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Open problem

Tobias Weth (CVPDE 2006): Energy bounds for entire nodal solutions of
autonomous superlinear equations,
considers the autonomous problems:

—Au= \u|ﬁu7 ue DY2(RN), N >3,

and
—Au+ au = f(u), u e HY(RN);

There is £ > 0 such that J(u) > %SN/Z + €4 for every sign changing
solution u € DV2(RN) of first problem above.

Moreover, there is ey > 0 such that J(u) > 2¢p + ey for every sign
changing solution u € H*(RM) of second problem above.
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considers the autonomous problems:

—Au= \u|ﬁu7 ue DY2(RN), N >3,

and
—Au+ au = f(u), u e HY(RN);

There is £ > 0 such that J(u) > %SN/Z + €4 for every sign changing
solution u € DV2(RN) of first problem above.

Moreover, there is ey > 0 such that J(u) > 2¢p + ey for every sign
changing solution u € H*(RM) of second problem above.

We obtain an upper bound:
2¢p +ew < J(u) < 10¢
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Least energy of a sign-changing solution to the problem

— Au = f(u), u € DV2(RN), (1)

where N > 1 and the nonlinearity f is subcritical at infinity and
supercritical near the origin.

e Berestycki and Lions (1983): problem (1) has a ground state
solution which is positive, radially symmetric and decreasing in the
radial direction.

e Benci and Micheletti (2006), Alves and Souto (2012), Clapp-M.
(2018), Clapp, M. and Pellacci (2021) and others: one or multiple
positive solutions for a similar equation involving a scalar potential
that decays to zero at infinity, both in the whole space and in an
exterior domain.

e Mederski (2021) a nonradial sign-changing solution (but its energy is
not known).



—Au = f(u), ue DY?(RN), N>5,

() feCh*(R) W|th @ € (5=y (N 5> 1], and there exist a; > 0 and

loc

2< p<2t = N_2 < @ such that, for k = —1,0,1,

ey < {2 1
T ay|s|aHD) i |s] < 1,

where F(-1) .= F f©) .= f f(1) .= ' and F(s): = [

(f2) There is a constant 6 > 2 such that 0 < 0F(s) < f(s)s < f’(s)s2
for all s > 0.

(£) fis odd.

ud—1

m,f0r2<p<2 <q

Example: f(s) =



A nonradial sign-changing solution

Assume that f satisfies (1) — (f3). Then, there exists a nonradial
sign-changing solution & to the problem (1) whose energy satisfies

1 R 12¢o if N=5,6,
2¢p < 7/ V&2 —/ F(Q) < 0
2 Jrw RN 10 if N>7,

where ¢ is the ground state energy of (1). Furthermore, for each
(21722,_)/) eRVN=CxCx RN74,

(a) &(z1,22,y) = D(2™U/ Mz 2™/ Mz, y) forall j=0,...,m—1,
(b) &(z1,22,y) = —W(22, 21, ),

(€) &z, 22, 31) = W(z1, 22, y2) if Iy1] = Iyal,

with m=6if N=5,6 and m=5if N > 7, and @ has least energy
among all nontrivial solutions satisfying (a), (b), (¢).



Previous upper bounds of energy of sign-changing solution

e Clapp and Srikanth (2016) in the positive mass case,
—Au+ u = |ulP~2u, u € HY(RN), for the subcritical pure
power nonlinearity 2 < p < 2*, an estimate for the least possible
energy of a sign-changing solution:

Joo (W) < 12¢.
e Clapp and Soares (2023): recently improved
Jso(W) < 10co.
e Clapp, Pistoia and Weth (2022): it was shown that the same

estimates as in our main Theorem hold true for the critical pure

power nonlinearity f(u) = |u? ~2u.
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e To prove the existence of a sign-changing solution to (1) we take
advantage of suitable symmetries that produce a change of sign by
construction.
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Existence of a sign-changing solution

e To prove the existence of a sign-changing solution to (1) we take
advantage of suitable symmetries that produce a change of sign by
construction.

e The symmetries introduced in the work of Mederski, however, have
only infinite and trivial orbits. This does not allow us to estimate the
energy of the solution.

e Here, in contrast, we consider symmetries given by a finite group.
This makes it harder to show existence due to the lack of
compactness but, once the existence of a solution is established, one
immediately gets an upper estimate for its energy.



The symmetric variational setting

e G is a closed subgroup of the group O(N) of linear isometries of RV
and denote by

Gx = {gx:g € G} and G ={gcG:gx=x}

the G-orbit and the G-isotropy group of a point x € RN. The
G-orbit Gx is G-homeomorphic to the homogeneous space G/ Gy.
So both have the same cardinality, i.e., |Gx| = |G/ G4/
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e G is a closed subgroup of the group O(N) of linear isometries of RV
and denote by

Gx = {gx:g € G} and G ={gcG:gx=x}

the G-orbit and the G-isotropy group of a point x € RN. The
G-orbit Gx is G-homeomorphic to the homogeneous space G/ Gy.
So both have the same cardinality, i.e., |Gx| = |G/ G4/

e ¢:G— 7Zy:={-1,1} is a continuous homomorphism of groups. A
function u : RV — R such that

u(gx) = (g)u(x) forall g€ G, xRN,

will be called ¢p-equivariant.



The symmetric variational setting

e If » =1 is the trivial homomorphism then u is G-invariant
u(gx) = u(x), i.e., it is constant on every G-orbit, while if ¢ is
surjective and u # 0 then v is nonradial and changes sign
u(gx) = &(g)u(x) = —u(x). There are surjective homomorphisms
for which the only ¢-equivariant function is the trivial one, as
occurs, for example, when G = O(N) and ¢(g) is the determinant
of g.



The symmetric variational setting

e If » =1 is the trivial homomorphism then u is G-invariant
u(gx) = u(x), i.e., it is constant on every G-orbit, while if ¢ is
surjective and u # 0 then v is nonradial and changes sign
u(gx) = &(g)u(x) = —u(x). There are surjective homomorphisms
for which the only ¢-equivariant function is the trivial one, as
occurs, for example, when G = O(N) and ¢(g) is the determinant
of g. To avoid this behavior we assume, from now on, that

(Ag) If ¢ is surjective, then there exists ¢ € RN such that (ker ¢)¢ # G(,
where ker ¢ == {g € G : ¢(g) = 1}.

If K is a closed subgroup of G we write ¢|K : K — Z, for the restriction
of ¢ to K. Note that ¢|K satisfies (Ay i) if ¢ satisfies (Ay), more
precisely, if ¢|K : K — Zj is surjective, then (ker(¢|K))¢ # K.



The symmetric variational setting

DY2(RN) := {u € L? (R) : Vu € L3RV, RM)},

1/2
(u,v) ::/ Vu-Vyv, lul| = (/ |Vu|2> ;
RN RN

and set

D*2(RN)? .= {u € DY?(RV) : u is ¢-equivariant}.

If ¢ satisfies (As) then D¥2(RN)? has infinite dimension.



¢-equivariant solutions to the problem

Critical points of the functional J: D2(RV)? — R given by
1 o2
Sy = 2l = [ F).
RN

where F(u) := [ f(s) ds.

J(u)v=[ Vu-Vv-— f(u)v, u,v € DV2(RV)?;
RN RN

The nontrivial ¢-equivariant solutions belong to the set
N? = {ue DV2(RN)? : u#0, J'(v)u =0},

which is a closed C*-submanifold of D%2(RN)? and a natural constraint
for J,
c®:= inf J(u)>0
ueN?

11



Range of energy for existence of solution

If

c? < |G/ G| c®% for every ¢ € RV with G¢ # G,

then ¢® is attained.



Range of energy for existence of solution

If

c? < |G/ G| c®% for every ¢ € RV with G¢ # G,

then ¢® is attained.

This previous result depends crucially on the following:

Lemma [Clapp-M. 2018]

If (ux) is bounded in DV2(RV) and there exists R > 0 such that

lim (sup/ |uk|2> =0,
koo \yerV JBr(y)

then |imkﬁoo/ f(uk)uk = (0,
RN



An upper bound for the energy of symmetric minimizers

A ground state solution w € C2(RV) to (1):
0 < by(1+|x])~M2) < w(x) < ba(1 + |x|)~V=2),
[Ve(x)| < ba(1 + [x])~ V=Y.

13



An upper bound for the energy of symmetric minimizers

A ground state solution w € C?(RN) to (1):
0 < by(1+ |x])"N=2) < w(x) < ba(1 + |x])~ V=2,
|[Vw(x)| < bs(1+ [x|)~N=D.
We write RN = C x C x R¥=* and a point in R as
(z1,22,y) EC x Cx RN=* For meN, let
L = {®™/m: j=0,...,m—1},
G, be the group generated by Z,, U {7}, acting on RV as

ezﬂ-ij/m(zl, 22, .y) = (e27rij/m217 e27rij/mz27 y)a T(Zla 22, y) = (22’ 21, y)a

and ¢ : G, — Z be the homomorphism satisfying ¢(e2"Y/™) = 1 and
¢(1) = —1. Set ¢ :=(1,0,0), and for each R > 1 define sum on
g € Gy
Gr(x) =Y d(g)w(x— Rg(), xRN '



Properties of og(+)

e 5r(gx) = #(g)or(x) for every g € G, x € RV,
e There exists Ry > 0 and for each R > Ry a unique tg > 0 such that

OR := tROR E./\/'d).

e tr —+1as R — oo.

14



Properties of og(-)

e 5r(gx) = #(g)or(x) for every g € G, x € RV,
e There exists Ry > 0 and for each R > Ry a unique tg > 0 such that

OR := tROR E./\/'d).

e tr —+1as R — oo.

1

T\ W3
m > vor(2) )
V2
then, for R large enough,
c? < J(oRr) < 2mcy,
where ¢ is the ground state energy of (1).

14



Interaction of translated solitons

Let yi,...,y, be n different points in RN and 9y,...,9, € (0, N) be
such that ¥ := 91 + -+ -+, > N. Then there exists C = C(J;, N) >0
such that

n
/ H(l +|x = Ry;|)™%dx < Cd=*R™H
RV

forall R > 1, where d := min{|y; — yj| : i,j=1,...,n, i # j} and
pwi=1v—N.

15



Proof of ¢? < J(ogr) < 2mc

We write the Gp,-orbit of ¢ = (1,0,0) as
GmC ={C1,...,Com} with ¢ :=e2™0=V/m¢ and (Cppi=7C, i=1,...
and set

) w(x=R¢)  for i=1,...,m,
wir(x) ==
" —w(x —R¢) for i=m+1,...,2m.

Then, op = 212:1 trwir; and J(wir) = J(w). So

16



Proof of ¢? < J(ogr) < 2mc

We write the Gp,-orbit of ¢ = (1,0,0) as
GmC ={C1,...,Com} with ¢ :=e2™0=V/m¢ and (Cppi=7C, i=1,...

and set

) w(x=R¢)  for i=1,...,m,
wir(x) ==
" —w(x —R¢) for i=m+1,...,2m.

Then, op = 212:1 trwir; and J(wir) = J(w). So

J(or) = H Z trRWir ‘ —/ (i”: tRMR)

<2mc07— Z/ ,R wJR+C‘tR—1‘R2 N+CR M CR™ Nz

ij=1
i#

Since, by assumption (f1), « > ﬁ we have that pq, o > N — 2.

16



Non-homogeneous nonlinearity

Given n€ N, 7> 0 and f € C-7(R) with 8 € (0, 1] such that

loc

f(0) = 0, there exists by > 0 such that for any uy,...,u, € [T, 1],

‘f(iu;) = (if(u;)) < by i |u,-uj|5.

=il 1,J=
i<j

17



Non-homogeneous nonlinearity

Given neN,t>0and f € Cloc( ) with 3 € (0, 1] such that
f(0) = 0, there exists by > 0 such that for any uy,...,u, € [T, 1],

‘ (Z ) - (qul) <Y fuul”

i=1 ij=1
i<j

Given n€ N, 7> 0 and f € CLP(R) with 8 € (0, 1] such that

loc

f(0) = 0 = f’(0), there exists by > 0 such that

n n n n n
B
F(Z“’)*Z’:(“i)*E F(ur)uj| <ba| D luiuy[M 2+ Y " Juiw]®|ugl
=1 =1 =1 ij=1 o fe=il
i#j (<Jj i<j<k

for any uy, ..., u, € [~1, 1], where F(u) :== [} f. 7



Decay and interaction

There are positive constants Cp and 60 such that

lim |y|N—2 /R’V flwx))w(x —y)dx = G

ly|—o0

lim |y|N=2 / w(x)[* Lw(x — y)dx = .
R

ly|—=o0

18



Next, we estimate the second summand —-& E,J 1
i#j

( iR)WjR- Set

dij :=|¢i — ¢j| for i # j. Note that dio» = 2sin(%), and dj = V2 if

1<i<m<j<2m. Therefore,

m m 2m

2—N 2—N
> d =22 4
ij=1 i=1 j=m+1
i#j
—1

> (a5 + d7y") + D (dZE + dG,

S

||
N

i

2m
+(d2:V + d(zr;—Nl)m) - Z > a7

= 2m(2sin (%))2_N — mA(V2)> N
oo (2) - 2o

because, by assumption,
T\ "3
m > \@w(—) .
> A

)

19



For Co > 0,

m m 2m
Mo:=2(Co—2) Y di M —2(Go+¢e)) Y di V>0
ij=1 i=1 j=m+1
i)

Then, for R large enough we have that

Z/ WiR wJR=2Z/ R(G = Gi))

ij=1 ij=1
i# i#j
—22 Z / Fw)w(- = R(G = &) = MoR>M,
i=1 j=m+1

and we derive that
2
J(aR)gzmco—gMoRz—’Mqu 1R*N 4 o(R?™M).

Since My > 0 and tg — 1 as R — oo, we conclude that J(og) < 2mcy
for R large enough, as claimed.

20



Conclusion

™

The function ¥(t) := v2n <\/§

Y(t) — V27 as t — oo and /27 > 4, any number m satisfying

1
t
> is decreasing in t > 0. Since

_1
m > \/577(\%) " must be greater than or equal to 5. Direct

computation shows that the least integer greater than or equal to

\/iw(%)w is 6 if N =5,6, and it is 5 if N > 7.
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