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Open problem

Tobias Weth (CVPDE 2006): Energy bounds for entire nodal solutions of
autonomous superlinear equations,
considers the autonomous problems:

−∆u = |u|
4

N−2 u, u ∈ D1,2(RN), N ≥ 3,

and
−∆u + au = f (u), u ∈ H1(RN);

Theorem

There is εΦ > 0 such that J(u) > 2
N S

N/2 + εΦ for every sign changing
solution u ∈ D1,2(RN) of first problem above.
Moreover, there is εΨ > 0 such that J(u) > 2c0 + εΨ for every sign
changing solution u ∈ H1(RN) of second problem above.

We obtain an upper bound:

2c0 + εΨ < J(u) < 10c0
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Least energy of a sign-changing solution to the problem

−∆u = f (u), u ∈ D1,2(RN), (1)

where N ≥ 1 and the nonlinearity f is subcritical at infinity and
supercritical near the origin.

• Berestycki and Lions (1983): problem (1) has a ground state
solution which is positive, radially symmetric and decreasing in the
radial direction.

• Benci and Micheletti (2006), Alves and Souto (2012), Clapp-M.
(2018), Clapp, M. and Pellacci (2021) and others: one or multiple
positive solutions for a similar equation involving a scalar potential
that decays to zero at infinity, both in the whole space and in an
exterior domain.

• Mederski (2021) a nonradial sign-changing solution (but its energy is
not known).
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−∆u = f (u), u ∈ D1,2(RN), N ≥ 5,

(f1) f ∈ C1,α
loc (R) with α ∈

(
N

2(N−2) , 1
]
, and there exist a1 > 0 and

2 < p < 2∗ := 2N
N−2 < q such that, for κ = −1, 0, 1,

|f (κ)(s)| ≤

{
a1|s|p−(κ+1) if |s| ≥ 1,

a1|s|q−(κ+1) if |s| ≤ 1,

where f (−1) := F , f (0) := f , f (1) := f ′, and F (s) :=
∫ s

0 f (t)dt.

(f2) There is a constant θ > 2 such that 0 ≤ θF (s) ≤ f (s)s < f ′(s)s2

for all s > 0.

(f3) f is odd.

Example: f (s) =
uq−1

1 + u(q−p)
, for 2 < p < 2∗ < q.
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A nonradial sign-changing solution

Theorem [Clapp-M.-Pellacci 2024]
Assume that f satisfies (f1)− (f3). Then, there exists a nonradial
sign-changing solution ω̂ to the problem (1) whose energy satisfies

2c0 <
1
2

∫
RN

|∇ω̂|2 −
∫
RN

F (ω̂) <

{
12c0 if N = 5, 6,

10c0 if N ≥ 7,

where c0 is the ground state energy of (1). Furthermore, for each
(z1, z2, y) ∈ RN ≡ C× C× RN−4,

(a) ω̂(z1, z2, y) = ω̂(e2πij/mz1, e2πij/mz2, y) for all j = 0, . . . ,m − 1,

(b) ω̂(z1, z2, y) = −ω̂(z2, z1, y),
(c) ω̂(z1, z2, y1) = ω̂(z1, z2, y2) if |y1| = |y2|,

with m = 6 if N = 5, 6 and m = 5 if N ≥ 7, and ω̂ has least energy
among all nontrivial solutions satisfying (a), (b), (c).
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Previous upper bounds of energy of sign-changing solution

• Clapp and Srikanth (2016) in the positive mass case,
−∆u + u = |u|p−2u, u ∈ H1(RN), for the subcritical pure
power nonlinearity 2 < p < 2∗, an estimate for the least possible
energy of a sign-changing solution:

J∞(“w) < 12c0.

• Clapp and Soares (2023): recently improved

J∞(“w) < 10c0.

• Clapp, Pistoia and Weth (2022): it was shown that the same
estimates as in our main Theorem hold true for the critical pure
power nonlinearity f (u) = |u|2∗−2u.
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Existence of a sign-changing solution

• To prove the existence of a sign-changing solution to (1) we take
advantage of suitable symmetries that produce a change of sign by
construction.

• The symmetries introduced in the work of Mederski, however, have
only infinite and trivial orbits. This does not allow us to estimate the
energy of the solution.

• Here, in contrast, we consider symmetries given by a finite group.
This makes it harder to show existence due to the lack of
compactness but, once the existence of a solution is established, one
immediately gets an upper estimate for its energy.
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The symmetric variational setting

• G is a closed subgroup of the group O(N) of linear isometries of RN

and denote by

Gx := {gx : g ∈ G} and Gx := {g ∈ G : gx = x}

the G -orbit and the G -isotropy group of a point x ∈ RN . The
G -orbit Gx is G -homeomorphic to the homogeneous space G/Gx .
So both have the same cardinality, i.e., |Gx | = |G/Gx |.

• ϕ : G → Z2 := {−1, 1} is a continuous homomorphism of groups. A
function u : RN → R such that

u(gx) = ϕ(g)u(x) for all g ∈ G , x ∈ RN ,

will be called ϕ-equivariant.
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The symmetric variational setting

• If ϕ ≡ 1 is the trivial homomorphism then u is G -invariant
u(gx) = u(x), i.e., it is constant on every G -orbit, while if ϕ is
surjective and u ̸= 0 then u is nonradial and changes sign
u(gx) = ϕ(g)u(x) = −u(x). There are surjective homomorphisms
for which the only ϕ-equivariant function is the trivial one, as
occurs, for example, when G = O(N) and ϕ(g) is the determinant
of g .

To avoid this behavior we assume, from now on, that

(Aϕ) If ϕ is surjective, then there exists ζ ∈ RN such that (ker ϕ)ζ ̸= Gζ,
where ker ϕ := {g ∈ G : ϕ(g) = 1}.

If K is a closed subgroup of G we write ϕ|K : K → Z2 for the restriction
of ϕ to K . Note that ϕ|K satisfies (Aϕ|K ) if ϕ satisfies (Aϕ), more
precisely, if ϕ|K : K → Z2 is surjective, then (ker(ϕ|K ))ζ ̸= Kζ.
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The symmetric variational setting

D1,2(RN) := {u ∈ L2∗
(RN) : ∇u ∈ L2(RN ,RN)},

⟨u, v⟩ :=
∫
RN

∇u · ∇v , ∥u∥ :=

Å∫
RN

|∇u|2
ã1/2

,

and set

D1,2(RN)ϕ := {u ∈ D1,2(RN) : u is ϕ-equivariant}.

Proposition

If ϕ satisfies (Aϕ) then D1,2(RN)ϕ has infinite dimension.
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ϕ-equivariant solutions to the problem

Critical points of the functional J : D1,2(RN)ϕ → R given by

J(u) :=
1
2
∥u∥2 −

∫
RN

F (u),

where F (u) :=
∫ u

0 f (s) ds.

J ′(u)v =

∫
RN

∇u · ∇v −
∫
RN

f (u)v , u, v ∈ D1,2(RN)ϕ;

The nontrivial ϕ-equivariant solutions belong to the set

N ϕ := {u ∈ D1,2(RN)ϕ : u ̸= 0, J ′(u)u = 0},

which is a closed C1-submanifold of D1,2(RN)ϕ and a natural constraint
for J,

cϕ := inf
u∈Nϕ

J(u) > 0
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Range of energy for existence of solution

Proposition
If

cϕ < |G/Gξ| cϕ|Gξ for every ξ ∈ RN with Gξ ̸= G ,

then cϕ is attained.

This previous result depends crucially on the following:

Lemma [Clapp-M. 2018]

If (uk) is bounded in D1,2(RN) and there exists R > 0 such that

lim
k→∞

Ç
sup
y∈RN

∫
BR (y)

|uk |2
å

= 0,

then limk→∞

∫
RN

f (uk)uk = 0.
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An upper bound for the energy of symmetric minimizers

A ground state solution ω ∈ C2(RN) to (1):

0 < b1(1 + |x |)−(N−2) ≤ ω(x) ≤ b2(1 + |x |)−(N−2),

|∇ω(x)| ≤ b3(1 + |x |)−(N−1).

Definition

We write RN ≡ C× C× RN−4 and a point in RN as
(z1, z2, y) ∈ C× C× RN−4. For m ∈ N, let

Zm := {e2πij/m : j = 0, . . . ,m − 1},

Gm be the group generated by Zm ∪ {τ}, acting on RN as

e2πij/m(z1, z2, y) := (e2πij/mz1, e2πij/mz2, y), τ(z1, z2, y) := (z2, z1, y),

and ϕ : Gm → Z2 be the homomorphism satisfying ϕ(e2πij/m) = 1 and
ϕ(τ) = −1. Set ζ := (1, 0, 0), and for each R > 1 define sum on
g ∈ Gm

σ̂R(x) :=
∑

ϕ(g)ω(x − Rgζ), x ∈ RN .
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Properties of σ̂R(·)

• σ̂R(gx) = ϕ(g)σ̂R(x) for every g ∈ Gm, x ∈ RN .

• There exists R0 > 0 and for each R ≥ R0 a unique tR > 0 such that

σR := tR σ̂R ∈ N ϕ.

• tR → 1 as R → ∞.

Proposition
If

m ≥
√

2π
( π√

2

) 1
N−3

(2)

then, for R large enough,

cϕ ≤ J(σR) < 2mc0,

where c0 is the ground state energy of (1).
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Interaction of translated solitons

Lemma[Clapp-M.-Pellacci 2024]

Let y1, . . . , yn be n different points in RN and ϑ1, . . . , ϑn ∈ (0,N) be
such that ϑ := ϑ1 + · · ·+ ϑn > N. Then there exists C = C (ϑi ,N) > 0
such that ∫

RN

n∏
i=1

(1 + |x − Ryi |)−ϑi dx ≤ Cd−µR−µ

for all R ≥ 1, where d := min{|yi − yj | : i , j = 1, . . . , n, i ̸= j} and
µ := ϑ− N.
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Proof of cϕ ≤ J(σR) < 2mc0

We write the Gm-orbit of ζ = (1, 0, 0) as

Gmζ = {ζ1, . . . , ζ2m} with ζi := e2πi(i−1)/mζ and ζm+i := τζi , i = 1, . . . ,m,

and set

ωiR(x) :=

{
ω(x − Rζi ) for i = 1, . . . ,m,

−ω(x − Rζi ) for i = m + 1, . . . , 2m.

Then, σR =
∑2m

i=1 tRωiR ; and J(ωiR) = J(ω). So

J(σR) =
1
2

∥∥∥ 2m∑
i=1

tRωiR

∥∥∥2
−
∫
RN

F
( 2m∑

i=1

tRωiR

)
≤2mc0−

t2R
2

2m∑
i,j=1
i ̸=j

∫
RN

f (ωiR)ωjR+C |tR − 1|R2−N + CR−µ1 + CR−µ2 ,

Since, by assumption (f1), α > N
2(N−2) , we have that µ1, µ2 > N − 2.
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Non-homogeneous nonlinearity

Lemma 1

Given n ∈ N, u > 0 and f ∈ C1,β
loc (R) with β ∈ (0, 1] such that

f (0) = 0, there exists b1 > 0 such that for any u1, . . . , un ∈ [−u, u],∣∣∣∣∣f (
n∑

i=1

ui

)
−
( n∑

i=1

f (ui )
)∣∣∣∣∣ ≤ b1

n∑
i,j=1
i<j

|uiuj |β .

Lemma 2

Given n ∈ N, u > 0 and f ∈ C1,β
loc (R) with β ∈ (0, 1] such that

f (0) = 0 = f ′(0), there exists b2 > 0 such that∣∣∣∣∣∣∣∣F
( n∑

i=1

ui

)
−

n∑
i=1

F (ui )−
n∑

i,j=1
i ̸=j

f (ui )uj

∣∣∣∣∣∣∣∣ ≤b2

Ü
n∑

i,j=1
i<j

|uiuj |1+
β
2+

n∑
i,j,k=1
i<j<k

|uiuj |β |uk |

ê
for any u1, . . . , un ∈ [−u, u], where F (u) :=

∫ u

0 f .
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Decay and interaction

Lemma

There are positive constants C0 and Ĉ0 such that

lim
|y |→∞

|y |N−2
∫
RN

f (ω(x))ω(x − y) dx = C0

lim
|y |→∞

|y |N−2
∫
RN

|ω(x)|2
∗−1ω(x − y) dx = Ĉ0.
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Next, we estimate the second summand − t2R
2

∑2m
i,j=1
i ̸=j

∫
RN

f (ωiR)ωjR . Set

dij := |ζi − ζj | for i ̸= j . Note that d12 = 2 sin
(
π
m

)
, and dij =

√
2 if

1 ≤ i ≤ m < j ≤ 2m. Therefore,
m∑

i,j=1
i ̸=j

d2−N
ij −

m∑
i=1

2m∑
j=m+1

d2−N
ij

≥ (d2−N
1 2 + d2−N

m 1 ) +
m−1∑
i=2

(d2−N
i (i+1) + d2−N

(i−1) i )

+ (d2−N
m 1 + d2−N

(m−1)m)−
m∑
i=1

2m∑
j=m+1

d2−N
ij

= 2m
(
2 sin

( π
m

))2−N

−m2(
√

2 )2−N

> m
[
2
(2π
m

)2−N

−m(
√

2 )2−N
]
≥ 0

because, by assumption,

m ≥
√

2π
( π√

2

) 1
N−3

.
19



For C0 > 0,

M0 :=2(C0 − ε)
m∑

i,j=1
i ̸=j

d2−N
ij − 2(C0 + ε)

m∑
i=1

2m∑
j=m+1

d2−N
ij > 0.

Then, for R large enough we have that

2m∑
i,j=1
i ̸=j

∫
RN

f (ωiR)ωjR = 2
m∑

i,j=1
i ̸=j

∫
RN

f (ω)ω( · − R(ζj − ζi ))

− 2
m∑
i=1

2m∑
j=m+1

∫
RN

f (ω)ω( · − R(ζj − ζi )) ≥ M0R
2−N ,

and we derive that

J(σR) ≤ 2mc0−
t2R
2
M0R

2−N+C |tR − 1|R2−N + o(R2−N).

Since M0 > 0 and tR → 1 as R → ∞, we conclude that J(σR) < 2mc0
for R large enough, as claimed.
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Conclusion

Summary

The function ψ(t) :=
√

2π
Å
π√
2

ã 1
t

is decreasing in t > 0. Since

ψ(t) →
√

2π as t → ∞ and
√

2π > 4, any number m satisfying

m ≥
√

2π
(

π√
2

) 1
N−3

must be greater than or equal to 5. Direct
computation shows that the least integer greater than or equal to
√

2π
Å
π√
2

ã 1
N−3

is 6 if N = 5, 6, and it is 5 if N ≥ 7.

21



https://go.cmm.uchile.cl/mmp2024

Organizing Committee
Isabeau Birindelli
La Sapienza, Italy

Giulio Galise
La Sapienza, Italy

Gabrielle Nornberg
University of Chile / CMM, Chile

Boyan Sirakov
PUC-Rio, Brazil

Philippe Souplet
Université Sorbonne Paris Nord, France

June 24-28, 2024
Centro Técnico Científico

Pontifícia Universidade Católica 
do Rio de Janeiro (PUC-Rio)

Rua Marquês de São Vicente, 225, Gávea

Rio de Janeiro – Brazil

Mostly 
Maximum 
Principle
5th edition: in Latin America 
for the first time

Thank You!
22


