, 1]2), and an o.n.b. {φi}i∈Z of U such that {φi}Ni=1 is an o.n.b. for UN

(e.g., wavelet multiresolutions from max scale J)

➣ Linear approximation: f l
N =

∑N
i=1⟨f, φi⟩φi ⇝ el(N, f) = ∥f − f l

N∥2

➣ Nonlinear approximation: fn
N =

∑
i∈ΛN

⟨f, φi⟩φi ⇝ en(N, f)=∥f − fn
N∥2

where ΛN are the indices of the N biggest coefficients |⟨f, φi⟩|, i ∈ Z

In 1D, wavelets provide very good approximation results, especially for regular
functions. Let {φi} be generated by a wavelet with q vanishing moments:

➤ If f ∈ Lipα([0, 1]), with 1/2 < α < q, then el(N, f) = O(N−2α)

➤ If f has K discontinuities in [0, 1] and is Lipα([0, 1]) between them, with
1/2 < α < q, then:

el(N, f) = O(KN−1), en(N, f) = O(N−2α)
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Cartoon-like Images and Limitations of Wavelet Representation

What about in 2D? Wavelets are still good at approximating regular images:

f ∈ Lipα([0, 1]2), 1/2 < α < q ⇒ el(N, f) = O(N−α)

A natural concept of piecewise regular functions in 2D are cartoon-like images:
piecewise C2 regular, with jumps along C2-smooth curves.

f cartoon-like ⇒ en(N, f) = O(N−1). Why?

At scale 2j , a discontinuity
along an edge is captured by
∼ 2−j coefficients: we could
sample less frequently in the
relevant direction.

⇝ Problem: the support of wavelets is isotropic and does not depend on the
direction itself!

Can we do better? Not with wavelets! Optimal rate: O(N−2), by piecewise
linear interpolation on adaptive grids. This is for another day!
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Wavelet-based Regularization: Putting Everything Together

Let’s circle back to the (contrained) wavelet-based regularization:

fWLET = argmin
f≥0

{
1

2

∥∥Rf − yδ
∥∥2

2
+ α ∥Wf∥1

}
Despite not providing optimal multiscale approximations, wavelets are a very
common choice in imaging tasks since they still model images quite adequately
and are computationally very efficient.

Indeed, wavelet coefficients come with different magnitudes so that:

➤ The smallest coefficients are associated with noise

➤ The largest ones are associated with edges and images dominant features

The ℓ1 norm suppresses the small coefficients in favor of the largest ones,
yielding a powerful regularization strategy.
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How to Solve the Minimization Problem? Convex Optimization!

Let’s consider minimization problems of the form:

f∗ ∈ argmin
f∈Rn

J(f), with J(f) := D(f) + φ(f), (1)

where, denoted R = R ∪ {+∞}, we have:

➤ D : Rn → R prescribed metric of the fidelity of Af w.r.t. measurement y.
For example: D(f) = 1

2
∥Af − y∥22

➤ φ(f) : Rn → R regularization term

We require D and φ to be convex, lower semi-continuous, proper, and coercive.

A function ϕ : Rn → R is:

➣ convex if ϕ(αf1 + (1− α)f2) ≤ αϕ(f1) + (1− α)ϕ(f2) for all α ∈ [0, 1]

➣ lower semi-continuous (l.s.c.) at a point f0 if for every sequence
f (k) → f0 in Rn, lim infn→∞ ϕ(f (k)) ≥ ϕ(f0)

➣ proper if the effective domain domϕ := {f ∈ Rn | ϕ(f) < +∞} ̸= ∅
➣ coercive if for all f (k) with ∥f (k)∥ → ∞, we have that ϕ(f (k)) → ∞

Γ0(Rn) denotes the class of convex, proper, and l.s.c. functions from Rn → R.
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Γ0(Rn) denotes the class of convex, proper, and l.s.c. functions from Rn → R.
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Existance of Minimizers

It is easy to show that, if D,φ ∈ Γ0(Rn) are coercive, then the minimization
problem (1) admits a solution.

An alternative requirement on J is requiring L-smoothness, i.e., J has L-Lipschitz
gradient:

∃ L > 0 : ∥∇J(f1)−∇J(f2)∥2 ≤ L∥f1 − f2∥2

which, under convexity, is equivalent to:

J(f1) ≤ J(f2) + ⟨∇J(f2),f2 − f1⟩+
L

2
∥f1 − f2∥

2
2

Theorem

Let J be proper, convex, L-smooth and coercive. Then, J admits a minimiser.
All local minimisers are global minimisers.
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Variational Problems with Smooth Regularizers

The Gradient Descent (GD) algorithm is a classic choice for the solution of
L-smooth minimization problems (i.e., for (L-)smooth J).

Algorithm Gradient Descent algorithm

Require: f (0) ∈ dom(J) (initial guess), τ ∈ (0, 2/L), ϱ (tolerance)
1: for k = 1, . . . ,K do
2: f (k+1) = f (k) − τ∇J(f (k))
3: if ∥f (k+1) − f (k)∥ < ϱ then
4: Stop and return f (k+1).
5: end if
6: end for
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1: for k = 1, . . . ,K do
2: f (k+1) = f (k) − τ∇J(f (k))
3: if ∥f (k+1) − f (k)∥ < ϱ then
4: Stop and return f (k+1).
5: end if
6: end for

Theorem (convergence of GD)

Let J be L-smooth, f (0) ∈ dom(J) and τ ∈ (0, 2/L). There holds f (k) → f∗,
where (f (k))k∈N is the sequence generated by GD, and for the function values:

J(f (k))− J(f∗) ≤ ∥f (k) − f∗∥22
2τk
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Variational Problems with Smooth Regularizers

The Gradient Descent (GD) algorithm is a classic choice for the solution of
L-smooth minimization problems (i.e., for (L-)smooth J).

Algorithm Gradient Descent algorithm

Require: f (0) ∈ dom(J) (initial guess), τ ∈ (0, 2/L), ϱ (tolerance)
1: for k = 1, . . . ,K do
2: f (k+1) = f (k) − τ∇J(f (k))
3: if ∥f (k+1) − f (k)∥ < ϱ then
4: Stop and return f (k+1).
5: end if
6: end for

Example: Tikhonov regularization. The problem is quadratic:

JTIKH(f) :=
1

2
∥Af − y∥22 + α∥Lf∥22 with L = {In,∇}

and the GD iteration reads as:

f (k+1) = f (k) − τ
(
A⊤(Af − y) + αL⊤Lf

)
for k = 0, 1, . . .
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Variational Problems with Non-smooth Regularizers

Let’s now assume the regularizer φ to be non-smooth.

Definition (proximal operator)

For a convex function ϕ : Rn → R we have

proxϕ(f) = argmin
v∈Rn

1

2
∥v − f∥22 + ϕ(v)

For ϕ ∈ Γ0(Rn), proxϕ(·) is well-defined, single-valued and non-expansive.
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Let’s now assume the regularizer φ to be non-smooth.

Definition (proximal operator)

For a convex function ϕ : Rn → R we have

proxϕ(f) = argmin
v∈Rn

1

2
∥v − f∥22 + ϕ(v)

For ϕ ∈ Γ0(Rn), proxϕ(·) is well-defined, single-valued and non-expansive.

Example: Important proximity operators

➤ Consider the indicator ιC of a convex set C (e.g., C = Rn
+):

proxιC
(f) = argmin

v∈Rn

1

2
∥v−f∥22+ιC(v) = argmin

v∈C

1

2
∥v−f∥22 = projC(f)

This is the Euclidean projection on S!
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Variational Problems with Non-smooth Regularizers

Let’s now assume the regularizer φ to be non-smooth.

Definition (proximal operator)

For a convex function ϕ : Rn → R we have

proxϕ(f) = argmin
v∈Rn

1

2
∥v − f∥22 + ϕ(v)

For ϕ ∈ Γ0(Rn), proxϕ(·) is well-defined, single-valued and non-expansive.

Example: Important proximity operators

➤ Soft-thresholding is the proximity operator of the ℓ1 norm:

Sγ(f) = (f − γ)χ[γ,∞) + (f + γ)χ(−∞,−γ]

[this is meant to be applied component-wise]

➤ Many more proximity operators: https://proximity-operator.net
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Proximal Gradient Descent

A generalization of GD is the Proximal Gradient Descent (PGD) method, which
alternates between a proximal step on φ and a gradient descent step on D.

Algorithm Proximal Gradient Descent algorithm

Require: f (0) ∈ dom(J) (initial guess), γ ∈ (0, 1/LD), ϱ (tolerance)
1: for k = 1, . . . ,K do
2: f (k+1) = proxγφ(f

(k) − γ∇J(f (k)))

3: if ∥f (k+1) − f (k)∥ < ϱ then
4: Stop and return f (k+1).
5: end if
6: end for
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Proximal Gradient Descent – Convergence

Theorem (e.g., [Beck & Teboulle 2009])

Let f∗ ∈ argminf∈Rn J(f) and f (0) ∈ Rn the starting point. Assumptions:

➣ D ∈ Γ0(Rn) differentiable with LD-Lipschitz gradient

➣ φ ∈ Γ0(Rn), possibly non-smooth

➣ γ ∈ (0, 1/LD)

Then, the iterates generated by PGD verify the following properties:

1 (J(f (k)))k∈N is non-increasing

2 The sequence (J(f (k))− J(f∗))k∈N goes to zero at a rate O(1/k)

3 The sequence f (k) converges to a minimizer f∗ of the problem
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A Special Instance of PGD: Wavelet-based Regularization & ISTA

Let W be an orthogonal wavelet transform. Recall wavelet-based regularization:

fWLET = argmin
f∈Rn

{
1

2
∥Af − y∥22 + α∥Wf∥1

}

fWLET is a special case for which the proximal operator (associated with 1-norm
regularization) is easy and fast to compute, because it is given by the soft-
thresholding operator: Sγ(w) = (w − γ)χ[γ,∞) + (w + γ)χ(−∞,−γ].

Algorithm Iterative Soft-Thresholding Algorithm

Require: f (0) ∈ dom(J), W orthogonal, τ (step-size), ϱ (tolerance)
1: for k = 1, . . . ,K do

2: f (k+1) = W⊤Sα/τ

(
W

(
f (k) − 1

τ
A⊤Af (k) + 1

τ
A⊤y

))
3: if ∥f (k+1) − f (k)∥ < ϱ then
4: Stop and return f (k+1).
5: end if
6: end for
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Hard- and Soft-Thresholding

Sα(x) =


x+ α if x < −α

0 if |x| ≤ α

x− α if x > α

Hα(x) =


x if x < −α

0 if |x| ≤ α

x if x > α

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Orig. Signal

Hard Thr. H

Soft Thr. S

Connection: Hard-thresholding arises when considering the minimisation problem

argmin
w∈Rn

{
1

2

∥∥w − v
∥∥2
2
+ α

∥∥w∥∥
0

}
where the ℓ0 semi-norm counts the number of non-zeros components in w.
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Constrained PGD: Primal-Dual Fixed Point

Recall the nonnegativity constrained wavelet-based regularization:

fWLET
+ = argmin

f≥0

{
1

2
∥Af − y∥22 + α∥Wf∥1

}
There are many variants of ISTA (or PGD) to extend it to non-orthogonal bases
(or frames), or to include the nonnegativity constraint.

Primal-Dual Fixed Point (PDFP) algorithm

Select f (0) and choose λ < 1/λmax(∥W⊤W∥) and 0 < γ < 2/LD. Then, the
PDFP update is:

d(k+1) = projRn
+

(
f (k) − γ(A⊤Ãf (k) −A⊤y)− λW⊤v(i)

)
,

v(k+1) =
(
I − Sα γ

λ

)(
Wd(k+1) + v(k)

)
,

f (k+1) = projRn
+

(
f (k) − γ(A⊤Ãf (k) −A⊤y)− λW⊤v(k+1)

)
PDFP can be applied also when in place of W we use a linear L associated with
a non-orthogonal basis or a frame.
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Summary & Outlook

What we learned today:

➤ Discretization and ill-conditioning of the tomographic problem

➤ TSVD and variational regularization

➤ A very small wavelet tour of signal processing

➤ Gradient descent (GD) and its non-smooth variant (PGD, ISTA, PDFP)

What I do not have time to talk about:

➤ Continuous regularization theory of inverse problems (convergence, rate of
convergence, . . . )

➤ Choice of the regularization parameter (a priori, a posteriori rules)

➤ There is a whole zoo of first-order optimization methods: we barely
scratched the surface!

Up next:

➤ Nods to machine and deep learning

➤ Learned reconstruction methods for inverse problems
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