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Our aim is to study the existence, uniqueness and large-time
behavior (LTB) of solutions of

{ut — Au+|Dul™ = f(x) inRN x (0, +00), (VE)

u(-,0) = uy inRN,

The question of LTB is to determine in some sense the behavior
of u(-, t) as t — 4o0.

The case m > 2 in [Barles et al., 2020] (joint work with
G. Barles and A. Rodriguez ).

The case 1 < m < 2, joint work with A. Rodriguez.

The behavior of f and ug as |x| — 400 is crucial, especially in
comparison with previous results.
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The viscous Hamilton-Jacobi equation

{u[ — Au+|Dul™ = f(x) inRN x (0, +00), (VH))

u(-,0) = uy inRN,

® For m = 2, this is a deterministic version of the
Kardar-Parisi-Zhang (KPZ) equation ([Kardar et al., 1986]),

® For m > 1, (VHJ) is a simple model of superlinear gradient
dependence,

® (Lasry-Lions 1989 stationary case). Solutions are value
functions for stochastic optimal control problems:

t
u(x,t) = (151)f E, [/o (m—1)m™ m1|ag| 1 + f(X;) ds + up(Xz)

where

dX; = a;dt + dB; fort >0, XO:xGRN.
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Prior results

For bounded domain: [Tabet Tchamba, 2010] (m > 2), Barles,
Porretta, Tchamba [Barles et al., 2010] (1 < m < 2).

Over RY, overlap of results with [Ichihara, 2012] LTB;
Arapostathis, Biswas, Caffarelli [Arapostathis et al., 2019]
uniqueness of the Ergodic problem, therein obtained by a
combination of PDE, probabilistic and dynamical systems
techniques.

RN Barles, G. and Meireles [2016]. uniqueness of the Ergodic
problem.

In the context of weak solutions: [Benachour et al., 2004],
[Biler et al., 2004], [Gallay and Laurengot, 2007],

[Iagar et al., 2010], [Laurencot, 2009].

First-order equations, results employing dynamical
systems/optimal control arguments:

[Namah and Roquejoffre, 1999], [Barles and Souganidis, 2001],
[Barles and Roquejofire, 2006], [Ichihara and Ishii, 2009],
[Ishii, 2008], [Ishii, 2009] (review paper), [Barles et al., 2017].
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For Q C RN an open, bounded set and g € C(92) consider

u— Aut [Du™ = f(x) in Q% (0, +00)
u=g ond x (0,+00) (VHJ3)
u(-,0) =0 inQ.

® Local existence in C>!(Q) x (0, T)) for some T € (0, 400,
[Friedman, 2013], [Quittner and Souplet, 2007].

® Well-posed by [Barles and Da Lio, 2004], assuming generalized
boundary conditions for m > 2 and in the classical sense, for
regular data, for 1 < m < 2.

® Loss of boundary condition for m > 2 many other properties
Porretta, Souplet [2017] and [2020], see also Q.;L Rodriguez
[2018] .



Bounded domain—the stationary problem

—Aw+ [Dw|™ = f(x) in§
w=g onodf2

® Depending on the data, (S) might not have a solution
([Souplet and Zhang, 2006], [Grenon et al., 2013])
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Bounded domain—the ergodic problem
LTB is determined by
A—Ad+[Dp|" = f(x) inf,
A—A¢+ |Dp|™ > f(x) on I

where A\ € R is an unknown, together with ¢ € C(Q).

® There exists a unique value \* € R for which there exists a
solution ¢ € C(2) (unique up to an additive constant).

® Characterization of \*:
X" =sup{A € RY |3y € C(Q), A~ Ay + |Dy|™ < f(x)}

® Studied in the classical work [Lasry and Lions, 1989]; see
further properties in, cf. [Tabet Tchamba, 2010],
[Barles et al., 2010].
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The “state constraints” boundary condition
A~ Aé+ |DO™ > f(x) on 09,

is meant in a generalized sense.

e for m > 2, ¢ € C(Q) (i.e., remains bounded),
® forl<m<2,¢— 4ooasx— .
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Bounded domain—ergodic LTB

® When m > 2, if (S) has a solution w, then u(-, ) — w as
t — 400, uniformly over Q.

e If (S) is not solvable, then \* < 0 in (E;) and )
u(-,t) — \*t = ¢ + cas t = +oo uniformly over ), for some
¢ € R. [Tabet Tchamba, 2010]

® For1 < m < 2,LTB also depends on m: e.g.,if 1 < m < % and

A* < 0, then a partial convergence holds: ”(Ltt) — A" locally
uniformly in 2 but it can happen that u(-, t) — \*t — —o0 in Q
[Barles et al., 2010].
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Unbounded domains—m > 2

Theorem (Barles, R., Quaas, 2020)
Assume f € WE°(RN) and uy € C(RN) are bounded from below.

loc
Then, there exists a unique, nonnegative, continuous solution of (VHJ).

® FExistence: aproximation by solutions on bounded domains,
compactness arguments.

® Uniqueness: comparison principle for bounded-from-below
solutions.

® Once existence is proven, we may assume f, uy > 0 with no
loss of generality:

u—u+ CGt+ C, gives f'—>f+C1, Uy — ug + G
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LTB will again be determined by the ergodic problem,
A= A¢+[Dg" = f(x) inRY (Ex)

where both A € R and ¢ : RY — R are unknown.

® For A < infpw f, there exist multiple solutions (constant
functions).

® Generalized ergodic constant is defined as
M =sup{\ € R| T € C3(RN), X\ — Ay + [Dy|™ < f(x)};

this is analogous to the definition of the generalized principal
eigenvalue in [Berestycki et al., 1994].

e If f is coercive, there exists a bounded from below solution of
(Ex)



The ergodic problem in RY in the case m > 2

Theorem ([Barles and Meireles, 2016

Assume that f € W;)’COO (RN) is coercive. If ¢ is a solution of (Ey,) and
Y is a solution of (E),), both bounded from below, then \; = \; and
there exists a constant ¢ € R such that ¢ = 1) + c.

® In short, if m > 2 there is a unique solution pair (A\*, ¢) in the
class of bounded from below solutions.

® ¢ is unique up to additive constants, we may assume
inRN ¢ = 0.

® Uniqueness follows from a comparison principle on exterior
domains, i.e., RN\ By for large R > 0.



LTB, assumptions on f case m > 2

® There exists an increasing function ¢ : [0, +00) — [0, 4+00) and
constants «, @y, fo > 0 such that for all » > 0,

o 1 < (1)

and for all x € RN and r = |x

5

fo lo(r) < f(x) < folep(r) + 1) (H1)



LTB, convergence result casem > 2

Theorem (Barles, R., Quaas)
Assuming (H1), there exists ¢ € R depending on f and uy such that

u(x,t) — Nt = ¢(x) + ¢ locally uniformly in RN as t — +o0.

® No assumptions on the behaviour of u as |x| = +00; in
particular, it might be very different from that of ¢.
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Theorem (Barles, R., Quaas)
Assuming (H1), there exists ¢ € R depending on f and uy such that

u(x,t) — Nt = ¢(x) + ¢ locally uniformly in RN as t — +o0.

® No assumptions on the behaviour of u as |x| = +00; in
particular, it might be very different from that of ¢.

¢ In [Ichihara, 2012], this is shown for f(x) ~ |x

B > m* = ", and u, has at most polynomial growth.

B where
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® For comparison in (VHJ), we use the Hopf-Cole transform
z(x,t) = —e~“*" and obtain bounded sub- and super
solutions of
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Elements of the proof case m > 2

® For comparison in (VHJ), we use the Hopf-Cole transform
z(x,t) = —e~“*" and obtain bounded sub- and super
solutions of
zt — Az + N(x,z,Dz) =0,

where N(x,r, p) = r(f(x) n ‘%‘2 B ‘%‘m)

® We use an ODE approach to construct sub- and super solutions
of
vi — Av+ |Dv|™ = f(x) — %



Behavior of ¢

Lemma

lim L(x) = 0
x| oo ||

Proof. Blow up argument to find a supersolution of the eikonal
equation Comparison with eikonal equation we find a contradiction.



Lemma (Sub- and supersolutions)

@ There exists a constant ¢ > 0 such that U(-,t) — ¢ — o and
V(- t) — ¢ + o locally uniformly in RN as t — oo.

® For any fixed t > 0,
V(x,t) = +o0 asx — 9Q; (x € Q;).
© There exists M > 0 such that, for all t > 0,

U(x,t) < t+M forallx € RN,



The Supersolution

V(x, t) = ¢(x) + X(qb(x) — (t + to)) + /Ot(q—d + 1)*3 dr.

X' = C(xX)P(1+ x> in (—oo, b),
x(0) = Xx'(0) = 0, (SUP-ODE)
X(s) = 400 forall s > b.
Choice of constants t) > 0 (to be chosen) determines “when the
supersolution comes into play”.

Suitable choices of 5 € (0,1), 81 + B2 > 1 imply that (SUP-ODE)
has a nontrivial solution and 8 = 3(f1, B2, p) is large, hence

o ::/ (T&—}—l)_é dr < oo.
0



The Supersolution

V(.0) = 6(x) + x(600) — (e + ) + [ "+ )P

X = x(s)




The Subsolution

U(x, f)=t+t+ f((b(x) — (t+ to)) — /Ot(Td + 1)—/§ dr.

§'=-C1=&m()™ in(0,00),
{ £(0) =0, &0) =1, (SUB-ODE)

with ty, 71, n2 > 0 to be chosen; &, B > 0, as before.



The Subsolution

Ul t) = £+ 1o+ E(6(x) — (¢ + 1)) — / "% 4 1) ar

— §=£(5)




Convergence argument

Lemma

u(x, t) — \*t is bounded over compact sets, uniformly with respect to
t>0.

The Lemma allows us to define upper and lower limits at t — 400
for u(x, t) — A*t.

Together with local gradient bounds [Barles 2017] by compactness
we have convergence along subsequences (,) ¢, tn, — +00 over
compact sets.

The SMP implies the limit is ¢ 4 ¢, for some ¢ € R.



Full convergence

To prove convergence on K C RN we use
® Convergent subsequence on Bg for Bg D K ,with R >> 1
® Finer parametrization of sub-, supersolutions Uy, Vi:
For R > 0 and (x,t) € RN x (0, +00),

t+R

Vi(x. 1) = §(x)+etx($(x)+e—(HHR))+ /R (041 P dri k.

and similarly for a subsolution Ug.

® Note that the “extra terms” vanish as R — +o00.
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Setting for1 < m < 2

® Existence of solutions for (VHJ), (E,), holds roughly as before.

® No comparison principle, nor uniqueness of solutions for (VHJ)
for f as general as before.

® Convergence result for any solution of (VH])

® Uniqueness of solution pairs for (E)) given by
[Arapostathis et al., 2019] by dynamical systems arguments.

® We obtain partial results towards uniqueness for (Ey) even for
sub-solutionby “PDE techniques”, but there is no comparison
principle for (Ey) !!



LTB, assumptions on f for the case 1 < m < 2

® There exists a nondecreasing function ¢ : [0, 00) — [0, 00) and
¢ > 0 such that, if r =

Tlo(r) < flx) < elp(r) +1)

and for sufficiently large p > 0,

po(p+1)m < o(p). (H2)

D 2m 1
lim sup‘ f ()15 < 40 (H3)

xtoo|f(x)|n

® The initial data satisfies

to(x) < 0 + oo [R inf f] (1)

lH

for a precise value of ¢; > 0 and some ¢y > 0.



Proposition

Assume f € W (RN) is coercive. If x and v € USC(RN) are
respectively a solution and a subsolution of (Ex~), both bounded from

below, then there exists ¢ € R such that v(x) = x(x) + ¢ for all
x € RN,



Assume f € le’coo (RN) is coercive. If x and v € USC(RN) are
respectively a solution and a subsolution of (Ex~), both bounded from
below, then there exists ¢ € R such that v(x) = x(x) + ¢ for all

x € RN,

The result follows from approximation of (E)) over bounded
domains and a well chosen perturbation of solutions



LTB, convergence result 1< m < 2

Theorem (Quaas, R.)

Assume (H2)-(H4) hold. Then, u(-,t) — \*t — ¢ + ¢ locally uniformly
over RN, for some constant ¢ € R, where u = u(x, t) is any solution of
(VH]) and ¢ is the unique (normalized) solution of (Ex«).
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Elements of the proof 1< m <2

® Supersolutions are given by

{ AR — A¢r + |Dor|™ = f(x) in Bg
AR — Aqf)R + |D¢R|m > f(x) on 6BR7

Recall we have ¢g(x) — +00 as x — OBg.

® Subsolutions are given by
Vg + Atpg + [DYg|™ = fr  in RN /287N,

where f is the periodic extension of min{f, R} to RN /257N
for a suitable Sg.

® Comparison/maximum principle arguments are made at the
level of bounded domains or for (periodic) bounded solutions.

e We have (Ag, ¢r), (Vr, ¥r) = (A*, ®) as R — +o0.
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Other results and Open problems

L. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for
singular or degenerate fully nonlinear operators (bounded
domain).

LTB ? All space?
Nonlocal Periodic setting LTB Barles , Koike Ley, Topp. 2014

Nonlocal ergodic problem? Davila, Q. Topp (bounded domain)
not clear not uniqueness even in the coercive case.

Nonlocal ergodic all space: Biswas Topp.
LTB?



Thank!
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