Large-time behavior of viscous Hamilton-facobi equations

A. Quaas

Departamento de Matemática UTFSM

Joint work with G. Barles and A. Rodriguez

Rio.-24-June-2024

The viscous Hamilton-facobi equation

Our aim is to study the existence, uniqueness and large-time behavior (LTB) of solutions of

$$
\left\{\begin{align*}
u_{t}-\Delta u+|D u|^{m}=f(x) & \text { in } \mathbb{R}^{N} \times(0,+\infty) \tag{VHJ}\\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{N}
\end{align*}\right.
$$

- The question of LTB is to determine in some sense the behavior of $u(\cdot, t)$ as $t \rightarrow+\infty$.

The viscous Hamilton-facobi equation

Our aim is to study the existence, uniqueness and large-time behavior (LTB) of solutions of

$$
\left\{\begin{align*}
u_{t}-\Delta u+|D u|^{m}=f(x) & \text { in } \mathbb{R}^{N} \times(0,+\infty) \tag{VHJ}\\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{N}
\end{align*}\right.
$$

- The question of LTB is to determine in some sense the behavior of $u(\cdot, t)$ as $t \rightarrow+\infty$.
- The case $m>2$ in [Barles et al., 2020] (joint work with G. Barles and A. Rodríguez).

The viscous Hamilton-facobi equation

Our aim is to study the existence, uniqueness and large-time behavior (LTB) of solutions of

$$
\left\{\begin{align*}
u_{t}-\Delta u+|D u|^{m}=f(x) & \text { in } \mathbb{R}^{N} \times(0,+\infty) \tag{VHJ}\\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{N}
\end{align*}\right.
$$

- The question of LTB is to determine in some sense the behavior of $u(\cdot, t)$ as $t \rightarrow+\infty$.
- The case $m>2$ in [Barles et al., 2020] (joint work with G. Barles and A. Rodríguez).
- The case $1<m \leq 2$, joint work with A. Rodríguez.

The viscous Hamilton-facobi equation

Our aim is to study the existence, uniqueness and large-time behavior (LTB) of solutions of

$$
\left\{\begin{align*}
u_{t}-\Delta u+|D u|^{m}=f(x) & \text { in } \mathbb{R}^{N} \times(0,+\infty) \tag{VHJ}\\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{N}
\end{align*}\right.
$$

- The question of LTB is to determine in some sense the behavior of $u(\cdot, t)$ as $t \rightarrow+\infty$.
- The case $m>2$ in [Barles et al., 2020] (joint work with G. Barles and A. Rodríguez).
- The case $1<m \leq 2$, joint work with A. Rodríguez.
- The behavior of f and u_{0} as $|x| \rightarrow+\infty$ is crucial, especially in comparison with previous results.

The viscous Hamilton-facobi equation

$$
\left\{\begin{align*}
u_{t}-\Delta u+|D u|^{m}=f(x) & \text { in } \mathbb{R}^{N} \times(0,+\infty) \tag{VHJ}\\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{N}
\end{align*}\right.
$$

- For $m=2$, this is a deterministic version of the Kardar-Parisi-Zhang (KPZ) equation ([Kardar et al., 1986]),

The viscous Hamilton-facobi equation

$$
\left\{\begin{align*}
u_{t}-\Delta u+|D u|^{m}=f(x) & \text { in } \mathbb{R}^{N} \times(0,+\infty) \tag{VHJ}\\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{N}
\end{align*}\right.
$$

- For $m=2$, this is a deterministic version of the Kardar-Parisi-Zhang (KPZ) equation ([Kardar et al., 1986]),
- For $m>1$, (VHJ) is a simple model of superlinear gradient dependence,

The viscous Hamilton-facobi equation

$$
\left\{\begin{align*}
u_{t}-\Delta u+|D u|^{m}=f(x) & \text { in } \mathbb{R}^{N} \times(0,+\infty) \tag{VHJ}\\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{N}
\end{align*}\right.
$$

- For $m=2$, this is a deterministic version of the Kardar-Parisi-Zhang (KPZ) equation ([Kardar et al., 1986]),
- For $m>1$, (VHJ) is a simple model of superlinear gradient dependence,
- (Lasry-Lions 1989 stationary case). Solutions are value functions for stochastic optimal control problems:

$$
u(x, t)=\inf _{\left(a_{s}\right)_{s}} E_{x}\left[\int_{0}^{t}(m-1) m^{-\frac{m}{m-1}}\left|a_{s}\right|^{\frac{m}{m-1}}+f\left(X_{s}\right) d s+u_{0}\left(X_{t}\right)\right]
$$

where

$$
d X_{t}=a_{t} d t+d B_{t} \quad \text { for } t>0, X_{0}=x \in \mathbb{R}^{N}
$$

Prior results

- For bounded domain: [Tabet Tchamba, 2010] ($m>2$), Barles, Porretta, Tchamba [Barles et al., 2010] $(1<m \leq 2)$.

Prior results

- For bounded domain: [Tabet Tchamba, 2010] ($m>2$), Barles, Porretta, Tchamba [Barles et al., 2010] $(1<m \leq 2)$.
- Over \mathbb{R}^{N}, overlap of results with [Ichihara, 2012] LTB; Arapostathis, Biswas, Caffarelli [Arapostathis et al., 2019] uniqueness of the Ergodic problem, therein obtained by a combination of PDE, probabilistic and dynamical systems techniques.

Prior results

- For bounded domain: [Tabet Tchamba, 2010] ($m>2$), Barles, Porretta, Tchamba [Barles et al., 2010] $(1<m \leq 2)$.
- Over \mathbb{R}^{N}, overlap of results with [Ichihara, 2012] LTB; Arapostathis, Biswas, Caffarelli [Arapostathis et al., 2019] uniqueness of the Ergodic problem, therein obtained by a combination of PDE, probabilistic and dynamical systems techniques.
- \mathbb{R}^{N} Barles, G. and Meireles [2016]. uniqueness of the Ergodic problem.

Prior results

- For bounded domain: [Tabet Tchamba, 2010] ($m>2$), Barles, Porretta, Tchamba [Barles et al., 2010] $(1<m \leq 2)$.
- Over \mathbb{R}^{N}, overlap of results with [Ichihara, 2012] LTB; Arapostathis, Biswas, Caffarelli [Arapostathis et al., 2019] uniqueness of the Ergodic problem, therein obtained by a combination of PDE, probabilistic and dynamical systems techniques.
- \mathbb{R}^{N} Barles, G. and Meireles [2016]. uniqueness of the Ergodic problem.
- In the context of weak solutions: [Benachour et al., 2004], [Biler et al., 2004], [Gallay and Laurençot, 2007], [Iagar et al., 2010], [Laurençot, 2009].

Prior results

- For bounded domain: [Tabet Tchamba, 2010] ($m>2$), Barles, Porretta, Tchamba [Barles et al., 2010] $(1<m \leq 2)$.
- Over \mathbb{R}^{N}, overlap of results with [Ichihara, 2012] LTB; Arapostathis, Biswas, Caffarelli [Arapostathis et al., 2019] uniqueness of the Ergodic problem, therein obtained by a combination of PDE, probabilistic and dynamical systems techniques.
- \mathbb{R}^{N} Barles, G. and Meireles [2016]. uniqueness of the Ergodic problem.
- In the context of weak solutions: [Benachour et al., 2004], [Biler et al., 2004], [Gallay and Laurençot, 2007], [Iagar et al., 2010], [Laurençot, 2009].
- First-order equations, results employing dynamical systems/optimal control arguments:
[Namah and Roquejoffre, 1999], [Barles and Souganidis, 2001], [Barles and Roquejoffre, 2006], [Ichihara and Ishii, 2009], [Ishii, 2008], [Ishii, 2009] (review paper), [Barles et al., 2017].

Bounded domain-well-posedness

For $\Omega \subset \mathbb{R}^{N}$ an open, bounded set and $g \in C(\partial \Omega)$ consider

$$
\begin{align*}
u_{t}-\Delta u+|D u|^{m}=f(x) & \text { in } \Omega \times(0,+\infty) \\
u=g & \text { on } \partial \Omega \times(0,+\infty) \tag{b}\\
u(\cdot, 0)=0 & \text { in } \bar{\Omega} .
\end{align*}
$$

- Local existence in $C^{2,1}(\Omega \times(0, T))$ for some $T \in(0,+\infty]$, [Friedman, 2013], [Quittner and Souplet, 2007].

Bounded domain-well-posedness

For $\Omega \subset \mathbb{R}^{N}$ an open, bounded set and $g \in C(\partial \Omega)$ consider

$$
\begin{align*}
u_{t}-\Delta u+|D u|^{m}=f(x) & \text { in } \Omega \times(0,+\infty) \\
u=g & \text { on } \partial \Omega \times(0,+\infty) \tag{b}\\
u(\cdot, 0)=0 & \text { in } \bar{\Omega} .
\end{align*}
$$

- Local existence in $C^{2,1}(\Omega \times(0, T))$ for some $T \in(0,+\infty]$, [Friedman, 2013], [Quittner and Souplet, 2007].
- Well-posed by [Barles and Da Lio, 2004], assuming generalized boundary conditions for $m>2$ and in the classical sense, for regular data, for $1<m \leq 2$.

Bounded domain-well-posedness

For $\Omega \subset \mathbb{R}^{N}$ an open, bounded set and $g \in C(\partial \Omega)$ consider

$$
\begin{align*}
u_{t}-\Delta u+|D u|^{m}=f(x) & \text { in } \Omega \times(0,+\infty) \\
u=g & \text { on } \partial \Omega \times(0,+\infty) \tag{b}\\
u(\cdot, 0)=0 & \text { in } \bar{\Omega} .
\end{align*}
$$

- Local existence in $C^{2,1}(\Omega \times(0, T))$ for some $T \in(0,+\infty]$, [Friedman, 2013], [Quittner and Souplet, 2007].
- Well-posed by [Barles and Da Lio, 2004], assuming generalized boundary conditions for $m>2$ and in the classical sense, for regular data, for $1<m \leq 2$.
- Loss of boundary condition for $m>2$ many other properties Porretta, Souplet [2017] and [2020], see also Q.:L Rodriguez [2018] .

Bounded domain-the stationary problem

$$
\left\{\begin{align*}
-\Delta w+|D w|^{m}=f(x) & \text { in } \Omega \tag{S}\\
w=g & \text { on } \partial \Omega
\end{align*}\right.
$$

- Depending on the data, (S) might not have a solution ([Souplet and Zhang, 2006], [Grenon et al., 2013])

Bounded domain-the ergodic problem

LTB is determined by

$$
\begin{cases}\lambda-\Delta \phi+|D \phi|^{m}=f(x) & \text { in } \Omega \tag{b}\\ \lambda-\Delta \phi+|D \phi|^{m} \geq f(x) & \text { on } \partial \Omega\end{cases}
$$

where $\lambda \in \mathbb{R}$ is an unknown, together with $\phi \in C(\Omega)$.

Bounded domain-the ergodic problem

LTB is determined by

$$
\begin{cases}\lambda-\Delta \phi+|D \phi|^{m}=f(x) & \text { in } \Omega \tag{b}\\ \lambda-\Delta \phi+|D \phi|^{m} \geq f(x) & \text { on } \partial \Omega\end{cases}
$$

where $\lambda \in \mathbb{R}$ is an unknown, together with $\phi \in C(\Omega)$.

- There exists a unique value $\lambda^{*} \in \mathbb{R}$ for which there exists a solution $\phi \in C(\Omega)$ (unique up to an additive constant).

Bounded domain-the ergodic problem

LTB is determined by

$$
\begin{cases}\lambda-\Delta \phi+|D \phi|^{m}=f(x) & \text { in } \Omega, \tag{b}\\ \lambda-\Delta \phi+|D \phi|^{m} \geq f(x) & \text { on } \partial \Omega\end{cases}
$$

where $\lambda \in \mathbb{R}$ is an unknown, together with $\phi \in C(\Omega)$.

- There exists a unique value $\lambda^{*} \in \mathbb{R}$ for which there exists a solution $\phi \in C(\Omega)$ (unique up to an additive constant).
- Characterization of λ^{*} :

$$
\lambda^{*}=\sup \left\{\lambda \in \mathbb{R}^{N}\left|\exists \psi \in C(\Omega), \lambda-\Delta \psi+|D \psi|^{m} \leq f(x)\right\}\right.
$$

Bounded domain-the ergodic problem

LTB is determined by

$$
\begin{cases}\lambda-\Delta \phi+|D \phi|^{m}=f(x) & \text { in } \Omega \tag{b}\\ \lambda-\Delta \phi+|D \phi|^{m} \geq f(x) & \text { on } \partial \Omega\end{cases}
$$

where $\lambda \in \mathbb{R}$ is an unknown, together with $\phi \in C(\Omega)$.

- There exists a unique value $\lambda^{*} \in \mathbb{R}$ for which there exists a solution $\phi \in C(\Omega)$ (unique up to an additive constant).
- Characterization of λ^{*} :

$$
\lambda^{*}=\sup \left\{\lambda \in \mathbb{R}^{N}\left|\exists \psi \in C(\Omega), \lambda-\Delta \psi+|D \psi|^{m} \leq f(x)\right\}\right.
$$

- Studied in the classical work [Lasry and Lions, 1989]; see further properties in, cf. [Tabet Tchamba, 2010], [Barles et al., 2010].

Bounded domain-the ergodic problem

The "state constraints" boundary condition

$$
\lambda-\Delta \phi+|D \phi|^{m} \geq f(x) \quad \text { on } \partial \Omega,
$$

is meant in a generalized sense.

Bounded domain-the ergodic problem

The "state constraints" boundary condition

$$
\lambda-\Delta \phi+|D \phi|^{m} \geq f(x) \quad \text { on } \partial \Omega,
$$

is meant in a generalized sense.

- for $m>2, \phi \in C(\bar{\Omega})$ (i.e., remains bounded),

Bounded domain-the ergodic problem

The "state constraints" boundary condition

$$
\lambda-\Delta \phi+|D \phi|^{m} \geq f(x) \quad \text { on } \partial \Omega,
$$

is meant in a generalized sense.

- for $m>2, \phi \in C(\bar{\Omega})$ (i.e., remains bounded),
- for $1<m \leq 2, \phi \rightarrow+\infty$ as $x \rightarrow \partial \Omega$.

Bounded domain-ergodic LTB

- When $m>2$, if (S) has a solution w, then $u(\cdot, t) \rightarrow w$ as $t \rightarrow+\infty$, uniformly over $\bar{\Omega}$.

Bounded domain-ergodic LTB

- When $m>2$, if (S) has a solution w, then $u(\cdot, t) \rightarrow w$ as $t \rightarrow+\infty$, uniformly over $\bar{\Omega}$.
- If (S) is not solvable, then $\lambda^{*}<0$ in $\left(\mathrm{E}_{b}\right)$ and $u(\cdot, t)-\lambda^{*} t \rightarrow \phi+c$ as $t \rightarrow+\infty$ uniformly over $\bar{\Omega}$, for some $c \in \mathbb{R}$. [Tabet Tchamba, 2010]

Bounded domain-ergodic LTB

- When $m>2$, if (S) has a solution w, then $u(\cdot, t) \rightarrow w$ as $t \rightarrow+\infty$, uniformly over $\bar{\Omega}$.
- If (S) is not solvable, then $\lambda^{*}<0$ in $\left(\mathrm{E}_{b}\right)$ and $u(\cdot, t)-\lambda^{*} t \rightarrow \phi+c$ as $t \rightarrow+\infty$ uniformly over $\bar{\Omega}$, for some $c \in \mathbb{R}$. [Tabet Tchamba, 2010]
- For $1<m \leq 2$, LTB also depends on m : e.g., if $1<m \leq \frac{3}{2}$ and $\lambda^{*}<0$, then a partial convergence holds: $\frac{u(x, t)}{t} \rightarrow \lambda^{*}$ locally uniformly in Ω but it can happen that $u(\cdot, t)-\lambda^{*} t \rightarrow-\infty$ in Ω [Barles et al., 2010].

Unbounded domains-m > 2

Theorem (Barles, R., Quaas, 2020)

Assume $f \in W_{\text {loc }}^{1, \infty}\left(\mathbb{R}^{N}\right)$ and $u_{0} \in C\left(\mathbb{R}^{N}\right)$ are bounded from below. Then, there exists a unique, nonnegative, continuous solution of (VHJ).

Unbounded domains-m > 2

Theorem (Barles, R., Quaas, 2020)

Assume $f \in W_{\text {loc }}^{1, \infty}\left(\mathbb{R}^{N}\right)$ and $u_{0} \in C\left(\mathbb{R}^{N}\right)$ are bounded from below. Then, there exists a unique, nonnegative, continuous solution of (VHJ).

- Existence: aproximation by solutions on bounded domains, compactness arguments.

Unbounded domains-m > 2

Theorem (Barles, R., Quaas, 2020)

Assume $f \in W_{\text {loc }}^{1, \infty}\left(\mathbb{R}^{N}\right)$ and $u_{0} \in C\left(\mathbb{R}^{N}\right)$ are bounded from below. Then, there exists a unique, nonnegative, continuous solution of (VHJ).

- Existence: aproximation by solutions on bounded domains, compactness arguments.
- Uniqueness: comparison principle for bounded-from-below solutions.

Unbounded domains-m > 2

Theorem (Barles, R., Quaas, 2020)

Assume $f \in W_{\text {loc }}^{1, \infty}\left(\mathbb{R}^{N}\right)$ and $u_{0} \in C\left(\mathbb{R}^{N}\right)$ are bounded from below. Then, there exists a unique, nonnegative, continuous solution of (VHJ).

- Existence: aproximation by solutions on bounded domains, compactness arguments.
- Uniqueness: comparison principle for bounded-from-below solutions.
- Once existence is proven, we may assume $f, u_{0} \geq 0$ with no loss of generality:

$$
u \mapsto u+C_{1} t+C_{2} \quad \text { gives } \quad f \mapsto f+C_{1}, u_{0} \mapsto u_{0}+C_{2}
$$

The ergodic problem in \mathbb{R}^{N}

LTB will again be determined by the ergodic problem,

$$
\lambda-\Delta \phi+|D \phi|^{m}=f(x) \quad \text { in } \mathbb{R}^{N}
$$

where both $\lambda \in \mathbb{R}$ and $\phi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ are unknown.

The ergodic problem in \mathbb{R}^{N}

LTB will again be determined by the ergodic problem,

$$
\lambda-\Delta \phi+|D \phi|^{m}=f(x) \quad \text { in } \mathbb{R}^{N}
$$

where both $\lambda \in \mathbb{R}$ and $\phi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ are unknown.

- For $\lambda \leq \inf _{\mathbb{R}^{N}} f$, there exist multiple solutions (constant functions).

The ergodic problem in \mathbb{R}^{N}

LTB will again be determined by the ergodic problem,

$$
\lambda-\Delta \phi+|D \phi|^{m}=f(x) \quad \text { in } \mathbb{R}^{N}
$$

where both $\lambda \in \mathbb{R}$ and $\phi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ are unknown.

- For $\lambda \leq \inf _{\mathbb{R}^{N}} f$, there exist multiple solutions (constant functions).
- Generalized ergodic constant is defined as

$$
\lambda^{*}:=\sup \left\{\lambda \in \mathbb{R}\left|\exists \psi \in C^{2}\left(\mathbb{R}^{N}\right), \lambda-\Delta \psi+|D \psi|^{m} \leq f(x)\right\} ;\right.
$$

this is analogous to the definition of the generalized principal eigenvalue in [Berestycki et al., 1994].

The ergodic problem in \mathbb{R}^{N}

LTB will again be determined by the ergodic problem,

$$
\lambda-\Delta \phi+|D \phi|^{m}=f(x) \quad \text { in } \mathbb{R}^{N}
$$

where both $\lambda \in \mathbb{R}$ and $\phi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ are unknown.

- For $\lambda \leq \inf _{\mathbb{R}^{N}} f$, there exist multiple solutions (constant functions).
- Generalized ergodic constant is defined as

$$
\lambda^{*}:=\sup \left\{\lambda \in \mathbb{R}\left|\exists \psi \in C^{2}\left(\mathbb{R}^{N}\right), \lambda-\Delta \psi+|D \psi|^{m} \leq f(x)\right\} ;\right.
$$

this is analogous to the definition of the generalized principal eigenvalue in [Berestycki et al., 1994].

- If f is coercive, there exists a bounded from below solution of ($E_{\lambda^{*}}$)

The ergodic problem in \mathbb{R}^{N} in the case $m>2$

Theorem ([Barles and Meireles, 2016])

Assume that $f \in W_{\text {loc }}^{1, \infty}\left(\mathbb{R}^{N}\right)$ is coercive. If ϕ is a solution of $\left(E_{\lambda_{1}}\right)$ and ψ is a solution of $\left(E_{\lambda_{2}}\right)$, both bounded from below, then $\lambda_{1}=\lambda_{2}$ and there exists a constant $c \in \mathbb{R}$ such that $\phi=\psi+c$.

- In short, if $m>2$ there is a unique solution pair $\left(\lambda^{*}, \phi\right)$ in the class of bounded from below solutions.
- ϕ is unique up to additive constants, we may assume $\inf _{\mathbb{R}^{N}} \phi=0$.
- Uniqueness follows from a comparison principle on exterior domains, i.e., $\mathbb{R}^{N} \backslash B_{R}$ for large $R>0$.

LTB, assumptions on f case $m>2$

- There exists an increasing function $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ and constants $\alpha, \varphi_{0}, f_{0}>0$ such that for all $r \geq 0$,

$$
\varphi_{0}^{-1} r^{\alpha} \leq \varphi(r)
$$

and for all $x \in \mathbb{R}^{N}$ and $r=|x|$,

$$
\begin{equation*}
f_{0}^{-1} \varphi(r) \leq f(x) \leq f_{0}(\varphi(r)+1) \tag{H1}
\end{equation*}
$$

LTB, convergence result case $m>2$

Theorem (Barles, R., Quaas)

Assuming (H1), there exists $\hat{c} \in \mathbb{R}$ depending on f and u_{0} such that

$$
u(x, t)-\lambda^{*} t \rightarrow \phi(x)+\hat{c} \quad \text { locally uniformly in } \mathbb{R}^{N} \text { as } t \rightarrow+\infty .
$$

- No assumptions on the behaviour of u_{0} as $|x| \rightarrow+\infty$; in particular, it might be very different from that of ϕ.

LTB, convergence result case $m>2$

Theorem (Barles, R., Quaas)

Assuming (H1), there exists $\hat{c} \in \mathbb{R}$ depending on f and u_{0} such that

$$
u(x, t)-\lambda^{*} t \rightarrow \phi(x)+\hat{c} \quad \text { locally uniformly in } \mathbb{R}^{N} \text { as } t \rightarrow+\infty .
$$

- No assumptions on the behaviour of u_{0} as $|x| \rightarrow+\infty$; in particular, it might be very different from that of ϕ.
- In [Ichihara, 2012], this is shown for $f(x) \approx|x|^{\beta}$, where $\beta \geq m^{*}=\frac{m}{m-1}$, and u_{0} has at most polynomial growth.

Elements of the proof case $m>2$

- For comparison in (VHJ), we use the Hopf-Cole transform $z(x, t)=-e^{-u(x, t)}$ and obtain bounded sub- and super solutions of

$$
z_{t}-\Delta z+N(x, z, D z)=0
$$

where $N(x, r, p)=r\left(f(x)+\left|\frac{D z}{z}\right|^{2}-\left|\frac{D z}{z}\right|^{m}\right)$.

Elements of the proof case $m>2$

- For comparison in (VHJ), we use the Hopf-Cole transform $z(x, t)=-e^{-u(x, t)}$ and obtain bounded sub- and super solutions of

$$
z_{t}-\Delta z+N(x, z, D z)=0
$$

where $N(x, r, p)=r\left(f(x)+\left|\frac{D z}{z}\right|^{2}-\left|\frac{D z}{z}\right|^{m}\right)$.

- We use an ODE approach to construct sub- and super solutions of

$$
v_{t}-\Delta v+|D v|^{m}=f(x)-\lambda^{*}
$$

Behavior of ϕ

Lemma

$$
\lim _{|x| \rightarrow \infty} \frac{\phi(x)}{|x|}=\infty
$$

Proof. Blow up argument to find a supersolution of the eikonal equation Comparison with eikonal equation we find a contradiction.

Lemma (Sub- and supersolutions)

(1) There exists a constant $\sigma>0$ such that $U(\cdot, t) \rightarrow \phi-\sigma$ and $V(\cdot, t) \rightarrow \phi+\sigma$ locally uniformly in \mathbb{R}^{N} as $t \rightarrow \infty$.
(2) For any fixed $\hat{t}>0$,

$$
V(x, \hat{t}) \rightarrow+\infty \quad \text { as } x \rightarrow \partial Q_{\hat{t}}\left(x \in Q_{\hat{t}}\right) .
$$

(3) There exists $M>0$ such that, for all $t>0$,

$$
U(x, t) \leq t+M \quad \text { for all } x \in \mathbb{R}^{N} .
$$

The Supersolution

$$
\begin{aligned}
& V(x, t)=\phi(x)+\chi\left(\phi(x)-\left(t+t_{0}\right)\right)+\int_{0}^{t}\left(\tau^{\hat{\alpha}}+1\right)^{-\hat{\beta}} d \tau \\
& \begin{cases}\chi^{\prime \prime}=C\left(\chi^{\prime}\right)^{\beta_{1}}\left(1+\chi^{\prime}\right)^{\beta_{2}} & \text { in }(-\infty, b), \\
\chi(0)=\chi^{\prime}(0)=0, & \text { (SUP-ODE) } \\
\chi(s) \equiv+\infty & \text { for all } s \geq b\end{cases}
\end{aligned}
$$

Choice of constants $t_{0}>0$ (to be chosen) determines "when the supersolution comes into play".

Suitable choices of $\beta_{1} \in(0,1), \beta_{1}+\beta_{2}>1$ imply that (SUP-ODE) has a nontrivial solution and $\hat{\beta}=\hat{\beta}\left(\beta_{1}, \beta_{2}, p\right)$ is large, hence

$$
\sigma:=\int_{0}^{\infty}\left(\tau^{\hat{\alpha}}+1\right)^{-\hat{\beta}} d \tau<\infty
$$

The Supersolution

$$
\begin{aligned}
& V(x, t)=\phi(x)+\chi\left(\phi(x)-\left(t+t_{0}\right)\right)+\int_{0}^{t}\left(\tau^{\hat{\alpha}}+1\right)^{-\hat{\beta}} d \tau \\
& \hline
\end{aligned}
$$

The Subsolution

$$
\begin{align*}
& U(x, t)=t+t_{0}+\xi\left(\phi(x)-\left(t+t_{0}\right)\right)-\int_{0}^{t}\left(\tau^{\hat{\alpha}}+1\right)^{-\hat{\beta}} d \tau . \\
& \left\{\begin{array}{l}
\xi^{\prime \prime}=-C(1-\xi)^{\eta_{1}}\left(\xi^{\prime}\right)^{\eta_{2}} \quad \text { in }(0, \infty), \\
\xi(0)=0, \xi^{\prime}(0)=1,
\end{array}\right. \tag{SUB-ODE}
\end{align*}
$$

with $t_{0}, \eta_{1}, \eta_{2}>0$ to be chosen; $\hat{\alpha}, \hat{\beta}>0$, as before.

The Subsolution

$$
U(x, t)=t+t_{0}+\xi\left(\phi(x)-\left(t+t_{0}\right)\right)-\int_{0}^{t}\left(\tau^{\hat{\alpha}}+1\right)^{-\hat{\beta}} d \tau
$$

Convergence argument

Lemma

$u(x, t)-\lambda^{*} t$ is bounded over compact sets, uniformly with respect to $t>0$.

The Lemma allows us to define upper and lower limits at $t \rightarrow+\infty$ for $u(x, t)-\lambda^{*} t$.

Together with local gradient bounds [Barles 2017] by compactness we have convergence along subsequences $\left(t_{n}\right)_{n \in \mathbb{N}}, t_{n} \rightarrow+\infty$ over compact sets.

The SMP implies the limit is $\phi+\hat{c}$, for some $\hat{c} \in \mathbb{R}$.

Full convergence

To prove convergence on $\widehat{K} \subset \mathbb{R}^{N}$ we use

- Convergent subsequence on \bar{B}_{R} for $B_{R} \supset \widehat{K}$, with $R \gg 1$
- Finer parametrization of sub-, supersolutions U_{R}, V_{R} :

For $R>0$ and $(x, t) \in \mathbb{R}^{N} \times(0,+\infty)$,
$V_{R}(x, t)=\phi(x)+\hat{c}+\chi(\phi(x)+\hat{c}-(t+R))+\int_{R}^{t+R}\left(\tau^{\hat{\alpha}}+1\right)^{-\hat{\beta}} d \tau+\frac{1}{R}$,
and similarly for a subsolution U_{R}.

- Note that the "extra terms" vanish as $R \rightarrow+\infty$.

Setting for $1<m \leq 2$

- Existence of solutions for (VHJ), $\left(E_{\lambda}\right)$, holds roughly as before.

Setting for $1<m \leq 2$

- Existence of solutions for (VHJ), $\left(E_{\lambda}\right)$, holds roughly as before.
- No comparison principle, nor uniqueness of solutions for (VHJ) for f as general as before.

Setting for $1<m \leq 2$

- Existence of solutions for (VHJ), $\left(E_{\lambda}\right)$, holds roughly as before.
- No comparison principle, nor uniqueness of solutions for (VHJ) for f as general as before.
- Convergence result for any solution of (VHJ)

Setting for $1<m \leq 2$

- Existence of solutions for (VHJ), $\left(E_{\lambda}\right)$, holds roughly as before.
- No comparison principle, nor uniqueness of solutions for (VHJ) for f as general as before.
- Convergence result for any solution of (VHJ)
- Uniqueness of solution pairs for $\left(E_{\lambda}\right)$ given by [Arapostathis et al., 2019] by dynamical systems arguments.

Setting for $1<m \leq 2$

- Existence of solutions for (VHJ), $\left(E_{\lambda}\right)$, holds roughly as before.
- No comparison principle, nor uniqueness of solutions for (VHJ) for f as general as before.
- Convergence result for any solution of (VHJ)
- Uniqueness of solution pairs for $\left(E_{\lambda}\right)$ given by [Arapostathis et al., 2019] by dynamical systems arguments.
- We obtain partial results towards uniqueness for $\left(E_{\lambda}\right)$ even for sub-solutionby "PDE techniques", but there is no comparison principle for $\left(E_{\lambda}\right)$!!

LTB, assumptions on f for the case $1<m \leq 2$

- There exists a nondecreasing function $\varphi:[0, \infty) \rightarrow[0, \infty)$ and $c>0$ such that, if $r=|x|$, then

$$
c^{-1} \varphi(r) \leq f(x) \leq c(\varphi(r)+1)
$$

and for sufficiently large $\rho>0$,

$$
\begin{equation*}
\rho \varphi(\rho+1)^{\frac{1}{m}} \leq \varphi(\rho) \tag{H2}
\end{equation*}
$$

$$
\begin{equation*}
\limsup _{x \rightarrow+\infty} \frac{|D f(x)|^{\frac{1}{2 m-1}}}{|f(x)|^{\frac{1}{m}}}<+\infty \tag{H3}
\end{equation*}
$$

- The initial data satisfies

$$
\begin{equation*}
u_{0}(x) \leq c_{0}+c_{2}|x|\left[\inf _{\mathbb{R}^{N} \backslash B_{\frac{1}{2}}|x|} f\right]^{\frac{1}{m}} \tag{H4}
\end{equation*}
$$

for a precise value of $c_{2}>0$ and some $c_{0} \geq 0$.

Proposition

Assume $f \in W_{\text {loc }}^{1, \infty}\left(\mathbb{R}^{N}\right)$ is coercive. If χ and $v \in \operatorname{USC}\left(\mathbb{R}^{N}\right)$ are respectively a solution and a subsolution of $\left(E_{\lambda^{*}}\right)$, both bounded from below, then there exists $c \in \mathbb{R}$ such that $v(x)=\chi(x)+c$ for all $x \in \mathbb{R}^{N}$.

Proposition

Assume $f \in W_{\text {loc }}^{1, \infty}\left(\mathbb{R}^{N}\right)$ is coercive. If χ and $v \in \operatorname{USC}\left(\mathbb{R}^{N}\right)$ are respectively a solution and a subsolution of $\left(E_{\lambda^{*}}\right)$, both bounded from below, then there exists $c \in \mathbb{R}$ such that $v(x)=\chi(x)+c$ for all $x \in \mathbb{R}^{N}$.

The result follows from approximation of $\left(E_{\lambda}\right)$ over bounded domains and a well chosen perturbation of solutions

LTB, convergence result $\quad 1<m \leq 2$

Theorem (Quaas, R.)

Assume (H2)-(H4) hold. Then, $u(\cdot, t)-\lambda^{*} t \rightarrow \phi+\hat{c}$ locally uniformly over \mathbb{R}^{N}, for some constant $\hat{c} \in \mathbb{R}$, where $u=u(x, t)$ is any solution of (VHJ) and ϕ is the unique (normalized) solution of ($E_{\lambda^{*}}$).

Elements of the proof $1<m \leq 2$

- Supersolutions are given by

$$
\begin{cases}\lambda_{R}-\Delta \phi_{R}+\left|D \phi_{R}\right|^{m}=f(x) & \text { in } B_{R} \\ \lambda_{R}-\Delta \phi_{R}+\left|D \phi_{R}\right|^{m} \geq f(x) & \text { on } \partial B_{R},\end{cases}
$$

Recall we have $\phi_{R}(x) \rightarrow+\infty$ as $x \rightarrow \partial B_{R}$.

Elements of the proof $1<m \leq 2$

- Supersolutions are given by

$$
\begin{cases}\lambda_{R}-\Delta \phi_{R}+\left|D \phi_{R}\right|^{m}=f(x) & \text { in } B_{R} \\ \lambda_{R}-\Delta \phi_{R}+\left|D \phi_{R}\right|^{m} \geq f(x) & \text { on } \partial B_{R},\end{cases}
$$

Recall we have $\phi_{R}(x) \rightarrow+\infty$ as $x \rightarrow \partial B_{R}$.

- Subsolutions are given by

$$
\nu_{R}+\Delta \psi_{R}+\left|D \psi_{R}\right|^{m}=f_{R} \quad \text { in } \mathbb{R}^{N} / 2 S_{R} \mathbb{Z}^{N},
$$

where f_{R} is the periodic extension of $\min \{f, R\}$ to $\mathbb{R}^{N} / 2 S_{R} \mathbb{Z}^{N}$ for a suitable S_{R}.

Elements of the proof $1<m \leq 2$

- Supersolutions are given by

$$
\begin{cases}\lambda_{R}-\Delta \phi_{R}+\left|D \phi_{R}\right|^{m}=f(x) & \text { in } B_{R} \\ \lambda_{R}-\Delta \phi_{R}+\left|D \phi_{R}\right|^{m} \geq f(x) & \text { on } \partial B_{R},\end{cases}
$$

Recall we have $\phi_{R}(x) \rightarrow+\infty$ as $x \rightarrow \partial B_{R}$.

- Subsolutions are given by

$$
\nu_{R}+\Delta \psi_{R}+\left|D \psi_{R}\right|^{m}=f_{R} \quad \text { in } \mathbb{R}^{N} / 2 S_{R} \mathbb{Z}^{N}
$$

where f_{R} is the periodic extension of $\min \{f, R\}$ to $\mathbb{R}^{N} / 2 S_{R} \mathbb{Z}^{N}$ for a suitable S_{R}.

- Comparison/maximum principle arguments are made at the level of bounded domains or for (periodic) bounded solutions.

Elements of the proof $1<m \leq 2$

- Supersolutions are given by

$$
\begin{cases}\lambda_{R}-\Delta \phi_{R}+\left|D \phi_{R}\right|^{m}=f(x) & \text { in } B_{R} \\ \lambda_{R}-\Delta \phi_{R}+\left|D \phi_{R}\right|^{m} \geq f(x) & \text { on } \partial B_{R},\end{cases}
$$

Recall we have $\phi_{R}(x) \rightarrow+\infty$ as $x \rightarrow \partial B_{R}$.

- Subsolutions are given by

$$
\nu_{R}+\Delta \psi_{R}+\left|D \psi_{R}\right|^{m}=f_{R} \quad \text { in } \mathbb{R}^{N} / 2 S_{R} \mathbb{Z}^{N}
$$

where f_{R} is the periodic extension of $\min \{f, R\}$ to $\mathbb{R}^{N} / 2 S_{R} \mathbb{Z}^{N}$ for a suitable S_{R}.

- Comparison/maximum principle arguments are made at the level of bounded domains or for (periodic) bounded solutions.
- We have $\left(\lambda_{R}, \phi_{R}\right),\left(\nu_{R}, \psi_{R}\right) \rightarrow\left(\lambda^{*}, \phi\right)$ as $R \rightarrow+\infty$.

Other results and Open problems

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).

Other results and Open problems

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).
- LTB ? All space?

Other results and Open problems

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).
- LTB ? All space?
- Nonlocal Periodic setting LTB Barles , Koike Ley, Topp. 2014

Other results and Open problems

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).
- LTB ? All space?
- Nonlocal Periodic setting LTB Barles , Koike Ley, Topp. 2014
- Nonlocal ergodic problem? Dávila, Q. Topp (bounded domain) not clear not uniqueness even in the coercive case.

Other results and Open problems

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).
- LTB ? All space?
- Nonlocal Periodic setting LTB Barles , Koike Ley, Topp. 2014
- Nonlocal ergodic problem? Dávila, Q. Topp (bounded domain) not clear not uniqueness even in the coercive case.
- Nonlocal ergodic all space: Biswas Topp.

Other results and Open problems

- I. Birindelli, F. Demengel, F. Leoni. 2017. Ergodic pairs for singular or degenerate fully nonlinear operators (bounded domain).
- LTB ? All space?
- Nonlocal Periodic setting LTB Barles , Koike Ley, Topp. 2014
- Nonlocal ergodic problem? Dávila, Q. Topp (bounded domain) not clear not uniqueness even in the coercive case.
- Nonlocal ergodic all space: Biswas Topp.
- LTB ?

Thank!

Arapostathis, A., Biswas, A., and Caffarelli, L. (2019). On uniqueness of solutions to viscous hjb equations with a subquadratic nonlinearity in the gradient.
Communications in Partial Differential Equations, 44(12):1466-1480.
嗇 Barles, G. and Da Lio, F. (2004).
On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations.
Journal de Mathématiques Pures et Appliquées, 83(1):53-75.
围
Barles, G., Ley, O., Nguyen, T.-T., and Phan, T. (2017).
Large time behavior of unbounded solutions of first-order Hamilton-Jacobi equations in \mathbb{R}^{n}.
arXiv preprint arXiv:1709.08387.

Rarles, G. and Meireles, J. (2016).
On unbounded solutions of ergodic problems in \mathbb{R}^{m} for viscous Hamilton-Jacobi equations.
Communications in Partial Differential Equations,
41(12):1985-2003.
E Barles, G., Porretta, A., and Tchamba, T. T. (2010).
On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations. fournal de mathématiques pures et appliquées, 94(5):497-519.
囦 Barles, G., Quaas, A., and Rodríguez-Paredes, A. (2020). Large-time behavior of unbounded solutions of viscous hamilton-jacobi equations in rn.
Communications in Partial Differential Equations, 46(3):547-572.

嗇 Barles，G．and Roquejoffre，J．－M．（2006）．
Ergodic type problems and large time behaviour of unbounded solutions of Hamilton－Jacobi equations．
Communications in Partial Differential Equations，
31（8）：1209－1225．
（R－1 Barles，G．and Souganidis，P．E．（2001）．
Space－time periodic solutions and long－time behavior of solutions to quasi－linear parabolic equations．
SIAM fournal on Mathematical Analysis，32（6）：1311－1323．
國 Benachour，S．，Karch，G．，and Laurençot，P．（2004）．
Asymptotic profiles of solutions to viscous hamilton－jacobi equations．
fournal de mathématiques pures et appliquées，83（10）：1275－1308．
目 Berestycki，H．，Nirenberg，L．，and Varadhan，S．S．（1994）． The principal eigenvalue and maximum principle for second－order elliptic operators in general domains．
Communications on Pure and Applied Mathematics，47（1）：47－92．

囯 Biler, P., Karch, G., and Guedda, M. (2004).
Asymptotic properties of solutions of the viscous
hamilton-jacobi equation.
Journal of Evolution Equations, 4(1):75-97.
Eriedman, A. (2013).
Partial differential equations of parabolic type.
Courier Corporation.
(in Gallay, T. and Laurençot, P. (2007).
Asymptotic behavior for a viscous hamilton-jacobi equation with critical exponent.
Indiana University mathematics journal, pages 459-479.
(2013).

A priori estimates and existence for elliptic equations with gradient dependent terms.
Ann. Sc. Norm. Super. Pisa Cl. Sci, 13:137-205.

囯 Iagar，R．G．，Laurençot，P．，and Vázquez，J．L．（2010）．
Asymptotic behaviour of a nonlinear parabolic equation with gradient absorption and critical exponent．
arXiv preprint arXiv：1002．2094．
Ichihara，N．（2012）．
Large time asymptotic problems for optimal stochastic control with superlinear cost．
Stochastic Processes and their Applications，122（4）：1248－1275．
目 Ichihara，N．and Ishii，H．（2009）．
Long－time behavior of solutions of hamilton－jacobi equations with convex and coercive hamiltonians．
Archive for rational mechanics and analysis，194（2）：383－419．
囯 Ishii，H．（2008）．
Asymptotic solutions for large time of hamilton－jacobi equations in euclidean n space．
In Annales de l＇IHP Analyse non linéaire，volume 25，pages 231－266．

目 Ishii，H．（2009）．
Asymptotic solutions of hamilton－jacobi equations for large time and related topics．
In ICIAM 07－6th International Congress on Industrial and
Applied Mathematics，pages 193－217．
R Kardar，M．，Parisi，G．，and Zhang，Y．－C．（1986）．
Dynamic scaling of growing interfaces．
Physical Review Letters，56（9）：889．
囦 Lasry，J．－M．and Lions，P．－L．（1989）．
Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints．
Mathematische Annalen，283（4）：583－630．
囯 Laurençot，P．（2009）．
Non－diffusive large time behavior for a degenerate viscous
hamilton－jacobi equation．
Communications in Partial Differential Equations，34（3）：281－304．

目 Namah, G. and Roquejoffre, J.-M. (1999).
Remarks on the long time behaviour of the solutions of hamilton-jacobi equations.
Communications in partial differential equations, 24(5-6):883-893.
E~ Quittner, P. and Souplet, P. (2007).
Superlinear parabolic problems: blow-up, global existence and steady states.
Springer Science \& Business Media.
Souplet, P. and Zhang, Q. S. (2006).
Global solutions of inhomogeneous Hamilton-Jacobi equations.
Journal d'analyse mathématique, 99(1):355-396.
囯 Tabet Tchamba, T. (2010).
Large time behavior of solutions of viscous Hamilton-Jacobi equations with superquadratic Hamiltonian.
Asymptotic Analysis, 66(3-4):161-186.

