The Landis conjecture via Liouville comparison principle and criticality theory

Yehuda Pinchover

Technion-Israel Institute of Technology Haifa, ISRAEL

> Mostly Maximum Principle PUC-Rio, 24-28 June 2024

Joint work with Ujjal Das

Landis conjecture (late 60s)

Conjecture (Landis (late 60s))

Let $\Omega = \mathbb{R}^N$ or an exterior domain, and $\|V\|_{L^{\infty}(\Omega)} \leq 1$. If u solves the Schrödinger equation

$$(-\Delta + V)\varphi = 0$$
 in Ω , and

 $u(x) = O(e^{-k|x|})$ as $x \to \infty$, for some k > 1, then u = 0.

通 と く ヨ と く ヨ と

Historical review

• Meshkov (1991) disproved the conjecture for a complex-valued potential V and N = 2 with $u = e^{-c|x|^{4/3}}$. Moreover, u = 0 if $u = o(e^{-|x|^{4/3+\varepsilon}})$. (cf. Froese-Herbst-2Hoffmann-Ostenhoff (82))

・ 同 ト ・ ヨ ト ・ ヨ ト

Historical review

- Meshkov (1991) disproved the conjecture for a complex-valued potential V and N = 2 with $u = e^{-c|x|^{4/3}}$. Moreover, u = 0 if $u = o(e^{-|x|^{4/3+\varepsilon}})$. (cf. Froese-Herbst-2Hoffmann-Ostenhoff (82))
- What about the case of real-valued V?

Historical review

- Meshkov (1991) disproved the conjecture for a complex-valued potential V and N = 2 with $u = e^{-c|x|^{4/3}}$. Moreover, u = 0 if $u = o(e^{-|x|^{4/3+\varepsilon}})$. (cf. Froese-Herbst-2Hoffmann-Ostenhoff (82))
- What about the case of real-valued V?
- Bourgain/Kenig (2005) N = 2. $u = o(e^{-c|x|^{4/3} \log |x|}) \Longrightarrow u = 0$.
- Kenig (2005) asked a weaker question: $u = o(e^{-|x|^{1+\varepsilon}}) \Rightarrow u = 0$?
- Kenig/Silvestre/Wang ('15) N=2, $V \ge 0$, $u=o(e^{-c|x|\log |x|}) \Rightarrow u=0$.
- N = 2, general L: Davey, Davey/Kenig/Wang, Kenig/Wang, Logunov/Malinnikova/Nadirashvili/Nazarov,
- N ≥ 2, general L. Arapostathis/Biswas/Ganguly, L. Rossi (proved the 1d and radial cases), Sirakov/Souplet.
- For n ≥ 3 almost all the results assume that L≥0 at least outside a compact set.
- Results in the discrete setting: Fernández-Bertolin/Roncal/Stan, Jaming/Lyubarskii/Malinnikova/Perfekt, and Das/Keller/Pinchover.

Preliminaries

Definition (Nonnegativity of operators and (sub)criticality)

Let $\Omega \subset \mathbb{R}^N$ be a domain. An elliptic operator $\mathcal L$ of the divergence form

 $\mathcal{L} \varphi := -\mathrm{div} \left[\left(\mathcal{A}(x) \nabla \varphi + \varphi \widetilde{b}(x) \right) \right] + b(x) \cdot \nabla \varphi + c(x) \varphi, \qquad x \in \Omega,$

is *nonnegative* in Ω (in short, $\mathcal{L} \geq 0$) if the equation $\mathcal{L}\varphi = 0$ admits a weak positive (super)solution in Ω .

 $\mathcal{L} \geq 0$ is *subcritical* in Ω if there exists $W \geq 0$ such that $\mathcal{L} - W \geq 0$ in Ω . Such a function W is called a *Hardy-weight* for \mathcal{L} in Ω . The operator \mathcal{L} is *critical* in Ω if $\mathcal{L} \geq 0$ in Ω , but \mathcal{L} is not subcritical in Ω .

イロト 不得下 イヨト イヨト 二日

Preliminaries

Definition (Nonnegativity of operators and (sub)criticality)

Let $\Omega \subset \mathbb{R}^N$ be a domain. An elliptic operator $\mathcal L$ of the divergence form

 $\mathcal{L} \varphi := -\mathrm{div} \left[\left(\mathcal{A}(x) \nabla \varphi + \varphi \tilde{b}(x) \right) \right] + b(x) \cdot \nabla \varphi + c(x) \varphi, \qquad x \in \Omega,$

is *nonnegative* in Ω (in short, $\mathcal{L} \geq 0$) if the equation $\mathcal{L}\varphi = 0$ admits a weak positive (super)solution in Ω .

 $\mathcal{L} \geq 0$ is *subcritical* in Ω if there exists $W \geq 0$ such that $\mathcal{L} - W \geq 0$ in Ω . Such a function W is called a *Hardy-weight* for \mathcal{L} in Ω . The operator \mathcal{L} is *critical* in Ω if $\mathcal{L} \geq 0$ in Ω , but \mathcal{L} is not subcritical in Ω .

 \mathcal{L} is subcritical $\iff \mathcal{L}$ admits minimal positive Green function; \mathcal{L} is critical $\iff \mathcal{L}$ admits an Agmon ground state $\iff \mathcal{L}$ admits a unique positive supersolution (strong positive Liouville theorem).

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminaries

Definition (Nonnegativity of operators and (sub)criticality)

Let $\Omega \subset \mathbb{R}^{N}$ be a domain. An elliptic operator $\mathcal L$ of the divergence form

 $\mathcal{L}\varphi := -\mathrm{div}\left[\left(\mathcal{A}(x)\nabla \varphi + \varphi \tilde{b}(x)\right)\right] + b(x) \cdot \nabla \varphi + c(x)\varphi, \qquad x \in \Omega,$

is *nonnegative* in Ω (in short, $\mathcal{L} \geq 0$) if the equation $\mathcal{L}\varphi = 0$ admits a weak positive (super)solution in Ω .

 $\mathcal{L} \geq 0$ is *subcritical* in Ω if there exists $W \geq 0$ such that $\mathcal{L} - W \geq 0$ in Ω . Such a function W is called a *Hardy-weight* for \mathcal{L} in Ω . The operator \mathcal{L} is *critical* in Ω if $\mathcal{L} \geq 0$ in Ω , but \mathcal{L} is not subcritical in Ω .

 \mathcal{L} is subcritical $\iff \mathcal{L}$ admits minimal positive Green function; \mathcal{L} is critical $\iff \mathcal{L}$ admits an Agmon ground state $\iff \mathcal{L}$ admits a unique positive supersolution (strong positive Liouville theorem).

Both functions are positive solutions of minimal growth near ∞_{Ω} , where ∞_{Ω} is the ideal point in the one-point compactification of Ω .

Liouville comparison principle (YP, 2007)

Theorem

Let $\Omega \subset \mathbb{R}^N$ be a domain and

 $H_k := P_k + V_k = -\nabla \cdot (A_k \nabla) + V_k, \qquad k = 1, 2,$

be nonnegative Schrödinger-type operators in Ω , where A_k are symmetric, locally bounded and locally uniformly elliptic matrices.

Liouville comparison principle (YP, 2007)

Theorem

Let $\Omega \subset \mathbb{R}^N$ be a domain and

 $H_k := P_k + V_k = -\nabla \cdot (A_k \nabla) + V_k, \qquad k = 1, 2,$

be nonnegative Schrödinger-type operators in Ω , where A_k are symmetric, locally bounded and locally uniformly elliptic matrices.

Assume that the following assumptions hold true.

- (i) The operator H_1 is critical in Ω with its Agmon ground state Ψ_{H_1} .
- (ii) There exists $\Phi_2 \in W^{1,2}_{loc}(\Omega)$ such that $H_2\Phi_2 \leq 0$ in Ω , and $\Phi_2^+ \neq 0$.
- (iii) $(\Phi_2^+)^2(x)A_2(x) \le C\Psi_{H_1}^2(x)A_1(x)$ a.e. in Ω .

(日) (周) (三) (三)

Liouville comparison principle (YP, 2007)

Theorem

Let $\Omega \subset \mathbb{R}^N$ be a domain and

 $H_k := P_k + V_k = -\nabla \cdot (A_k \nabla) + V_k, \qquad k = 1, 2,$

be nonnegative Schrödinger-type operators in Ω , where A_k are symmetric, locally bounded and locally uniformly elliptic matrices.

Assume that the following assumptions hold true.

- (i) The operator H_1 is critical in Ω with its Agmon ground state Ψ_{H_1} .
- (ii) There exists $\Phi_2 \in W^{1,2}_{loc}(\Omega)$ such that $H_2\Phi_2 \leq 0$ in Ω , and $\Phi_2^+ \neq 0$.
- (iii) $(\Phi_2^+)^2(x)A_2(x) \le C\Psi_{H_1}^2(x)A_1(x)$ a.e. in Ω .

Then H_2 is critical in Ω , and $\Phi_2 > 0$ is its Agmon ground state.

イロト 不得 トイヨト イヨト 二日

Landis-type theorem in the symmetric case

Theorem

Let Ω be a domain in \mathbb{R}^N , $N \ge 1$. Consider two nonnegative Schrödinger-type operators

 $H_k = P_k + V_k = -\operatorname{div}(A_k \nabla) + V_k \ge 0, \quad k = 1, 2.$

• Suppose that H_1 is critical in Ω with an Agmon ground state Ψ_{H_1} .

• Let $W \ge V_2$ outside a compact set in Ω .

• Let $u \in W^{1,2}_{loc}(\Omega)$ be a solution of the equation $H_2\varphi = 0$ in Ω , s.t.

 $|u|^2 A_2 \leq C \Psi_{\mathcal{H}_1}^2 A_1$ in Ω , and $\liminf_{x \to \infty_\Omega} \frac{|u(x)|}{G_{\mathcal{P}_2+W}(x)} = 0,$

where G_{P_2+W} is a positive solution of minimal growth of $(P_2 + W)\varphi = 0$ in a neighborhood of ∞_{Ω} .

Then $\mathbf{u} = \mathbf{0}$.

500

Proof.

WLOG, assume that $u^+ \neq 0$. By the Liouville comparison principle, H_2 is critical and $u = u^+ > 0$ is its Agmon ground state. Now, since u > 0 and $W \ge V_2$ near ∞_{Ω} , it follows that

 $(P_2 + W)u = H_2u + (W - V_2)u = (W - V_2)u \ge 0$ near ∞_{Ω} .

So, *u* is a positive supersolution of $(P_2 + W)\varphi = 0$ near ∞_{Ω} . As G_{P_2+W} is a positive solution of minimal growth near ∞_{Ω} of the same equation, we conclude that $u \ge CG_{P_2+W}$ near ∞_{Ω} for some C > 0. This contradicts our assumption

$$\liminf_{x\to\infty_{\Omega}}\frac{|u(x)|}{G_{P_2+W}(x)}=0.$$

Therefore, u = 0.

イロト イポト イヨト イヨト 二日

Back to Landis Conjecture in \mathbb{R}^N

Corollary

Let $H = -\Delta + V$ be a nonnegative Schrödinger operator in \mathbb{R}^N , where $V \leq 1$. If $u \in W^{1,2}_{loc}(\mathbb{R}^N)$ is a solution of the equation $H\varphi = 0$ in \mathbb{R}^N satisfying

$$|u(x)| = \begin{cases} O(1) & N = 1, \\ O(|x|^{(2-N)/2}) & N \ge 2, \end{cases} \text{ as } |x| \to \infty,$$

and
$$\liminf_{|x| \to \infty} \frac{|u(x)| |x|^{(N-1)/2}}{e^{-|x|}} = 0,$$

then u = 0.

.

The linear nonsymmetric case

Theorem

Let \mathcal{L} be an elliptic operator in divergence form. Assume that $\mathcal{L} \geq 0$ in Ω . Let $u \in W^{1,2}_{loc}(\Omega)$ be a solution of the equation $\mathcal{L}\varphi = 0$ in Ω such that

$$|u| = O(G_{\mathcal{L}}) \text{ as } x \to \infty_{\Omega} \quad \text{ and } \quad \liminf_{x \to \infty_{\Omega}} \frac{|u(x)|}{G_{\mathcal{L}}(x)} = 0,$$

where $G_{\mathcal{L}}$ is a positive solution of the equation $\mathcal{L}\varphi = 0$ of minimal growth near ∞_{Ω} . Then u = 0.

· · · · · · · · ·

The linear nonsymmetric case (stronger version)

Theorem

Assume that $\mathcal{L} \geq 0$ in Ω , where \mathcal{L} is of divergence form. Let $W \geq 0$ be a critical Hardy-weight for \mathcal{L} with Agmon ground state $\Psi_{\mathcal{L}-W}$, and consider a potential V s.t. $V + W \geq 0$ in Ω . Let u be a solution of the equation $(\mathcal{L} + V)\varphi = 0$ in Ω such that

$$|u| = O(\Psi_{\mathcal{L}-W})$$
 as $x \to \infty_{\Omega}$, and $\liminf_{x \to \infty_{\Omega}} \frac{|u(x)|}{\Psi_{\mathcal{L}-W}(x)} = 0.$

Then u = 0.

Application

Let $\mathcal{L} = -\Delta + 1 + \mathcal{V}_{sr}$ be a subcritical operator in \mathbb{R}^N , where \mathcal{V}_{sr} is a short range potential. The minimal Green function $\mathcal{G}_{\mathcal{L}}$ of \mathcal{L} satisfies

$$\mathcal{G}_{\mathcal{L}}(x) symp rac{\mathrm{e}^{-|x|}}{|x|^{(N-1)/2}} \; \; \textit{as} \; |x|
ightarrow \infty.$$

Moreover, there exists a positive solution Φ of $\mathcal{L}[\varphi] = 0$ in \mathbb{R}^N such that

$$\begin{split} \Phi(x) &\asymp \frac{\mathrm{e}^{|x|}}{|x|^{(N-1)/2}} \ \text{as } |x| \to \infty. \\ \text{Let } W &:= \frac{\mathcal{L}(\sqrt{\mathcal{G}_{\mathcal{L}}\Phi})}{\sqrt{\mathcal{G}_{\mathcal{L}}\Phi}}, \ \Psi_{\mathcal{L}-W} &:= \sqrt{\mathcal{G}_{\mathcal{L}}\Phi} \asymp |x|^{\frac{(1-N)}{2}}. \ \text{Since } \lim_{|x|\to\infty} \mathcal{G}_{\mathcal{L}}/\Phi = 0, \\ \text{hence } \Psi_{\mathcal{L}-W} \ \text{is Agmon g.s. of the critical operator } \mathcal{L} - W. \end{split}$$

Application

Let $\mathcal{L} = -\Delta + 1 + \mathcal{V}_{sr}$ be a subcritical operator in \mathbb{R}^N , where \mathcal{V}_{sr} is a short range potential. The minimal Green function $\mathcal{G}_{\mathcal{L}}$ of \mathcal{L} satisfies

$$\mathcal{G}_{\mathcal{L}}(x) symp rac{\mathrm{e}^{-|x|}}{|x|^{(N-1)/2}} \; \; \textit{as} \; |x|
ightarrow \infty.$$

Moreover, there exists a positive solution Φ of $\mathcal{L}[\varphi] = 0$ in \mathbb{R}^N such that

 $\Phi(x) \approx \frac{e^{|x|}}{|x|^{(N-1)/2}} \text{ as } |x| \to \infty.$ Let $W := \frac{\mathcal{L}(\sqrt{\mathcal{G}_{\mathcal{L}}}\Phi)}{\sqrt{\mathcal{G}_{\mathcal{L}}}\Phi}, \Psi_{\mathcal{L}-W} := \sqrt{\mathcal{G}_{\mathcal{L}}}\Phi \approx |x|^{\frac{(1-N)}{2}}.$ Since $\lim_{|x|\to\infty} \mathcal{G}_{\mathcal{L}}/\Phi = 0$, hence $\Psi_{\mathcal{L}-W}$ is Agmon g.s. of the critical operator $\mathcal{L} - W$. If u is a solution of $(\mathcal{L} + V)[\varphi] = 0$ in \mathbb{R}^N , where $V + W \ge 0$ and $|u(x)| = O\left(|x|^{\frac{(1-N)}{2}}\right)$ as $|x| \to \infty$, and $\liminf_{|x|\to\infty} |u(x)||x|^{\frac{(N-1)}{2}} = 0$, then u = 0.

Exterior domains

Theorem

Suppose that $\mathcal{L} \geq 0$ in $\Omega \setminus K$ for some $K \Subset \Omega$, and satisfies the unique continuation property in Ω .

Let u be a solution of $\mathcal{L}\varphi = 0$ in Ω such that u has constant sign in a neighborhood of ∂K , and

$$|u| = O(G_{\mathcal{L}})$$
 as $x \to \bar{\infty}_{\Omega}$, and $\liminf_{x \to \bar{\infty}_{\Omega}} \frac{|u(x)|}{G_{\mathcal{L}}^{\Omega}(x)} = 0$,

where $G_{\mathcal{L}}^{\Omega}$ is a positive solution of the equation $\mathcal{L}\varphi = 0$ of minimal growth at ∞_{Ω} . Then u = 0.

通 ト イヨ ト イヨト

Conclusion remarks

• In the selfadjoint case we are left with two challenging cases: either

(a) inf $\sigma_{\rm ess}(H) < 0$ (0 is an embedded eigenvalues), or

(b) inf $\sigma_{ess}(H) = 0$ and the Morse index of H is not finite (H admits infinitely many negative eigenvalues).

• Using a Liouville comparison principle for quasilinear operators of the form

$$\mathcal{Q}[\varphi] := -\mathrm{div}(|\nabla \varphi|_{\mathcal{A}(x)}^{p-2}\mathcal{A}(x)\nabla \varphi) + V|\varphi|^{p-2}\varphi$$

we prove Landis-type results for solutions u of $\mathcal{Q}[\varphi] = 0$.

 Together with Matthias Keller and Ujjal Das, we study Landis conjecture for nonnegative Schrödinger-type operators and quasilinear operators on infinite discrete graphs.

イロト イポト イヨト イヨト 二日

Thank you for your attention!

3

(日) (同) (三) (三)