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Brief Recap: Regularization of (Tomographic) Inverse Problem

Recall the (tomographic) inverse problem:
given noisy measurements y‘; = Af, determine f

where A: X — Y (e.g., A =R Radon transform), f € X is the unknown
(parameters), y° =y + € € Y is the noisy measurements with € s.t. ||| < 6,
measurement noise.

Tatiana Bubba ics of X-ray Ci Te

1PPhys2026



Brief Recap: Regularization of (Tomographic) Inverse Problem

Recall the (tomographic) inverse problem:
given noisy measurements y‘; = Af, determine f

where A: X — Y (e.g., A =R Radon transform), f € X is the unknown
(parameters), y° = y + ¢ € Y is the noisy measurements with € s.t. ||| < 4,
measurement noise.

Variational regularization :
. 1 5112
argmin §||Af —y ||y + aReg(f)
fex
Key components:
» X = possible signals, Y = possible data

» Data model: How data is generated (forward model or simulator)

» Prior model: Characteristics of “natural” signals (regularisation)
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Model-based Approaches in Inverse Problems

Analytical approaches: explicit reconstruction operator for direct inversion
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Model-based Approaches in Inverse Problems

Analytical approaches: explicit reconstruction operator for direct inversion

Reconstruction operator Recon.
image

Data

Model-based approaches: the reconstruction operator is given implicitly (loop)

1. Generate simulated data from a signal
2. Measure mismatch:

o Simulated data against observed data
o Signal against prior model

3. Update signal bearing in mind mismatch

4. Repeat until some stopping criteria is fulfilled
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Model-based Approaches in Inverse Problems

Analytical approaches: explicit reconstruction operator for direct inversion
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Reconstruction operator
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Model-based approaches: the reconstruction operator is given implicitly (loop)
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Model-based vs Data-driven Approaches

Challenges of model-based classical approaches:

> Hand-tuning of parameters: such as the regularization parameter in
variational methods (or the frequency scaling in FBP for tomography)

> Choice and design of regularizer/constructing good prior models:
handcrafted regularizer tend to encode simplistic features of the true
solution

> Computational feasibility /scalability: state-of-the-art performance is often
computationally heavy (e.g., solution via high-dimensional optimisation
problem with repeated application of the forward operator and adjoint)
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Model-based vs Data-driven Approaches

Opportunities of data-driven approaches:

such as the regularization parameter in
variational methods (or the frequency scaling in FBP for tomography)

Learned approaches find optimal parameters from training data, or a data
dependent parameter choice rule

handcrafted regularizer tend to encode simplistic features of the true
solution

Learned approaches offer a flexible framework to learn suitable regularizer
from a collection of representative examples (training data)

state-of-the-art performance is often
computationally heavy (e.g., solution via high-dimensional optimisation
problem with repeated application of the forward operator and adjoint)

Learned approaches offer a wide range of solutions, from improving simple
reconstructions to learning more efficient update rules in iterative methods
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Model-based vs Data-driven Approaches

Opportunities of data-driven approaches:
such as the regularization parameter in
variational methods (or the frequency scaling in FBP for tomography)

Learned approaches find optimal parameters from training data, or a data
dependent parameter choice rule

handcrafted regularizer tend to encode simplistic features of the true
solution

Learned approaches offer a flexible framework to learn suitable regularizer
from a collection of representative examples (training data)

state-of-the-art performance is often
computationally heavy (e.g., solution via high-dimensional optimisation
problem with repeated application of the forward operator and adjoint)

Learned approaches offer a wide range of solutions, from improving simple
reconstructions to learning more efficient update rules in iterative methods

Learned reconstructions: Combine best of both worlds (model-based and
data-driven approaches) for solving inverse problems J
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Defining the Learning Task

Goal: Learning a reconstruction operator
> We aim to solve the inverse problem Af =y, given 3y’ € Y

» (Many) inverse problems are ill-posed/ill-conditioned
~~ Rather learn a regularized map, which is well-posed

» We want to learn a reconstruction operator % : Y — X which may consist
of learned and model-based parts
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Defining the Learning Task

Goal: Learning a reconstruction operator
> We aim to solve the inverse problem Af =y, given 3y’ € Y

» (Many) inverse problems are ill-posed/ill-conditioned
~~ Rather learn a regularized map, which is well-posed

» We want to learn a reconstruction operator % : Y — X which may consist
of learned and model-based parts

We need to slightly reformulate our inverse problem, we consider:
Af +te=y

where we assume that:
> Signals f in X are generated by a X-valued random variable £
> yis a Y-valued random variable whose samples y represent possible data

> Observed data y € Y are a single sample of the Y-valued conditional
random variable (y|f = f&") where f& € X is the (unknown) true signal
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Defining the Learning Task

Goal: Learning a reconstruction operator
> We aim to solve the inverse problem Af =y, given 3y’ € Y

» (Many) inverse problems are ill-posed/ill-conditioned
~~ Rather learn a regularized map, which is well-posed

» We want to learn a reconstruction operator % : Y — X which may consist
of learned and model-based parts

Checklist

What do we need to assess?
> Type of training data
> Choice of loss function

> Learning task: formulating (parametrizing) the reconstruction operator
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Training data: Supervised

We have paired training data in X x Y that are independent samples of (£,y)
where Af + € = y holds. J

Example: matching pairs of low-dose data and high-dose reconstruction

[Image credits: M. Kiss et al., Scientific Data, 2023]
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Training data: Unsupervised

In this case, training data are independent samples y1,...,yn in Y of y. }

Example: samples of low-dose measurements

[Image credits: M. Kiss et al., Scientific Data, 2023]
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Loss Functions: Supervised Setting

Things to keep in mind in general:
> Type of training data dictates possible loss functions

> Loss functions can be formulated in X or Y
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Loss Functions: Supervised Setting
Things to keep in mind in general:

> Type of training data dictates possible loss functions

> Loss functions can be formulated in X or Y

Supervised setting

Training data are i.i.d. samples (f1,91),-.-,(fn,yn) € X X Y.

» The most common setting is with X-space loss /x : X x X — R, e.g.,
p-norm. The learned reconstruction operator % is the associated Bayes
estimator, i.e., Z5: Y — X where 0 € O solves:

8 € argminEe , [(x (%0 (y), f)]

0co
. _ 2 S :
Example: {x = || - ||z = %5 = posterior mean.
v
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Loss Functions: Supervised Setting
Things to keep in mind in general:
> Type of training data dictates possible loss functions

> Loss functions can be formulated in X or Y

Supervised setting

Training data are i.i.d. samples (f1,91),-.-,(fn,yn) € X X Y.

» The most common setting is with X-space loss /x : X x X — R, e.g.,
p-norm. The learned reconstruction operator % is the associated Bayes
estimator, i.e., Z5: Y — X where 0 € O solves:

0 € argminEy y [0x (%o (y), f)]
0cO

Example: x = |- |3 = %, = posterior mean.

» |In practice, we compute the corresponding empirical risk estimator:

I 1
0 € argmin - gfx(ﬁe(yz)y fi)

0ce
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Loss Functions: Unsupervised Setting

The training data are independent samples of y, i.e., y1,...,yn € Y.

» Without using any further information, we can only formulate a loss in X
that measures the goodness of the reconstruction with a suitable loss
lx : X — R, i.e., we aim to find % such that

0 € argmin Ey [¢x (%o (y))]
oco

Different strategies are devised by introducing more structure into the
learning problem.
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Loss Functions: Unsupervised Setting

The training data are independent samples of y, i.e., y1,...,yn € Y.

» Without using any further information, we can only formulate a loss in X
that measures the goodness of the reconstruction with a suitable loss
lx : X — R, i.e., we aim to find % such that

0 € argmin Ey [¢x (%o (y))]
oco

Different strategies are devised by introducing more structure into the
learning problem.

» Alternative #1: Mimic the supervised setting by creating a reference
reconstruction Z(y), where Z may be a gold-standard algorithm:

0 € argmin Ey [bx(%o(y), Z(y))]
vce

When &£ solves an optimisation problem, this corresponds to the paradigm
of learning to optimise.
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Loss Functions: Unsupervised Setting

The training data are independent samples of y, i.e., y1,...,yn € Y.

» Without using any further information, we can only formulate a loss in X
that measures the goodness of the reconstruction with a suitable loss
lx : X — R, i.e., we aim to find % such that

0 € argminEy [(x (%o (y))]
0co

Different strategies are devised by introducing more structure into the
learning problem.

» Alternative #2: Split the data space disjointly into Y = Y; UY> and then

consider training data that are paired random samples from Y; and
Y>-valued random variables y, and y,, resp.:

e argggin Ey [0x (%o (y1), % (y2))]

This allows exploitation of the structure of A, and hence that of %, and
the data itself. It is often referred to as self-supervised (e.g., Noise2Noise).
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Loss Functions: Unsupervised Setting

The training data are independent samples of y, i.e., y1,...,yn € Y.

» Without using any further information, we can only formulate a loss in X
that measures the goodness of the reconstruction with a suitable loss
lx : X — R, i.e., we aim to find % such that

0 € argmin Ey [¢x (%o (y))]
oco

Different strategies are devised by introducing more structure into the
learning problem.

» Alternative #3: Measure goodness in data space Y so that we do not
require a handcrafted reconstruction operator &, but need A for
projection back into Y:

0 € argmin Ey [by (Ao Zo(y),y)]
0co

When fy is the £2-norm, this amounts to the least-squares problem, which
can lead to overfitting without further regularization.

Variant. Consider a single y € Y and then learn a network Ag as
generator of f: Deep Image Prior (DIP).
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Formulating a Suitable Reconstruction Operator

Main considerations influencing the choice of parameterisation for %y : ¥ — X:
> Amount of training data

> Computational resources

> Forward and adjoint availability
> Quantitative performance
).

Theoretical guarantees and interpretability
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Formulating a Suitable Reconstruction Operator

Main considerations influencing the choice of parameterisation for %y : ¥ — X:
> Amount of training data
> Computational resources
> Forward and adjoint availability
> Quantitative performance
>

Theoretical guarantees and interpretability

Two primary paradigms for learning a reconstruction operator:

» Uncoupled: The training process (of the network) is decoupled from the
model for generating the inverse problem data, i.e., training does not
involve evaluating the forward operator or the adjoint.

» Learned iterative schemes: The network components and forward/adjoint

are intertwined, i.e., training the reconstructions operator necessarily
requires evaluation of the model.
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Learned Reconstruction Operator
Definition (learned reconstruction operator)
A family of parametrised mappings
oY = X where 0 € ©

is called a learned reconstruction operator for the inverse problem Af =y if
the parameters 6 are determined (learned) from example data (training data)
that is generated in a way that is consistent with Af = y.

1PPhys2026
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Learned Reconstruction Operator
Definition (learned reconstruction operator)
A family of parametrised mappings
oY = X where 0 € ©

is called a learned reconstruction operator for the inverse problem Af =y if
the parameters 6 are determined (learned) from example data (training data)
that is generated in a way that is consistent with Af = y.

y
Examples:
© Two-step approaches:
Ho = NooZ, with Ng: X - X (post-processing)
Ko =R oNg, with A\g:Y =Y (pre-processing)
where & is a hand-crafted reconstruction operator.
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Learned Reconstruction Operator
Definition (learned reconstruction operator)
A family of parametrised mappings
oY = X where 0 € ©

is called a learned reconstruction operator for the inverse problem Af =y if
the parameters 6 are determined (learned) from example data (training data)
that is generated in a way that is consistent with Af = y.

y
Examples:
© Two-step approaches:
Ho = NooZ, with Ng: X - X (post-processing)
Ko =R oNg, with A\g:Y =Y (pre-processing)
where & is a hand-crafted reconstruction operator.
@ Learned regulariser: Define Ap : X — R, then:
Zo(y) = argmin D(f) + Ao (f).
fex
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Neural Network Architectures

Architecture: precise description of how 6 parametrises Ag. }

Examples:
» Single layer network
» Sequential deep network
» Convolutional neural networks (CNNs)
» Unrolled/Unfolded neural networks

» Recurrent neural networks (RNNs)
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Convolutional Neural Networks

CNN = NN with convolution operation instead of matrix multiplication )

Max
pooling

Numerical

Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts Fc8: Object Classes

Core idea: use geometry of data (proximity, directions)
» Suitable for imaging problems (e.g., feature extraction)
» Very good performance for (approximately) translation invariant tasks

» Sparse connectivity, parameter sharing, many layers
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A Very Famous CNN: U-Net

O. Ronneberger, P. Fischer and T. Brox
@ U-Net: Convolutional Networks for Biomedical Image Segmentation
MICCAI 2015: 18™ International Conference, 234-241.
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A Very Famous CNN: U-Net

O. Ronneberger, P. Fischer and T. Brox
U-Net: Convolutional Networks for Biomedical Image Segmentation
MICCAI 2015: 18" International Conference, 234-241.

The U-Net architecture is one of the most important and foundational neural
network architectures of today.

» U-Net was initially applied to the segmentation of medical images.
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A Very Famous CNN: U-Net

O. Ronneberger, P. Fischer and T. Brox
@ U-Net: Convolutional Networks for Biomedical Image Segmentation
MICCAI 2015: 18™ International Conference, 234-241.

The U-Net architecture is one of the most important and foundational neural
network architectures of today.

» U-Net was initially applied to the segmentation of medical images.

» It turned out to be useful for many more computer vision tasks, with
semantic segmentation applications being a prominent example.
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A Very Famous CNN: U-Net

O. Ronneberger, P. Fischer and T. Brox
@ U-Net: Convolutional Networks for Biomedical Image Segmentation
MICCAI 2015: 18™ International Conference, 234-241.

The U-Net architecture is one of the most important and foundational neural
network architectures of today.
» U-Net was initially applied to the segmentation of medical images.
» It turned out to be useful for many more computer vision tasks, with
semantic segmentation applications being a prominent example.

» Many variants of the U-net architecture have been developed and applied
in many diverse imaging tasks, including in diffusion models for image
generation models, such as DALL-E and Midjourney.

1PPhys2026
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U-Net: The Original Architecture
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Compared to “classic” CNNs, there are no fully-connected layers in a U-net! )
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U-Net: The Original Architecture

» Contracting path. U-Net uses normal convolutions (3x3 and ReLU) and
pooling to compress the image. The result is that the detailed spatial
information is lost because compared to the initial size the dimension of
height and width is much smaller, but also much deeper. This part of a
U-Net it is similar to “classic” CNNs.

» Expansive path. This part uses transpose convolutions (or up-conv) to
increase the representation size back to the size of the original input
image. Transpose convolutions are a key building block of U-nets as they
allow to take a small(er) input and blow it up into a larger output.

» Skip connections. These are an essential ingredient of the U-net to make
the architecture work better. These are also called copy and crop.

» Output layer. This uses a 1x1 convolution to classify each one of the
pixels in one of the classes. Taking the maximum over the number of
classes provides the final classification and allows to visualise the
segmentation map.
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FBPConvNet: A Post-processing Supervised Approach

K.H. Jin, M.T. McCann, E. Froustey and M. Unser
ﬁ Deep Convolutional Neural Network for Inverse Problems in Imaging
IEEE Trans. Image Proc. 26(9), 4509-4522, 2017

8P
- B
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Skip connection

U-net

spatial dimension : 512x 512
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FBPConvNet in a nutshell:
» Initial reconstruction by FBP

» Learned denoising of the
reconstructed image

» Residual U-Net architecture
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FBPConvNet: A Post-processing Supervised Approach

Aim: Define a network Ay that processes an initial reconstruction 7" =Rty
such that f& is approximated, i.e., & ~ Ag(f).

Some considerations:
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FBPConvNet: A Post-processing Supervised Approach

Aim: Define a network Ay that processes an initial reconstruction } =Ry
such that f& is approximated, i.e., & ~ Ag(f).

Some considerations:

» In practice, the network is trained to provide a residual » = f& — _7"
correction to the initial reconstruction:

FE (I +Mo)f = F+Ao(f)

That is, the network needs to be expressive enough to identify and extract
noise and artifacts to be removed from the image
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FBPConvNet: A Post-processing Supervised Approach

Aim: Define a network Ay that processes an initial reconstruction ;‘ =Ry
such that f& is approximated, i.e., & ~ Ag(f).

Some considerations:

» In practice, the network is trained to provide a residual » = f& — _7"
correction to the initial reconstruction:

FER I+ M) f =F+No(f)

That is, the network needs to be expressive enough to identify and extract
noise and artifacts to be removed from the image

» The reconstruction result depends largely on the quality of the initial
reconstruction and the training data provided
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FBPConvNet: A Post-processing Supervised Approach

Aim: Define a network Ay that processes an initial reconstruction ;‘ =Ry
such that f& is approximated, i.e., & ~ Ag(f).

Some considerations:

» In practice, the network is trained to provide a residual » = f& — _7"
correction to the initial reconstruction:

FEm (T4 0o)f = f+Mo(f)
That is, the network needs to be expressive enough to identify and extract

noise and artifacts to be removed from the image

» The reconstruction result depends largely on the quality of the initial
reconstruction and the training data provided

» There is no guarantee that the reconstructed images are consistent with
the data, i.e., that

AN (f) —ylly s small
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Another Example: Multi-Scale Wavelet Domain Residual Learning

@ Multi-Scale Wavelet Domain Residual Learning for Limited-Angle

J. Gu and J.C. Ye
CT Reconstruction, preprint, 2017 J

D
e

WO -

Level2

» Residual network (like
FBPConvNet) but in
wavelet domain

» Leveraging directional
property of limited angle
artifacts

» Relation to wavelet multiresolution analysis further developed in Deep
Convolutional Framelets

1PPhys2026
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Some Results on Limited-Angle CT: Mayo-60°

fFBP fTV
PSNR: 17.16 PSNR: 25.88

f[Gu & Ye, 2017] fFBPConvNet -f[LtI, 2019]
PSNR: 23.06 PSNR: 27.40 PSNR: 32.77
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Learned lterative Schemes: Unrolled Neural Networks

Unrolling: framework integrating a knowledge-driven model for how data are
generated into a data-driven method for reconstruction via iterative schemes. J

Example: consider linear, variational problems of the form argmin ;g [ Af — yl3

Algorithm Gradient descent Algorithm Learned gradient descent
1: fork=1,2,3,... do 1. for k=1,2,3,...,K do
2 FEf O aAT(AFY —y) 2 fEe (P8, AT(AFY —y))
3: end for 3: Po(y) — FIO
4: end for

> K = # of unrolled iterates
> Ag is a CNN

> learned from training data in X x Y.

Tatiana Bubba Mat ics of X-ray C T
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Learned Gradient Descent

J. Adler and O. Oktem
Learned primal-dual reconstruction
IEEE Trans. Med. Imaging. 37(6), 1322-1332, 2018

AT(Af —y) AT(Af —y)

Unrolling a gradient descent scheme with K = 3 layers and linear operator A.
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Recall ISTA (lIterative Soft-Thresholding Algorithm)

Recall the regularized problem
.1
£ —arguin { 5 147 - "+ XIWS |

and the ISTA update:
P = WIS WS AT AP ATy

where [Sg(x)]; = Sg(x;) = sign(x)(|z| — B)" is the soft-thresholding operator.

Tatiana Bubba ics of X-ray Ci Te

1PPhys2026



Recall ISTA (lIterative Soft-Thresholding Algorithm)

Recall the regularized problem
. 1
£ —arguin { 5 147 - "+ XIWS |
and the ISTA update:
FE = WIS W(FY - ATAFD +9ATy)

where [Sg(x)]; = Sg(x;) = sign(x)(|z| — B)" is the soft-thresholding operator.

In general: PGD & Learned PGD

PO = h(F®,0) = prox,, , (£ — AT (AFP —y"))
> Linear/convolutional layer: 7, AT Af™ (or a neural network)
Bias term: v, Ay
» Activation function: prox, . (or a neural network)

1PPhys2026
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Learned ISTA

Consider variational problems of the form
.1
argmin = || X — WaZ|3 + | Z|1
Zerm 2

where X € R” is a given input vector, W, € R™*™ dictionary matrix and « is
the regularization parameter.

Tatiana Bubba ics of X-ray Ci Te
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Learned ISTA

Consider variational problems of the form
.1
argmin = || X — WaZ|3 + | Z|1
Zerm 2

where X € R” is a given input vector, W, € R™*™ dictionary matrix and « is
the regularization parameter.

Algorithm 1 ISTA Algorithm 3 LISTA::fprop
function ISTA (X, Z, Wy, o, L) LISTA : fprop(X, Z, W, S,0)
Require: L > largest eigenvalue of WJ Wy. ;; Arguments are passed by reference.
Initialize: Z =0, ;; variables Z(t), C(t) and B are saved for bprop.
repeat B=W.X; Z(0) = h¢(B)
Z = Moy (Z — tWT (WaZ - X)) fort=1to 7 do
until change in Z below a threshold Ct)y=B+SZ(t-1)
end function Z(t) = he(C(t))
end for
We is the transpose of the dictionary Z = Z(T)

matrix Wy and S = W;Wd.

K. Gregor and Y. LeCun
ﬁ Learning fast approximations of sparse coding
27" Int. Conf. Machine Learning (ICML 2010)
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Learned ISTA

Algorithm 3 LISTA::fprop
LISTA : fprop(X, Z, W, S,0)
;; Arguments are passed by reference.
X,W ;; variables Z(t), C(t) and B are saved for bprop.
e R
ort=1to o
=S 4 >SS @ =S 4 C() = B+ 52(t - 1)
Z(t) = he(C(t))
end for

Z=2(T)

Learnable parameters (We, S, ) with #; := S = W, W4 weight and
by := WX bias so that:

Z(t) = he(WiZ(t—1)+b) and  Z=(%Bio...0%)(Z(0)

where hg is the shrinkage function acting as pointwise non-linearity.

» Time-unfolded recurrent neural network or feed-forward network in which
S is shared over layers

» The network is trained using training samples through back-propagation
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Some Results on Limited-Angle CT: Ellipses-30°

fISTA -f\IIDDNet, 2021
PSNR "17.83 PSNR: 19.39 PSNR: 25.33
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Supervised VS Self-Supervised Learning

Main drawback: availability of training data, e.g., medical applications
X Need for full data with high radiation dose
X Domain shift: device differences in imaging protocols and resolution
X Global and regional data regulation policies

X Biases in the reconstruction model from differences in demographics
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Supervised VS Self-Supervised Learning

Main drawback: availability of training data, e.g., medical applications
X Need for full data with high radiation dose
X Domain shift: device differences in imaging protocols and resolution
X Global and regional data regulation policies

X Biases in the reconstruction model from differences in demographics

Self-supervised learning

Define a model that uses only acquired measurement to learn a reconstruction.
o Deep Image Prior: solve § € argmin, ||AAg(2) — y|?
o Noise2Noise: solve § € argming E[[|A¢(§) — y||*]

o Many more: Plug-and-Play, Equivariant imaging, ...
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Learning a Regularizer: Plug and Play (PnP)

Plug-and-play priors for model based reconstruction

ﬁS.V. Venkatakrishnan, C.A. Bouman, and B. Wohlberg
IEEE GlobalSIP, 945-948, 2013 J

Consider the general regularized problem:

argmin D(f) + ¢(f) = { 5 AF — ¥’ 3 +¢(5)} -

FerRn

Different choices of ¢ promote different features in the solution. Instead of
handcrafting a regularizer, we can learn its proximal operator!
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Learning a Regularizer: Plug and Play (PnP)

Plug-and-play priors for model based reconstruction

@S.V. Venkatakrishnan, C.A. Bouman, and B. Wohlberg
IEEE GlobalSIP, 945-948, 2013 J

Consider the general regularized problem:

argmin D(f) + ¢(f) = { 5 AF — ¥’ 3 +¢(5)} -

FER™

Different choices of ¢ promote different features in the solution. Instead of
handcrafting a regularizer, we can learn its proximal operator!

Plug and Play (PnP) paradigm
In, e.g., PGD replace prox.,, by a denoiser D,:
FEY =D, (5% — vD(5M)),

where D, is separately trained using pairs (f;, f; + €;) of clear and noisy
images, with €; ~ N(0,0°1).

v
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Plug and Play: Proximable Denoiser

S. Hurault, A. Chambolle, A. Leclaire and N. Papadakis
B Convergent plug-and-play with proximal denoiser and unconstrained
regularization parameter
JMIV, 1-13, 2024

For specific choices of the denoiser, there exists an explicit expression of ¢ such
that D, is the proximity operator of ¢.

Tatiana Bubba ics of X-ray C T

1PPhys2026


https://link.springer.com/article/10.1007/s10851-024-01195-w
https://link.springer.com/article/10.1007/s10851-024-01195-w

Plug and Play: Proximable Denoiser

S. Hurault, A. Chambolle, A. Leclaire and N. Papadakis
@ Convergent plug-and-play with proximal denoiser and unconstrained

regularization parameter
JMIV, 1-13, 2024

For specific choices of the denoiser, there exists an explicit expression of ¢ such
that D, is the proximity operator of ¢.

Example: Gradient Step denoiser
Let g» be l.s.c. and differentiable, such that
Do(f) = f — Vo (f).
In particular, go(f) = 5 ||f — No(f)||? using a neural network N, (f).

If Vgo is Lg,-Lipschitz, Ly, < 1, there exists a Lsgll—weakly convex ¢, s.t.:

Do (f) = prox,_(f), where

bolf) = {ga(Dgl(f)) — 5ID21(f) ~ FIB if £ € Im(D,)

+00 otherwise.

v
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Proximable Gradient Step denoiser

S. Hurault, A. Leclaire and N. Papadakis
@ Proximal denoiser for convergent plug-and-play optimization with
nonconvex regularization, PMLR, 9483-9505, 2022

Using GS denoisers convergence has been established for PnP-PGD:

f(k+1) _ I_)o'(f(k) _ VD(f(k)))

Theorem [Hurault et al. 2022]

Assumptions: e D is bbd below, and s.t. VD is Lp-Lipschitz, with Lp < 1.
® g, is bbd below, and s.t. Vg, Ly, -Lipschitz, with Ly, < 1.

Let F, := D + o with ¢, defined by GS denoiser. Then, we have:
Q F,(f™) is non-increasing and converges.
Q [IF*Y — £® || = 0 with a rate ming<g || F*) — £ = O(1/K).
@ All cluster points of (f(’“))keN are stationary point for F,.

@ If D and g, are KL and semi-algebraic and (f*))xen is bounded, then it
converges with finite length to a stationary point of F5.

Tatiana Bubba Mat ics of X-ray C T y IPPhys2026



https://proceedings.mlr.press/v162/hurault22a/hurault22a.pdf
https://proceedings.mlr.press/v162/hurault22a/hurault22a.pdf

Some Results on Limited-Angle CT: Ellipses-60°

't
fg fFBPConvNet

Fv Fomp
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Summary & Outlook

What we learned today:
» Data-driven inversion: supervised VS unsupervised

» Examples of post-processing, unrolling, PnP strategies

What | do not have time to talk about:
» Implementation details related to architecture design, choice and tuning of
parameters, ...

» There is a zoo of approaches applied to the solution of inverse problems,
even if we just look at tomographic imaging!

ics of X-ray C T y 1PPhys2026
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