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The viscous Hamilton-Jacobi equation

Our aim is to study the existence, uniqueness and large-time
behavior (LTB) of solutions of{

ut −∆u + |Du|m = f (x) in RN × (0,+∞),

u(·, 0) = u0 in RN ,
(VHJ)

• The question of LTB is to determine in some sense the behavior
of u(·, t) as t → +∞.

• The case m > 2 in [Barles et al., 2020] (joint work with
G. Barles and A. Rodríguez ).
• The case 1 < m ≤ 2, joint work with A. Rodríguez.
• The behavior of f and u0 as |x| → +∞ is crucial, especially in

comparison with previous results.
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The viscous Hamilton-Jacobi equation{
ut −∆u + |Du|m = f (x) in RN × (0,+∞),

u(·, 0) = u0 in RN ,
(VHJ)

• For m = 2, this is a deterministic version of the
Kardar-Parisi-Zhang (KPZ) equation ([Kardar et al., 1986]),

• For m > 1, (VHJ) is a simple model of superlinear gradient
dependence,
• (Lasry-Lions 1989 stationary case). Solutions are value

functions for stochastic optimal control problems:

u(x, t) = inf
(as)s

Ex

[∫ t

0
(m− 1)m−

m
m−1 |as|

m
m−1 + f (Xs) ds + u0(Xt)

]
where

dXt = at dt + dBt for t > 0, X0 = x ∈ RN .
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Prior results
• For bounded domain: [Tabet Tchamba, 2010] (m > 2), Barles,

Porretta, Tchamba [Barles et al., 2010] (1 < m ≤ 2).

• Over RN , overlap of results with [Ichihara, 2012] LTB;
Arapostathis, Biswas, Ca�arelli [Arapostathis et al., 2019]
uniqueness of the Ergodic problem, therein obtained by a
combination of PDE, probabilistic and dynamical systems
techniques.
• RN Barles, G. and Meireles [2016]. uniqueness of the Ergodic

problem.
• In the context of weak solutions: [Benachour et al., 2004],

[Biler et al., 2004], [Gallay and Laurençot, 2007],
[Iagar et al., 2010], [Laurençot, 2009].
• First-order equations, results employing dynamical

systems/optimal control arguments:
[Namah and Roquejo�re, 1999], [Barles and Souganidis, 2001],
[Barles and Roquejo�re, 2006], [Ichihara and Ishii, 2009],
[Ishii, 2008], [Ishii, 2009] (review paper), [Barles et al., 2017].
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Bounded domain—well-posedness

For Ω ⊂ RN an open, bounded set and g ∈ C(∂Ω) consider

ut −∆u + |Du|m = f (x) in Ω× (0,+∞)

u = g on ∂Ω× (0,+∞)

u(·, 0) = 0 in Ω.

(VHJb)

• Local existence in C2,1(Ω× (0, T)) for some T ∈ (0,+∞],
[Friedman, 2013], [Quittner and Souplet, 2007].

• Well-posed by [Barles and Da Lio, 2004], assuming generalized
boundary conditions for m > 2 and in the classical sense, for
regular data, for 1 < m ≤ 2.
• Loss of boundary condition for m > 2 many other properties

Porretta, Souplet [2017] and [2020], see also Q.;L Rodriguez
[2018] .
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Bounded domain—the stationary problem

{
−∆w + |Dw|m = f (x) in Ω

w = g on ∂Ω
(S)

• Depending on the data, (S) might not have a solution
([Souplet and Zhang, 2006], [Grenon et al., 2013])



Bounded domain—the ergodic problem

LTB is determined by{
λ−∆φ+ |Dφ|m = f (x) in Ω,

λ−∆φ+ |Dφ|m ≥ f (x) on ∂Ω
(Eb)

where λ ∈ R is an unknown, together with φ ∈ C(Ω).

• There exists a unique value λ∗ ∈ R for which there exists a
solution φ ∈ C(Ω) (unique up to an additive constant).
• Characterization of λ∗:

λ∗ = sup{λ ∈ RN | ∃ψ ∈ C(Ω), λ−∆ψ + |Dψ|m ≤ f (x)}

• Studied in the classical work [Lasry and Lions, 1989]; see
further properties in, cf. [Tabet Tchamba, 2010],
[Barles et al., 2010].
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Bounded domain—the ergodic problem

The “state constraints” boundary condition

λ−∆φ+ |Dφ|m ≥ f (x) on ∂Ω,

is meant in a generalized sense.

• for m > 2, φ ∈ C(Ω) (i.e., remains bounded),
• for 1 < m ≤ 2, φ→ +∞ as x → ∂Ω.
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Bounded domain—ergodic LTB

• When m > 2, if (S) has a solution w, then u(·, t)→ w as
t → +∞, uniformly over Ω̄.

• If (S) is not solvable, then λ∗ < 0 in (Eb) and
u(·, t)− λ∗t → φ+ c as t → +∞ uniformly over Ω̄, for some
c ∈ R. [Tabet Tchamba, 2010]
• For 1 < m ≤ 2, LTB also depends on m: e.g., if 1 < m ≤ 3

2 and
λ∗ < 0, then a partial convergence holds: u(x,t)

t → λ∗ locally
uniformly in Ω but it can happen that u(·, t)− λ∗t → −∞ in Ω
[Barles et al., 2010].
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Unbounded domains—m > 2

Theorem (Barles, R., Quaas, 2020)

Assume f ∈ W 1,∞
loc (RN ) and u0 ∈ C(RN ) are bounded from below.

Then, there exists a unique, nonnegative, continuous solution of (VHJ).

• Existence: aproximation by solutions on bounded domains,
compactness arguments.
• Uniqueness: comparison principle for bounded-from-below

solutions.
• Once existence is proven, we may assume f , u0 ≥ 0 with no

loss of generality:

u 7→ u + C1t + C2 gives f 7→ f + C1, u0 7→ u0 + C2

.
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The ergodic problem in RN

LTB will again be determined by the ergodic problem,

λ−∆φ+ |Dφ|m = f (x) in RN (Eλ)

where both λ ∈ R and φ : RN → R are unknown.

• For λ ≤ infRN f , there exist multiple solutions (constant
functions).
• Generalized ergodic constant is de�ned as

λ∗ := sup{λ ∈ R | ∃ψ ∈ C2(RN ), λ−∆ψ + |Dψ|m ≤ f (x)};

this is analogous to the de�nition of the generalized principal
eigenvalue in [Berestycki et al., 1994].
• If f is coercive, there exists a bounded from below solution of

(Eλ∗ )
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The ergodic problem in RN in the case m > 2

Theorem ([Barles and Meireles, 2016])
Assume that f ∈ W 1,∞

loc (RN ) is coercive. If φ is a solution of (Eλ1 ) and
ψ is a solution of (Eλ2 ), both bounded from below, then λ1 = λ2 and
there exists a constant c ∈ R such that φ = ψ + c.

• In short, if m > 2 there is a unique solution pair (λ∗, φ) in the
class of bounded from below solutions.
• φ is unique up to additive constants, we may assume

infRN φ = 0.
• Uniqueness follows from a comparison principle on exterior

domains, i.e., RN\BR for large R > 0.



LTB, assumptions on f case m > 2

• There exists an increasing function ϕ : [0,+∞)→ [0,+∞) and
constants α,ϕ0, f0 > 0 such that for all r ≥ 0,

ϕ−1
0 rα ≤ ϕ(r)

and for all x ∈ RN and r = |x|,

f −1
0 ϕ(r) ≤ f (x) ≤ f0(ϕ(r) + 1). (H1)



LTB, convergence result casem > 2

Theorem (Barles, R., Quaas)

Assuming (H1), there exists ĉ ∈ R depending on f and u0 such that

u(x, t)− λ∗t → φ(x) + ĉ locally uniformly in RN as t → +∞.

• No assumptions on the behaviour of u0 as |x| → +∞; in
particular, it might be very di�erent from that of φ.

• In [Ichihara, 2012], this is shown for f (x) ≈ |x|β , where
β ≥ m∗ = m

m−1 , and u0 has at most polynomial growth.
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Elements of the proof case m > 2

• For comparison in (VHJ), we use the Hopf-Cole transform
z(x, t) = −e−u(x,t) and obtain bounded sub- and super
solutions of

zt −∆z + N (x, z,Dz) = 0,

where N (x, r, p) = r
(
f (x) +

∣∣Dz
z

∣∣2 − ∣∣Dzz ∣∣m).

• We use an ODE approach to construct sub- and super solutions
of

vt −∆v + |Dv|m = f (x)− λ∗;
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Behavior of φ

Lemma

lim
|x|→∞

φ(x)

|x|
=∞

Proof. Blow up argument to �nd a supersolution of the eikonal
equation Comparison with eikonal equation we �nd a contradiction.



Lemma (Sub- and supersolutions)

1 There exists a constant σ > 0 such that U (·, t)→ φ− σ and
V (·, t)→ φ+ σ locally uniformly in RN as t →∞.

2 For any �xed t̂ > 0,

V (x, t̂)→ +∞ as x → ∂Qt̂ (x ∈ Qt̂).

3 There exists M > 0 such that, for all t > 0,

U (x, t) ≤ t + M for all x ∈ RN .



The Supersolution

V (x, t) = φ(x) + χ(φ(x)− (t + t0)) +

∫ t

0
(τ α̂ + 1)−β̂ dτ.


χ′′ = C(χ′)β1(1 + χ′)β2 in (−∞, b),
χ(0) = χ′(0) = 0,
χ(s) ≡ +∞ for all s ≥ b.

(SUP-ODE)

Choice of constants t0 > 0 (to be chosen) determines “when the
supersolution comes into play”.

Suitable choices of β1 ∈ (0, 1), β1 + β2 > 1 imply that (SUP-ODE)
has a nontrivial solution and β̂ = β̂(β1, β2, p) is large, hence

σ :=

∫ ∞
0

(τ α̂ + 1)−β̂ dτ <∞.



The Supersolution

V (x, t) = φ(x) + χ(φ(x)− (t + t0)) +

∫ t

0
(τ α̂ + 1)−β̂ dτ.

0 b

χ = χ(s)



The Subsolution

U (x, t) = t + t0 + ξ(φ(x)− (t + t0))−
∫ t

0
(τ α̂ + 1)−β̂ dτ.

{
ξ′′ = −C(1− ξ)η1(ξ′)η2 in (0,∞),
ξ(0) = 0, ξ′(0) = 1, (SUB-ODE)

with t0, η1, η2 > 0 to be chosen; α̂, β̂ > 0, as before.



The Subsolution

U (x, t) = t + t0 + ξ(φ(x)− (t + t0))−
∫ t

0
(τ α̂ + 1)−β̂ dτ.

0

M

ξ = ξ(s)



Convergence argument

Lemma
u(x, t)− λ∗t is bounded over compact sets, uniformly with respect to
t > 0.

The Lemma allows us to de�ne upper and lower limits at t → +∞
for u(x, t)− λ∗t.

Together with local gradient bounds [Barles 2017] by compactness
we have convergence along subsequences (tn)n∈N, tn → +∞ over
compact sets.

The SMP implies the limit is φ+ ĉ, for some ĉ ∈ R.



Full convergence

To prove convergence on K̂ ⊂ RN we use
• Convergent subsequence on BR for BR ⊃ K̂ , with R >> 1
• Finer parametrization of sub-, supersolutions UR, VR:

For R > 0 and (x, t) ∈ RN × (0,+∞),

VR(x, t) = φ(x)+ĉ+χ(φ(x)+ĉ−(t+R))+

∫ t+R

R
(τ α̂+1)−β̂ dτ+

1
R
,

and similarly for a subsolution UR.
• Note that the “extra terms” vanish as R→ +∞.



Setting for 1 < m ≤ 2

• Existence of solutions for (VHJ), (Eλ), holds roughly as before.

• No comparison principle, nor uniqueness of solutions for (VHJ)
for f as general as before.
• Convergence result for any solution of (VHJ)
• Uniqueness of solution pairs for (Eλ) given by

[Arapostathis et al., 2019] by dynamical systems arguments.
• We obtain partial results towards uniqueness for (Eλ) even for

sub-solutionby “PDE techniques”, but there is no comparison
principle for (Eλ) !!
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LTB, assumptions on f for the case 1 < m ≤ 2
• There exists a nondecreasing function ϕ : [0,∞)→ [0,∞) and
c > 0 such that, if r = |x|, then

c−1ϕ(r) ≤ f (x) ≤ c(ϕ(r) + 1)

and for su�ciently large ρ > 0,

ρϕ(ρ+ 1)
1
m ≤ ϕ(ρ). (H2)

•

lim sup
x→+∞

|Df (x)|
1

2m−1

|f (x)|
1
m

< +∞ (H3)

• The initial data satis�es

u0(x) ≤ c0 + c2|x|

[
inf

RN\B 1
2 |x|

f

] 1
m

(H4)

for a precise value of c2 > 0 and some c0 ≥ 0.



Proposition

Assume f ∈ W 1,∞
loc (RN ) is coercive. If χ and v ∈ USC(RN ) are

respectively a solution and a subsolution of (Eλ∗ ), both bounded from
below, then there exists c ∈ R such that v(x) = χ(x) + c for all
x ∈ RN .

The result follows from approximation of (Eλ) over bounded
domains and a well chosen perturbation of solutions



Proposition

Assume f ∈ W 1,∞
loc (RN ) is coercive. If χ and v ∈ USC(RN ) are

respectively a solution and a subsolution of (Eλ∗ ), both bounded from
below, then there exists c ∈ R such that v(x) = χ(x) + c for all
x ∈ RN .
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LTB, convergence result 1 < m ≤ 2

Theorem (Quaas, R.)

Assume (H2)-(H4) hold. Then, u(·, t)− λ∗t → φ+ ĉ locally uniformly
over RN , for some constant ĉ ∈ R, where u = u(x, t) is any solution of
(VHJ) and φ is the unique (normalized) solution of (Eλ∗ ).



Elements of the proof 1 < m ≤ 2

• Supersolutions are given by{
λR −∆φR + |DφR|m = f (x) in BR
λR −∆φR + |DφR|m ≥ f (x) on ∂BR,

Recall we have φR(x)→ +∞ as x → ∂BR.

• Subsolutions are given by

νR + ∆ψR + |DψR|m = fR in RN/2SRZN ,

where fR is the periodic extension of min{f , R} to RN/2SRZN

for a suitable SR.
• Comparison/maximum principle arguments are made at the

level of bounded domains or for (periodic) bounded solutions.
• We have (λR, φR), (νR, ψR)→ (λ∗, φ) as R→ +∞.
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• I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for
singular or degenerate fully nonlinear operators (bounded
domain).

• LTB ? All space?
• Nonlocal Periodic setting LTB Barles , Koike Ley, Topp. 2014
• Nonlocal ergodic problem? Dávila, Q. Topp (bounded domain)

not clear not uniqueness even in the coercive case.
• Nonlocal ergodic all space: Biswas Topp.
• LTB ?
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