Large-time behavior of viscous Hamilton-Jacobi equations

A. Quaas

Departamento de Matemática UTFSM

Joint work with G. Barles and A. Rodriguez

Rio.-24-June-2024

Our aim is to study the existence, uniqueness and large-time behavior (LTB) of solutions of

$$\begin{cases} u_t - \Delta u + |Du|^m = f(x) & \text{in } \mathbb{R}^N \times (0, +\infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^N, \end{cases}$$
(VHJ)

 The question of LTB is to determine in some sense the behavior of *u*(·, *t*) as *t* → +∞.

Our aim is to study the existence, uniqueness and large-time behavior (LTB) of solutions of

$$\begin{cases} u_t - \Delta u + |Du|^m = f(x) & \text{in } \mathbb{R}^N \times (0, +\infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^N, \end{cases}$$
(VHJ)

- The question of LTB is to determine in some sense the behavior of *u*(·, *t*) as *t* → +∞.
- The case m > 2 in [Barles et al., 2020] (joint work with G. Barles and A. Rodríguez).

Our aim is to study the existence, uniqueness and large-time behavior (LTB) of solutions of

$$\begin{cases} u_t - \Delta u + |Du|^m = f(x) & \text{in } \mathbb{R}^N \times (0, +\infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^N, \end{cases}$$
(VHJ)

- The question of LTB is to determine in some sense the behavior of *u*(·, *t*) as *t* → +∞.
- The case m > 2 in [Barles et al., 2020] (joint work with G. Barles and A. Rodríguez).
- The case $1 < m \le 2$, joint work with A. Rodríguez.

Our aim is to study the existence, uniqueness and large-time behavior (LTB) of solutions of

$$\begin{cases} u_t - \Delta u + |Du|^m = f(x) & \text{in } \mathbb{R}^N \times (0, +\infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^N, \end{cases}$$
(VHJ)

- The question of LTB is to determine in some sense the behavior of *u*(·, *t*) as *t* → +∞.
- The case m > 2 in [Barles et al., 2020] (joint work with G. Barles and A. Rodríguez).
- The case $1 < m \le 2$, joint work with A. Rodríguez.
- The behavior of *f* and *u*₀ as |*x*| → +∞ is crucial, especially in comparison with previous results.

$$\begin{cases} u_t - \Delta u + |Du|^m = f(x) & \text{in } \mathbb{R}^N \times (0, +\infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^N, \end{cases}$$
(VHJ)

 For *m* = 2, this is a deterministic version of the Kardar-Parisi-Zhang (KPZ) equation ([Kardar et al., 1986]),

$$\begin{cases} u_t - \Delta u + |Du|^m = f(x) & \text{in } \mathbb{R}^N \times (0, +\infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^N, \end{cases}$$
(VHJ)

- For *m* = 2, this is a deterministic version of the Kardar-Parisi-Zhang (KPZ) equation ([Kardar et al., 1986]),
- For *m* > 1, (VHJ) is a simple model of superlinear gradient dependence,

$$\begin{cases} u_t - \Delta u + |Du|^m = f(x) & \text{in } \mathbb{R}^N \times (0, +\infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^N, \end{cases}$$
(VHJ)

- For *m* = 2, this is a deterministic version of the Kardar-Parisi-Zhang (KPZ) equation ([Kardar et al., 1986]),
- For *m* > 1, (VHJ) is a simple model of superlinear gradient dependence,
- (Lasry-Lions 1989 stationary case). Solutions are value functions for stochastic optimal control problems:

$$u(x,t) = \inf_{(a_s)_s} E_x \left[\int_0^t (m-1) m^{-\frac{m}{m-1}} |a_s|^{\frac{m}{m-1}} + f(X_s) \, ds + u_0(X_t) \right]$$

where

$$dX_t = a_t dt + dB_t$$
 for $t > 0, X_0 = x \in \mathbb{R}^N$.

• For bounded domain: [Tabet Tchamba, 2010] (m > 2), Barles, Porretta, Tchamba [Barles et al., 2010] ($1 < m \le 2$).

- For bounded domain: [Tabet Tchamba, 2010] (m > 2), Barles, Porretta, Tchamba [Barles et al., 2010] ($1 < m \le 2$).
- Over ℝ^N, overlap of results with [Ichihara, 2012] LTB; Arapostathis, Biswas, Caffarelli [Arapostathis et al., 2019] uniqueness of the Ergodic problem, therein obtained by a combination of PDE, probabilistic and dynamical systems techniques.

- For bounded domain: [Tabet Tchamba, 2010] (m > 2), Barles, Porretta, Tchamba [Barles et al., 2010] ($1 < m \le 2$).
- Over ℝ^N, overlap of results with [Ichihara, 2012] LTB; Arapostathis, Biswas, Caffarelli [Arapostathis et al., 2019] uniqueness of the Ergodic problem, therein obtained by a combination of PDE, probabilistic and dynamical systems techniques.
- \mathbb{R}^N Barles, G. and Meireles [2016]. uniqueness of the Ergodic problem.

- For bounded domain: [Tabet Tchamba, 2010] (m > 2), Barles, Porretta, Tchamba [Barles et al., 2010] ($1 < m \le 2$).
- Over ℝ^N, overlap of results with [Ichihara, 2012] LTB; Arapostathis, Biswas, Caffarelli [Arapostathis et al., 2019] uniqueness of the Ergodic problem, therein obtained by a combination of PDE, probabilistic and dynamical systems techniques.
- \mathbb{R}^N Barles, G. and Meireles [2016]. uniqueness of the Ergodic problem.
- In the context of weak solutions: [Benachour et al., 2004], [Biler et al., 2004], [Gallay and Laurençot, 2007], [Iagar et al., 2010], [Laurençot, 2009].

- For bounded domain: [Tabet Tchamba, 2010] (m > 2), Barles, Porretta, Tchamba [Barles et al., 2010] ($1 < m \le 2$).
- Over ℝ^N, overlap of results with [Ichihara, 2012] LTB; Arapostathis, Biswas, Caffarelli [Arapostathis et al., 2019] uniqueness of the Ergodic problem, therein obtained by a combination of PDE, probabilistic and dynamical systems techniques.
- \mathbb{R}^N Barles, G. and Meireles [2016]. uniqueness of the Ergodic problem.
- In the context of weak solutions: [Benachour et al., 2004], [Biler et al., 2004], [Gallay and Laurençot, 2007], [Iagar et al., 2010], [Laurençot, 2009].
- First-order equations, results employing dynamical systems/optimal control arguments: [Namah and Roquejoffre, 1999], [Barles and Souganidis, 2001], [Barles and Roquejoffre, 2006], [Ichihara and Ishii, 2009], [Ishii, 2008], [Ishii, 2009] (review paper), [Barles et al., 2017].

Bounded domain-well-posedness

For $\Omega \subset \mathbb{R}^N$ an open, bounded set and $g \in C(\partial \Omega)$ consider

$$u_t - \Delta u + |Du|^m = f(x) \quad \text{in } \Omega \times (0, +\infty)$$
$$u = g \quad \text{on } \partial\Omega \times (0, +\infty) \qquad (\text{VHJ}_b)$$
$$u(\cdot, 0) = 0 \quad \text{in } \overline{\Omega}.$$

• Local existence in $C^{2,1}(\Omega \times (0,T))$ for some $T \in (0,+\infty]$, [Friedman, 2013], [Quittner and Souplet, 2007].

Bounded domain—well-posedness

For $\Omega \subset \mathbb{R}^N$ an open, bounded set and $g \in C(\partial \Omega)$ consider

$$u_t - \Delta u + |Du|^m = f(x) \quad \text{in } \Omega \times (0, +\infty)$$

$$u = g \quad \text{on } \partial\Omega \times (0, +\infty) \qquad (\text{VHJ}_b)$$

$$u(\cdot, 0) = 0 \quad \text{in } \overline{\Omega}.$$

- Local existence in $C^{2,1}(\Omega \times (0, T))$ for some $T \in (0, +\infty]$, [Friedman, 2013], [Quittner and Souplet, 2007].
- Well-posed by [Barles and Da Lio, 2004], assuming *generalized boundary conditions* for m > 2 and in the classical sense, for regular data, for $1 < m \le 2$.

Bounded domain-well-posedness

For $\Omega \subset \mathbb{R}^N$ an open, bounded set and $g \in C(\partial \Omega)$ consider

$$u_t - \Delta u + |Du|^m = f(x) \quad \text{in } \Omega \times (0, +\infty)$$

$$u = g \quad \text{on } \partial\Omega \times (0, +\infty) \qquad (VHJ_b)$$

$$u(\cdot, 0) = 0 \quad \text{in } \overline{\Omega}.$$

- Local existence in $C^{2,1}(\Omega \times (0, T))$ for some $T \in (0, +\infty]$, [Friedman, 2013], [Quittner and Souplet, 2007].
- Well-posed by [Barles and Da Lio, 2004], assuming *generalized boundary conditions* for m > 2 and in the classical sense, for regular data, for $1 < m \le 2$.
- Loss of boundary condition for m > 2 many other properties Porretta, Souplet [2017] and [2020], see also Q.;L Rodriguez [2018].

Bounded domain—the stationary problem

$$\begin{cases} -\Delta w + |Dw|^m = f(x) & \text{in } \Omega\\ w = g & \text{on } \partial \Omega \end{cases}$$
(S)

• Depending on the data, (S) might not have a solution ([Souplet and Zhang, 2006], [Grenon et al., 2013])

LTB is determined by

$$\begin{cases} \lambda - \Delta \phi + |D\phi|^m = f(x) & \text{in } \Omega, \\ \lambda - \Delta \phi + |D\phi|^m \ge f(x) & \text{on } \partial \Omega \end{cases}$$
(E_b)

where $\lambda \in \mathbb{R}$ is an unknown, together with $\phi \in C(\Omega)$.

LTB is determined by

$$\begin{cases} \lambda - \Delta \phi + |D\phi|^m = f(x) & \text{in } \Omega, \\ \lambda - \Delta \phi + |D\phi|^m \ge f(x) & \text{on } \partial \Omega \end{cases}$$
(E_b)

where $\lambda \in \mathbb{R}$ is an unknown, together with $\phi \in C(\Omega)$.

There exists a unique value λ* ∈ ℝ for which there exists a solution φ ∈ C(Ω) (unique up to an additive constant).

LTB is determined by

$$\begin{cases} \lambda - \Delta \phi + |D\phi|^m = f(x) & \text{in } \Omega, \\ \lambda - \Delta \phi + |D\phi|^m \ge f(x) & \text{on } \partial \Omega \end{cases}$$
(E_b)

where $\lambda \in \mathbb{R}$ is an unknown, together with $\phi \in C(\Omega)$.

- There exists a unique value λ* ∈ ℝ for which there exists a solution φ ∈ C(Ω) (unique up to an additive constant).
- Characterization of λ^* :

$$\lambda^* = \sup\{\lambda \in \mathbb{R}^N \mid \exists \psi \in C(\Omega), \ \lambda - \Delta \psi + |D\psi|^m \le f(x)\}$$

LTB is determined by

$$\begin{cases} \lambda - \Delta \phi + |D\phi|^m = f(x) & \text{in } \Omega, \\ \lambda - \Delta \phi + |D\phi|^m \ge f(x) & \text{on } \partial \Omega \end{cases}$$
(E_b)

where $\lambda \in \mathbb{R}$ is an unknown, together with $\phi \in C(\Omega)$.

- There exists a unique value λ* ∈ ℝ for which there exists a solution φ ∈ C(Ω) (unique up to an additive constant).
- Characterization of λ*:

$$\lambda^* = \sup\{\lambda \in \mathbb{R}^N \mid \exists \psi \in C(\Omega), \ \lambda - \Delta \psi + |D\psi|^m \le f(x)\}$$

• Studied in the classical work [Lasry and Lions, 1989]; see further properties in, cf. [Tabet Tchamba, 2010], [Barles et al., 2010].

The "state constraints" boundary condition

$$\lambda - \Delta \phi + |D\phi|^m \ge f(x) \quad \text{on } \partial\Omega,$$

is meant in a generalized sense.

The "state constraints" boundary condition

$$\lambda - \Delta \phi + |D\phi|^m \ge f(x) \quad \text{on } \partial\Omega,$$

is meant in a generalized sense.

• for $m > 2, \phi \in C(\overline{\Omega})$ (i.e., remains bounded),

The "state constraints" boundary condition

$$\lambda - \Delta \phi + |D\phi|^m \ge f(x) \quad \text{on } \partial\Omega,$$

is meant in a generalized sense.

- for m > 2, $\phi \in C(\overline{\Omega})$ (i.e., remains bounded),
- for $1 < m \leq 2$, $\phi \to +\infty$ as $x \to \partial \Omega$.

Bounded domain—ergodic LTB

• When m > 2, if (S) has a solution w, then $u(\cdot, t) \to w$ as $t \to +\infty$, uniformly over $\overline{\Omega}$.

Bounded domain—ergodic LTB

- When m > 2, if (S) has a solution w, then $u(\cdot, t) \to w$ as $t \to +\infty$, uniformly over $\overline{\Omega}$.
- If (S) is not solvable, then $\lambda^* < 0$ in (E_b) and $u(\cdot, t) - \lambda^* t \rightarrow \phi + c$ as $t \rightarrow +\infty$ uniformly over $\overline{\Omega}$, for some $c \in \mathbb{R}$. [Tabet Tchamba, 2010]

Bounded domain—ergodic LTB

- When m > 2, if (S) has a solution w, then $u(\cdot, t) \to w$ as $t \to +\infty$, uniformly over $\overline{\Omega}$.
- If (S) is not solvable, then $\lambda^* < 0$ in (E_b) and $u(\cdot, t) - \lambda^* t \rightarrow \phi + c$ as $t \rightarrow +\infty$ uniformly over $\overline{\Omega}$, for some $c \in \mathbb{R}$. [Tabet Tchamba, 2010]
- For $1 < m \le 2$, LTB also depends on m: e.g., if $1 < m \le \frac{3}{2}$ and $\lambda^* < 0$, then a partial convergence holds: $\frac{u(x,t)}{t} \to \lambda^*$ locally uniformly in Ω but it can happen that $u(\cdot, t) \lambda^* t \to -\infty$ in Ω [Barles et al., 2010].

Theorem (Barles, R., Quaas, 2020)

Assume $f \in W_{loc}^{1,\infty}(\mathbb{R}^N)$ and $u_0 \in C(\mathbb{R}^N)$ are bounded from below. Then, there exists a unique, nonnegative, continuous solution of (VHJ).

Theorem (Barles, R., Quaas, 2020)

Assume $f \in W_{loc}^{1,\infty}(\mathbb{R}^N)$ and $u_0 \in C(\mathbb{R}^N)$ are bounded from below. Then, there exists a unique, nonnegative, continuous solution of (VHJ).

• *Existence:* aproximation by solutions on bounded domains, compactness arguments.

Theorem (Barles, R., Quaas, 2020)

Assume $f \in W_{loc}^{1,\infty}(\mathbb{R}^N)$ and $u_0 \in C(\mathbb{R}^N)$ are bounded from below. Then, there exists a unique, nonnegative, continuous solution of (VHJ).

- *Existence:* aproximation by solutions on bounded domains, compactness arguments.
- *Uniqueness:* comparison principle for bounded-from-below solutions.

•

Theorem (Barles, R., Quaas, 2020)

Assume $f \in W_{loc}^{1,\infty}(\mathbb{R}^N)$ and $u_0 \in C(\mathbb{R}^N)$ are bounded from below. Then, there exists a unique, nonnegative, continuous solution of (VHJ).

- *Existence:* aproximation by solutions on bounded domains, compactness arguments.
- *Uniqueness:* comparison principle for bounded-from-below solutions.
- Once existence is proven, we may assume *f*, *u*₀ ≥ 0 with no loss of generality:

 $u \mapsto u + C_1 t + C_2$ gives $f \mapsto f + C_1, u_0 \mapsto u_0 + C_2$

LTB will again be determined by the ergodic problem,

$$\lambda - \Delta \phi + |D\phi|^m = f(x) \quad \text{in } \mathbb{R}^N \tag{E}_{\lambda}$$

where both $\lambda \in \mathbb{R}$ and $\phi : \mathbb{R}^N \to \mathbb{R}$ are unknown.

LTB will again be determined by the ergodic problem,

$$\lambda - \Delta \phi + |D\phi|^m = f(x) \quad \text{in } \mathbb{R}^N \tag{E}_{\lambda}$$

where both $\lambda \in \mathbb{R}$ and $\phi : \mathbb{R}^N \to \mathbb{R}$ are unknown.

For λ ≤ inf_{ℝ^N} f, there exist multiple solutions (constant functions).

LTB will again be determined by the ergodic problem,

$$\lambda - \Delta \phi + |D\phi|^m = f(x) \quad \text{in } \mathbb{R}^N \tag{E}_{\lambda}$$

where both $\lambda \in \mathbb{R}$ and $\phi : \mathbb{R}^N \to \mathbb{R}$ are unknown.

- For λ ≤ inf_{ℝ^N} f, there exist multiple solutions (constant functions).
- Generalized ergodic constant is defined as

 $\lambda^* := \sup\{\lambda \in \mathbb{R} \mid \exists \psi \in C^2(\mathbb{R}^N), \lambda - \Delta \psi + |D\psi|^m \le f(x)\};\$

this is analogous to the definition of the generalized principal eigenvalue in [Berestycki et al., 1994].

LTB will again be determined by the ergodic problem,

$$\lambda - \Delta \phi + |D\phi|^m = f(x) \quad \text{in } \mathbb{R}^N \tag{E}_{\lambda}$$

where both $\lambda \in \mathbb{R}$ and $\phi : \mathbb{R}^N \to \mathbb{R}$ are unknown.

- For λ ≤ inf_{ℝ^N} f, there exist multiple solutions (constant functions).
- Generalized ergodic constant is defined as

 $\lambda^* := \sup\{\lambda \in \mathbb{R} \mid \exists \psi \in C^2(\mathbb{R}^N), \lambda - \Delta \psi + |D\psi|^m \le f(x)\};\$

this is analogous to the definition of the generalized principal eigenvalue in [Berestycki et al., 1994].

• If *f* is coercive, there exists a bounded from below solution of (E_{λ^*})

The ergodic problem in \mathbb{R}^N in the case m > 2

Theorem ([Barles and Meireles, 2016])

Assume that $f \in W_{loc}^{1,\infty}(\mathbb{R}^N)$ is coercive. If ϕ is a solution of (E_{λ_1}) and ψ is a solution of (E_{λ_2}) , both bounded from below, then $\lambda_1 = \lambda_2$ and there exists a constant $c \in \mathbb{R}$ such that $\phi = \psi + c$.

- In short, if *m* > 2 there is a unique solution pair (λ*, φ) in the class of bounded from below solutions.
- ϕ is unique up to additive constants, we may assume $\inf_{\mathbb{R}^N} \phi = 0.$
- Uniqueness follows from a comparison principle on exterior domains, i.e., ℝ^N\B_R for large R > 0.

LTB, assumptions on f case m > 2

• There exists an increasing function $\varphi : [0, +\infty) \to [0, +\infty)$ and constants $\alpha, \varphi_0, f_0 > 0$ such that for all $r \ge 0$,

$$\varphi_0^{-1}r^\alpha \leq \varphi(r)$$

and for all $x \in \mathbb{R}^N$ and r = |x|,

$$f_0^{-1}\varphi(r) \le f(x) \le f_0(\varphi(r) + 1). \tag{H1}$$

LTB, convergence result case m > 2

Theorem (Barles, R., Quaas)

Assuming (H1), there exists $\hat{c} \in \mathbb{R}$ depending on f and u_0 such that $u(x, t) - \lambda^* t \to \phi(x) + \hat{c}$ locally uniformly in \mathbb{R}^N as $t \to +\infty$.

No assumptions on the behaviour of u₀ as |x| → +∞; in particular, it might be very different from that of φ.

LTB, convergence result case m > 2

Theorem (Barles, R., Quaas)

Assuming (H1), there exists $\hat{c} \in \mathbb{R}$ depending on f and u_0 such that

 $u(x,t) - \lambda^* t \to \phi(x) + \hat{c}$ locally uniformly in \mathbb{R}^N as $t \to +\infty$.

- No assumptions on the behaviour of u_0 as $|x| \to +\infty$; in particular, it might be very different from that of ϕ .
- In [Ichihara, 2012], this is shown for $f(x) \approx |x|^{\beta}$, where $\beta \ge m^* = \frac{m}{m-1}$, and u_0 has at most polynomial growth.

Elements of the proof case m > 2

• For comparison in (VHJ), we use the Hopf-Cole transform $z(x, t) = -e^{-u(x,t)}$ and obtain bounded sub- and super solutions of

$$z_t - \Delta z + N(x, z, Dz) = 0,$$

where $N(x, r, p) = r \left(f(x) + \left| \frac{Dz}{z} \right|^2 - \left| \frac{Dz}{z} \right|^m \right).$

Elements of the proof case m > 2

• For comparison in (VHJ), we use the Hopf-Cole transform $z(x, t) = -e^{-u(x,t)}$ and obtain bounded sub- and super solutions of

$$z_t - \Delta z + N(x, z, Dz) = 0,$$

where
$$N(x, r, p) = r\left(f(x) + \left|\frac{Dz}{z}\right|^2 - \left|\frac{Dz}{z}\right|^m\right)$$
.

 We use an ODE approach to construct sub- and super solutions of

$$v_t - \Delta v + |Dv|^m = f(x) - \lambda^*;$$

Behavior of ϕ

Lemma

$$\lim_{|x|\to\infty}\frac{\phi(x)}{|x|}=\infty$$

Proof. Blow up argument to find a supersolution of the eikonal equation Comparison with eikonal equation we find a contradiction.

Lemma (Sub- and supersolutions)

- There exists a constant $\sigma > 0$ such that $U(\cdot, t) \to \phi \sigma$ and $V(\cdot, t) \to \phi + \sigma$ locally uniformly in \mathbb{R}^N as $t \to \infty$.
- **2** For any fixed $\hat{t} > 0$,

$$V(x, \hat{t}) \to +\infty$$
 as $x \to \partial Q_{\hat{t}} \ (x \in Q_{\hat{t}})$.

3 There exists M > 0 such that, for all t > 0,

 $U(x,t) \leq t + M$ for all $x \in \mathbb{R}^N$.

The Supersolution

$$V(x,t) = \phi(x) + \chi(\phi(x) - (t+t_0)) + \int_0^t (\tau^{\hat{\alpha}} + 1)^{-\hat{\beta}} d\tau.$$

$$\begin{cases} \chi'' = C(\chi')^{\beta_1} (1+\chi')^{\beta_2} & \text{in } (-\infty, b), \\ \chi(0) = \chi'(0) = 0, & \text{(SUP-ODE)} \\ \chi(s) \equiv +\infty & \text{for all } s \ge b. \end{cases}$$

- 4

Choice of constants $t_0 > 0$ (to be chosen) determines "when the supersolution comes into play".

Suitable choices of $\beta_1 \in (0, 1)$, $\beta_1 + \beta_2 > 1$ imply that (SUP-ODE) has a nontrivial solution and $\hat{\beta} = \hat{\beta}(\beta_1, \beta_2, p)$ is large, hence

$$\sigma := \int_0^\infty (au^{\hatlpha} + 1)^{-\hateta} \, d au < \infty.$$

The Supersolution

The Subsolution

$$U(x,t) = t + t_0 + \xi(\phi(x) - (t+t_0)) - \int_0^t (\tau^{\hat{\alpha}} + 1)^{-\hat{\beta}} d\tau.$$

$$\begin{cases} \xi'' = -C(1-\xi)^{\eta_1}(\xi')^{\eta_2} & \text{in } (0,\infty), \\ \xi(0) = 0, \ \xi'(0) = 1, \end{cases}$$
(SUB-ODE)

with $t_0, \eta_1, \eta_2 > 0$ to be chosen; $\hat{\alpha}, \hat{\beta} > 0$, as before.

The Subsolution

$$U(x,t) = t + t_0 + \xi(\phi(x) - (t + t_0)) - \int_0^t (\tau^{\hat{\alpha}} + 1)^{-\hat{\beta}} d\tau.$$

Convergence argument

Lemma

 $u(x, t) - \lambda^* t$ is bounded over compact sets, uniformly with respect to t > 0.

The Lemma allows us to define upper and lower limits at $t \to +\infty$ for $u(x, t) - \lambda^* t$.

Together with local gradient bounds [Barles 2017] by compactness we have convergence along subsequences $(t_n)_{n\in\mathbb{N}}$, $t_n \to +\infty$ over compact sets.

The SMP implies the limit is $\phi + \hat{c}$, for some $\hat{c} \in \mathbb{R}$.

Full convergence

To prove convergence on $\widehat{K} \subset \mathbb{R}^N$ we use

- Convergent subsequence on \overline{B}_R for $B_R \supset \widehat{K}$, with R >> 1
- Finer parametrization of sub-, supersolutions U_R , V_R : For R > 0 and $(x, t) \in \mathbb{R}^N \times (0, +\infty)$,

$$V_R(x,t) = \phi(x) + \hat{c} + \chi(\phi(x) + \hat{c} - (t+R)) + \int_R^{t+R} (\tau^{\hat{\alpha}} + 1)^{-\hat{\beta}} d\tau + \frac{1}{R},$$

and similarly for a subsolution U_R .

• Note that the "extra terms" vanish as $R \to +\infty$.

Setting for $1 < m \leq 2$

• Existence of solutions for (VHJ), (E_{λ}) , holds roughly as before.

- Existence of solutions for (VHJ), (E_{λ}) , holds roughly as before.
- No comparison principle, nor uniqueness of solutions for (VHJ) for *f* as general as before.

- Existence of solutions for (VHJ), (E_{λ}) , holds roughly as before.
- No comparison principle, nor uniqueness of solutions for (VHJ) for *f* as general as before.
- Convergence result for *any* solution of (VHJ)

- Existence of solutions for (VHJ), (E_{λ}) , holds roughly as before.
- No comparison principle, nor uniqueness of solutions for (VHJ) for *f* as general as before.
- Convergence result for *any* solution of (VHJ)
- Uniqueness of solution pairs for (*E_λ*) given by
 [Arapostathis et al., 2019] by dynamical systems arguments.

- Existence of solutions for (VHJ), (E_{λ}) , holds roughly as before.
- No comparison principle, nor uniqueness of solutions for (VHJ) for *f* as general as before.
- Convergence result for *any* solution of (VHJ)
- Uniqueness of solution pairs for (*E_λ*) given by
 [Arapostathis et al., 2019] by dynamical systems arguments.
- We obtain partial results towards uniqueness for (E_{λ}) even for sub-solution y "PDE techniques", but there is no comparison principle for (E_{λ}) !!

LTB, *assumptions on* f for the case $1 < m \le 2$

• There exists a nondecreasing function $\varphi : [0, \infty) \to [0, \infty)$ and c > 0 such that, if r = |x|, then

$$c^{-1}\varphi(r) \le f(x) \le c(\varphi(r)+1)$$

and for sufficiently large $\rho > 0$,

$$\rho\varphi(\rho+1)^{\frac{1}{m}} \le \varphi(\rho). \tag{H2}$$

$$\limsup_{x \to +\infty} \frac{|Df(x)|^{\frac{1}{2m-1}}}{|f(x)|^{\frac{1}{m}}} < +\infty$$
(H3)

• The initial data satisfies

$$u_0(x) \le c_0 + c_2 |x| \left[\inf_{\mathbb{R}^N \setminus B_{\frac{1}{2}|x|}} f \right]^{\frac{1}{m}}$$
(H4)

for a precise value of $c_2 > 0$ and some $c_0 \ge 0$.

Proposition

Assume $f \in W_{loc}^{1,\infty}(\mathbb{R}^N)$ is coercive. If χ and $v \in USC(\mathbb{R}^N)$ are respectively a solution and a subsolution of (E_{λ^*}) , both bounded from below, then there exists $c \in \mathbb{R}$ such that $v(x) = \chi(x) + c$ for all $x \in \mathbb{R}^N$.

Proposition

Assume $f \in W_{loc}^{1,\infty}(\mathbb{R}^N)$ is coercive. If χ and $v \in USC(\mathbb{R}^N)$ are respectively a solution and a subsolution of (E_{λ^*}) , both bounded from below, then there exists $c \in \mathbb{R}$ such that $v(x) = \chi(x) + c$ for all $x \in \mathbb{R}^N$.

The result follows from approximation of (E_{λ}) over bounded domains and a well chosen perturbation of solutions

LTB, convergence result $1 < m \le 2$

Theorem (Quaas, R.)

Assume (H2)-(H4) hold. Then, $u(\cdot, t) - \lambda^* t \rightarrow \phi + \hat{c}$ locally uniformly over \mathbb{R}^N , for some constant $\hat{c} \in \mathbb{R}$, where u = u(x, t) is any solution of (VHJ) and ϕ is the unique (normalized) solution of (E_{λ^*}) .

• Supersolutions are given by

$$\begin{cases} \lambda_R - \Delta \phi_R + |D\phi_R|^m = f(x) & \text{in } B_R \\ \lambda_R - \Delta \phi_R + |D\phi_R|^m \ge f(x) & \text{on } \partial B_R, \end{cases}$$

Recall we have $\phi_R(x) \to +\infty$ as $x \to \partial B_R$.

Supersolutions are given by

$$\begin{cases} \lambda_R - \Delta \phi_R + |D\phi_R|^m = f(x) & \text{in } B_R \\ \lambda_R - \Delta \phi_R + |D\phi_R|^m \ge f(x) & \text{on } \partial B_R, \end{cases}$$

Recall we have $\phi_R(x) \to +\infty$ as $x \to \partial B_R$.

• Subsolutions are given by

$$u_R + \Delta \psi_R + |D\psi_R|^m = f_R \quad \text{in } \mathbb{R}^N / 2S_R \mathbb{Z}^N,$$

where f_R is the periodic extension of $\min\{f, R\}$ to $\mathbb{R}^N/2S_R\mathbb{Z}^N$ for a suitable S_R .

Supersolutions are given by

$$\begin{cases} \lambda_R - \Delta \phi_R + |D\phi_R|^m = f(x) & \text{in } B_R \\ \lambda_R - \Delta \phi_R + |D\phi_R|^m \ge f(x) & \text{on } \partial B_R, \end{cases}$$

Recall we have $\phi_R(x) \to +\infty$ as $x \to \partial B_R$.

• Subsolutions are given by

$$u_R + \Delta \psi_R + |D\psi_R|^m = f_R \quad \text{in } \mathbb{R}^N / 2S_R \mathbb{Z}^N,$$

where f_R is the periodic extension of $\min\{f, R\}$ to $\mathbb{R}^N/2S_R\mathbb{Z}^N$ for a suitable S_R .

• Comparison/maximum principle arguments are made at the level of bounded domains or for (periodic) bounded solutions.

Supersolutions are given by

$$\begin{cases} \lambda_R - \Delta \phi_R + |D\phi_R|^m = f(x) & \text{in } B_R \\ \lambda_R - \Delta \phi_R + |D\phi_R|^m \ge f(x) & \text{on } \partial B_R, \end{cases}$$

Recall we have $\phi_R(x) \to +\infty$ as $x \to \partial B_R$.

• Subsolutions are given by

$$u_R + \Delta \psi_R + |D\psi_R|^m = f_R \quad \text{in } \mathbb{R}^N / 2S_R \mathbb{Z}^N,$$

where f_R is the periodic extension of $\min\{f, R\}$ to $\mathbb{R}^N/2S_R\mathbb{Z}^N$ for a suitable S_R .

- Comparison/maximum principle arguments are made at the level of bounded domains or for (periodic) bounded solutions.
- We have $(\lambda_R, \phi_R), (\nu_R, \psi_R) \to (\lambda^*, \phi)$ as $R \to +\infty$.

• I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).
- LTB ? All space?

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).
- LTB ? All space?
- Nonlocal Periodic setting LTB Barles , Koike Ley, Topp. 2014

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).
- LTB ? All space?
- Nonlocal Periodic setting LTB Barles , Koike Ley, Topp. 2014
- Nonlocal ergodic problem? Dávila, Q. Topp (bounded domain) not clear not uniqueness even in the coercive case.

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).
- LTB ? All space?
- Nonlocal Periodic setting LTB Barles , Koike Ley, Topp. 2014
- Nonlocal ergodic problem? Dávila, Q. Topp (bounded domain) not clear not uniqueness even in the coercive case.
- Nonlocal ergodic all space: Biswas Topp.

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).
- LTB ? All space?
- Nonlocal Periodic setting LTB Barles , Koike Ley, Topp. 2014
- Nonlocal ergodic problem? Dávila, Q. Topp (bounded domain) not clear not uniqueness even in the coercive case.
- Nonlocal ergodic all space: Biswas Topp.
- LTB ?

Thank!

Arapostathis, A., Biswas, A., and Caffarelli, L. (2019). On uniqueness of solutions to viscous hjb equations with a subquadratic nonlinearity in the gradient. *Communications in Partial Differential Equations*, 44(12):1466–1480.

Barles, G. and Da Lio, F. (2004).

On the generalized Dirichlet problem for viscous Hamilton–Jacobi equations.

Journal de Mathématiques Pures et Appliquées, 83(1):53-75.

Barles, G., Ley, O., Nguyen, T.-T., and Phan, T. (2017). Large time behavior of unbounded solutions of first-order Hamilton–Jacobi equations in \mathbb{R}^n .

arXiv preprint arXiv:1709.08387.

Barles, G. and Meireles, J. (2016).

On unbounded solutions of ergodic problems in \mathbb{R}^m for viscous Hamilton–Jacobi equations.

Communications in Partial Differential Equations, 41(12):1985–2003.

- Barles, G., Porretta, A., and Tchamba, T. T. (2010).
 On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations.
 Journal de mathématiques pures et appliquées, 94(5):497–519.
- Barles, G., Quaas, A., and Rodríguez-Paredes, A. (2020). Large-time behavior of unbounded solutions of viscous hamilton-jacobi equations in rn.

Communications in Partial Differential Equations, 46(3):547–572.

Barles, G. and Roquejoffre, J.-M. (2006).

Ergodic type problems and large time behaviour of unbounded solutions of Hamilton–Jacobi equations.

Communications in Partial Differential Equations, 31(8):1209–1225.

- Barles, G. and Souganidis, P. E. (2001).
 Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations.
 SIAM Journal on Mathematical Analysis, 32(6):1311–1323.
- Benachour, S., Karch, G., and Laurençot, P. (2004). Asymptotic profiles of solutions to viscous hamilton–jacobi equations.

Journal de mathématiques pures et appliquées, 83(10):1275–1308.

 Berestycki, H., Nirenberg, L., and Varadhan, S. S. (1994). The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. *Communications on Pure and Applied Mathematics*, 47(1):47–92.

Biler, P., Karch, G., and Guedda, M. (2004).

Asymptotic properties of solutions of the viscous hamilton-jacobi equation.

Journal of Evolution Equations, 4(1):75–97.

Friedman, A. (2013).

Partial differential equations of parabolic type. Courier Corporation.

Gallay, T. and Laurençot, P. (2007).

Asymptotic behavior for a viscous hamilton-jacobi equation with critical exponent.

Indiana University mathematics journal, pages 459-479.

Grenon, N., Murat, F., and Porretta, A. (2013).

A priori estimates and existence for elliptic equations with gradient dependent terms.

Ann. Sc. Norm. Super. Pisa Cl. Sci, 13:137-205.

Iagar, R. G., Laurençot, P., and Vázquez, J. L. (2010).

Asymptotic behaviour of a nonlinear parabolic equation with gradient absorption and critical exponent.

arXiv preprint arXiv:1002.2094.

Ichihara, N. (2012).

Large time asymptotic problems for optimal stochastic control with superlinear cost.

Stochastic Processes and their Applications, 122(4):1248–1275.

Ichihara, N. and Ishii, H. (2009).

Long-time behavior of solutions of hamilton–jacobi equations with convex and coercive hamiltonians.

Archive for rational mechanics and analysis, 194(2):383–419.

Asymptotic solutions for large time of hamilton-jacobi equations in euclidean n space.

In *Annales de l'IHP Analyse non linéaire*, volume 25, pages 231–266.

Ishii, H. (2009).

Asymptotic solutions of hamilton-jacobi equations for large time and related topics.

In ICIAM 07—6th International Congress on Industrial and Applied Mathematics, pages 193–217.

- Kardar, M., Parisi, G., and Zhang, Y.-C. (1986). Dynamic scaling of growing interfaces. *Physical Review Letters*, 56(9):889.
- Lasry, J.-M. and Lions, P.-L. (1989).

Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints.

Mathematische Annalen, 283(4):583–630.

Laurençot, P. (2009).

Non-diffusive large time behavior for a degenerate viscous hamilton–jacobi equation.

Communications in Partial Differential Equations, 34(3):281-304.

Namah, G. and Roquejoffre, J.-M. (1999).

Remarks on the long time behaviour of the solutions of hamilton-jacobi equations.

Communications in partial differential equations, 24(5-6):883–893.

- Quittner, P. and Souplet, P. (2007).
 Superlinear parabolic problems: blow-up, global existence and steady states.
 Springer Science & Business Media.
- Souplet, P. and Zhang, Q. S. (2006).
 Global solutions of inhomogeneous Hamilton-Jacobi equations.
 Journal d'analyse mathématique, 99(1):355–396.
- Tabet Tchamba, T. (2010).

Large time behavior of solutions of viscous Hamilton–Jacobi equations with superquadratic Hamiltonian.

Asymptotic Analysis, 66(3-4):161–186.