

Mostly Maximum Principle

5 th edition: in Latin America for the first time

An upper bound for the least energy of a sign-changing solution to a zero mass problem

Liliane A. Maia University of Brasília June 24 - 28, 2024, PUC-Rio, Rio de Janeiro, BR

Joint work with

Mónica Clapp (UNAM, MX)

Benedetta Pellacci (U.C."Luigi Vanvitelli",IT)

Open problem

Tobias Weth (CVPDE 2006): Energy bounds for entire nodal solutions of autonomous superlinear equations,

considers the autonomous problems:

$$-\Delta u = |u|^{\frac{4}{N-2}}u, \qquad u \in D^{1,2}(\mathbb{R}^N), \quad N \ge 3,$$

and

$$-\Delta u + au = f(u), \qquad u \in H^1(\mathbb{R}^N);$$

Theorem

There is $\varepsilon_{\Phi} > 0$ such that $J(u) > \frac{2}{N}S^{N/2} + \varepsilon_{\Phi}$ for every sign changing solution $u \in D^{1,2}(\mathbb{R}^N)$ of first problem above. Moreover, there is $\varepsilon_{\Psi} > 0$ such that $J(u) > 2c_0 + \varepsilon_{\Psi}$ for every sign changing solution $u \in H^1(\mathbb{R}^N)$ of second problem above.

Open problem

Tobias Weth (CVPDE 2006): Energy bounds for entire nodal solutions of autonomous superlinear equations,

considers the autonomous problems:

$$-\Delta u = |u|^{\frac{4}{N-2}}u, \qquad u \in D^{1,2}(\mathbb{R}^N), \quad N \ge 3,$$

and

$$-\Delta u + au = f(u), \qquad u \in H^1(\mathbb{R}^N);$$

Theorem

There is $\varepsilon_{\Phi} > 0$ such that $J(u) > \frac{2}{N}S^{N/2} + \varepsilon_{\Phi}$ for every sign changing solution $u \in D^{1,2}(\mathbb{R}^N)$ of first problem above. Moreover, there is $\varepsilon_{\Psi} > 0$ such that $J(u) > 2c_0 + \varepsilon_{\Psi}$ for every sign changing solution $u \in H^1(\mathbb{R}^N)$ of second problem above.

We obtain an upper bound:

$$2c_0 + \varepsilon_{\Psi} < J(u) < 10c_0$$

Least energy of a sign-changing solution to the problem

$$-\Delta u = f(u), \qquad u \in D^{1,2}(\mathbb{R}^N), \tag{1}$$

where $N \ge 1$ and the nonlinearity f is subcritical at infinity and supercritical near the origin.

Least energy of a sign-changing solution to the problem

$$-\Delta u = f(u), \qquad u \in D^{1,2}(\mathbb{R}^N), \tag{1}$$

where $N \ge 1$ and the nonlinearity f is subcritical at infinity and supercritical near the origin.

- Berestycki and Lions (1983): problem (1) has a ground state solution which is positive, radially symmetric and decreasing in the radial direction.
- Benci and Micheletti (2006), Alves and Souto (2012), Clapp-M. (2018), Clapp, M. and Pellacci (2021) and others: one or multiple positive solutions for a similar equation involving a scalar potential that decays to zero at infinity, both in the whole space and in an exterior domain.
- Mederski (2021) a nonradial sign-changing solution (but its energy is not known).

$$-\Delta u = f(u), \qquad u \in D^{1,2}(\mathbb{R}^N), \quad N \ge 5,$$

(f₁) $f \in C^{1,\alpha}_{loc}(\mathbb{R})$ with $\alpha \in \left(\frac{N}{2(N-2)}, 1\right]$, and there exist $a_1 > 0$ and $2 such that, for <math>\kappa = -1, 0, 1$,

$$|f^{(\kappa)}(s)| \leq egin{cases} a_1|s|^{p-(\kappa+1)} & ext{if } |s| \geq 1, \ a_1|s|^{q-(\kappa+1)} & ext{if } |s| \leq 1, \end{cases}$$

where $f^{(-1)} := F$, $f^{(0)} := f$, $f^{(1)} := f'$, and $F(s) := \int_0^s f(t) dt$.

- (f₂) There is a constant $\theta > 2$ such that $0 \le \theta F(s) \le f(s)s < f'(s)s^2$ for all s > 0.
- (f_3) f is odd.

Example:
$$f(s) = rac{u^{q-1}}{1+u^{(q-p)}}$$
, for $2 .$

Theorem [Clapp-M.-Pellacci 2024]

Assume that f satisfies $(f_1) - (f_3)$. Then, there exists a nonradial sign-changing solution $\hat{\omega}$ to the problem (1) whose energy satisfies

$$2c_0 < \frac{1}{2} \int_{\mathbb{R}^N} |\nabla \widehat{\omega}|^2 - \int_{\mathbb{R}^N} F(\widehat{\omega}) < \begin{cases} 12c_0 & \text{if } N = 5, 6, \\ 10c_0 & \text{if } N \geq 7, \end{cases}$$

where c_0 is the ground state energy of (1). Furthermore, for each $(z_1, z_2, y) \in \mathbb{R}^N \equiv \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4}$,

(a)
$$\widehat{\omega}(z_1, z_2, y) = \widehat{\omega}(e^{2\pi i j/m} z_1, e^{2\pi i j/m} z_2, y)$$
 for all $j = 0, \dots, m-1$,
(b) $\widehat{\omega}(z_1, z_2, y) = -\widehat{\omega}(z_2, z_1, y)$,

(c)
$$\widehat{\omega}(z_1, z_2, y_1) = \widehat{\omega}(z_1, z_2, y_2)$$
 if $|y_1| = |y_2|$,

with m = 6 if N = 5, 6 and m = 5 if $N \ge 7$, and $\hat{\omega}$ has least energy among all nontrivial solutions satisfying (a), (b), (c).

 Clapp and Srikanth (2016) in the positive mass case, -∆u + u = |u|^{p-2}u, u ∈ H¹(ℝ^N), for the subcritical pure power nonlinearity 2
energy of a sign-changing solution:

 $J_{\infty}(\widehat{w}) < 12c_0.$

• Clapp and Soares (2023): recently improved

 $J_{\infty}(\widehat{w}) < 10c_0.$

• Clapp, Pistoia and Weth (2022): it was shown that the same estimates as in our main Theorem hold true for the critical pure power nonlinearity $f(u) = |u|^{2^*-2}u$.

• To prove the existence of a sign-changing solution to (1) we take advantage of suitable symmetries that produce a change of sign by construction.

- To prove the existence of a sign-changing solution to (1) we take advantage of suitable symmetries that produce a change of sign by construction.
- The symmetries introduced in the work of Mederski, however, have only infinite and trivial orbits. This does not allow us to estimate the energy of the solution.

- To prove the existence of a sign-changing solution to (1) we take advantage of suitable symmetries that produce a change of sign by construction.
- The symmetries introduced in the work of Mederski, however, have only infinite and trivial orbits. This does not allow us to estimate the energy of the solution.
- Here, in contrast, we consider symmetries given by a finite group. This makes it harder to show existence due to the lack of compactness but, once the existence of a solution is established, one immediately gets an upper estimate for its energy.

 G is a closed subgroup of the group O(N) of linear isometries of ℝ^N and denote by

$$Gx := \{gx : g \in G\}$$
 and $G_x := \{g \in G : gx = x\}$

the *G*-orbit and the *G*-isotropy group of a point $x \in \mathbb{R}^N$. The *G*-orbit *Gx* is *G*-homeomorphic to the homogeneous space G/G_x . So both have the same cardinality, i.e., $|Gx| = |G/G_x|$.

 G is a closed subgroup of the group O(N) of linear isometries of ℝ^N and denote by

$$Gx := \{gx : g \in G\}$$
 and $G_x := \{g \in G : gx = x\}$

the *G*-orbit and the *G*-isotropy group of a point $x \in \mathbb{R}^N$. The *G*-orbit *Gx* is *G*-homeomorphic to the homogeneous space G/G_x . So both have the same cardinality, i.e., $|Gx| = |G/G_x|$.

• $\phi: G \to \mathbb{Z}_2 := \{-1, 1\}$ is a continuous homomorphism of groups. A function $u: \mathbb{R}^N \to \mathbb{R}$ such that

$$u(gx) = \phi(g)u(x)$$
 for all $g \in G, x \in \mathbb{R}^N$,

will be called ϕ -equivariant.

• If $\phi \equiv 1$ is the trivial homomorphism then u is G-invariant u(gx) = u(x), i.e., it is constant on every G-orbit, while if ϕ is surjective and $u \neq 0$ then u is nonradial and changes sign $u(gx) = \phi(g)u(x) = -u(x)$. There are surjective homomorphisms for which the only ϕ -equivariant function is the trivial one, as occurs, for example, when G = O(N) and $\phi(g)$ is the determinant of g.

- If $\phi \equiv 1$ is the trivial homomorphism then u is G-invariant u(gx) = u(x), i.e., it is constant on every G-orbit, while if ϕ is surjective and $u \neq 0$ then u is nonradial and changes sign $u(gx) = \phi(g)u(x) = -u(x)$. There are surjective homomorphisms for which the only ϕ -equivariant function is the trivial one, as occurs, for example, when G = O(N) and $\phi(g)$ is the determinant of g. To avoid this behavior we assume, from now on, that
- (A_{ϕ}) If ϕ is surjective, then there exists $\zeta \in \mathbb{R}^{N}$ such that $(\ker \phi)\zeta \neq G\zeta$, where $\ker \phi := \{g \in G : \phi(g) = 1\}.$

If K is a closed subgroup of G we write $\phi|K: K \to \mathbb{Z}_2$ for the restriction of ϕ to K. Note that $\phi|K$ satisfies $(A_{\phi|K})$ if ϕ satisfies (A_{ϕ}) , more precisely, if $\phi|K: K \to \mathbb{Z}_2$ is surjective, then $(\ker(\phi|K))\zeta \neq K\zeta$.

$$D^{1,2}(\mathbb{R}^N) := \{ u \in L^{2^*}(\mathbb{R}^N) : \nabla u \in L^2(\mathbb{R}^N, \mathbb{R}^N) \},$$

$$\langle u,v\rangle := \int_{\mathbb{R}^N} \nabla u \cdot \nabla v, \qquad \|u\| := \left(\int_{\mathbb{R}^N} |\nabla u|^2\right)^{1/2},$$

and set

$$D^{1,2}(\mathbb{R}^N)^{\phi} := \{ u \in D^{1,2}(\mathbb{R}^N) : u \text{ is } \phi \text{-equivariant} \}.$$

Proposition

If ϕ satisfies (A_{ϕ}) then $D^{1,2}(\mathbb{R}^N)^{\phi}$ has infinite dimension.

ϕ -equivariant solutions to the problem

Critical points of the functional $J: D^{1,2}(\mathbb{R}^N)^\phi \to \mathbb{R}$ given by

$$J(u) := \frac{1}{2} ||u||^2 - \int_{\mathbb{R}^N} F(u),$$

where $F(u) := \int_0^u f(s) \, \mathrm{d}s$.

$$J'(u)v = \int_{\mathbb{R}^N} \nabla u \cdot \nabla v - \int_{\mathbb{R}^N} f(u)v, \qquad u, v \in D^{1,2}(\mathbb{R}^N)^{\phi};$$

The nontrivial ϕ -equivariant solutions belong to the set

$$\mathcal{N}^{\phi} := \{ u \in D^{1,2}(\mathbb{R}^N)^{\phi} : u \neq 0, \ J'(u)u = 0 \},$$

which is a closed \mathcal{C}^1 -submanifold of $D^{1,2}(\mathbb{R}^N)^{\phi}$ and a natural constraint for J,

$$c^{\phi} := \inf_{u \in \mathcal{N}^{\phi}} J(u) > 0$$

Range of energy for existence of solution

Proposition

lf

$$c^{\phi} < |G/G_{\xi}| \, c^{\phi|G_{\xi}}$$
 for every $\xi \in \mathbb{R}^N$ with $G_{\xi} \neq G$,

then c^{ϕ} is attained.

Range of energy for existence of solution

Proposition

lf

$$c^{\phi} < |G/G_{\xi}| \, c^{\phi|G_{\xi}}$$
 for every $\xi \in \mathbb{R}^{N}$ with $G_{\xi} \neq G$,

then c^{ϕ} is attained.

This previous result depends crucially on the following:

Lemma [Clapp-M. 2018]

If (u_k) is bounded in $D^{1,2}(\mathbb{R}^N)$ and there exists R>0 such that

$$\lim_{k\to\infty}\left(\sup_{y\in\mathbb{R}^N}\int_{B_R(y)}|u_k|^2\right)=0,$$

then $\lim_{k\to\infty}\int_{\mathbb{R}^N}f(u_k)u_k=0.$

An upper bound for the energy of symmetric minimizers

A ground state solution $\omega \in C^2(\mathbb{R}^N)$ to (1): $0 < b_1(1+|x|)^{-(N-2)} \le \omega(x) \le b_2(1+|x|)^{-(N-2)},$ $|\nabla \omega(x)| \le b_3(1+|x|)^{-(N-1)}.$

An upper bound for the energy of symmetric minimizers

A ground state solution
$$\omega \in C^2(\mathbb{R}^N)$$
 to (1):
 $0 < b_1(1+|x|)^{-(N-2)} \le \omega(x) \le b_2(1+|x|)^{-(N-2)},$
 $|\nabla \omega(x)| \le b_3(1+|x|)^{-(N-1)}.$

Definition

We write $\mathbb{R}^N \equiv \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4}$ and a point in \mathbb{R}^N as $(z_1, z_2, y) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4}$. For $m \in \mathbb{N}$, let

$$\mathbb{Z}_m := \{ \mathrm{e}^{2\pi \mathrm{i} j/m} : j = 0, \dots, m-1 \},$$

 G_m be the group generated by $\mathbb{Z}_m \cup \{\tau\}$, acting on \mathbb{R}^N as

$$e^{2\pi i j/m}(z_1, z_2, y) := (e^{2\pi i j/m} z_1, e^{2\pi i j/m} z_2, y), \quad \tau(z_1, z_2, y) := (z_2, z_1, y),$$

and $\phi: G_m \to \mathbb{Z}_2$ be the homomorphism satisfying $\phi(e^{2\pi i j/m}) = 1$ and $\phi(\tau) = -1$. Set $\zeta := (1, 0, 0)$, and for each R > 1 define sum on $g \in G_m$

$$\widehat{\sigma}_{\mathcal{R}}(x) := \sum \phi(g) \, \omega(x - \mathcal{R}g\zeta), \qquad x \in \mathbb{R}^{\mathcal{N}}.$$

Properties of $\widehat{\sigma}_R(\cdot)$

- $\widehat{\sigma}_R(gx) = \phi(g)\widehat{\sigma}_R(x)$ for every $g \in G_m$, $x \in \mathbb{R}^N$.
- There exists $R_0 > 0$ and for each $R \ge R_0$ a unique $t_R > 0$ such that

 $\sigma_R := t_R \widehat{\sigma}_R \in \mathcal{N}^{\phi}.$

• $t_R \rightarrow 1$ as $R \rightarrow \infty$.

Properties of $\widehat{\sigma}_R(\cdot)$

- $\widehat{\sigma}_R(gx) = \phi(g)\widehat{\sigma}_R(x)$ for every $g \in G_m$, $x \in \mathbb{R}^N$.
- There exists $R_0 > 0$ and for each $R \ge R_0$ a unique $t_R > 0$ such that

$$\sigma_R := t_R \widehat{\sigma}_R \in \mathcal{N}^{\phi}.$$

•
$$t_R \rightarrow 1$$
 as $R \rightarrow \infty$.

Proposition

lf

$$m \ge \sqrt{2}\pi \left(\frac{\pi}{\sqrt{2}}\right)^{\frac{1}{N-3}} \tag{2}$$

then, for R large enough,

 $c^{\phi} \leq J(\sigma_R) < 2mc_0,$

where c_0 is the ground state energy of (1).

Lemma[Clapp-M.-Pellacci 2024]

Let y_1, \ldots, y_n be *n* different points in \mathbb{R}^N and $\vartheta_1, \ldots, \vartheta_n \in (0, N)$ be such that $\vartheta := \vartheta_1 + \cdots + \vartheta_n > N$. Then there exists $C = C(\vartheta_i, N) > 0$ such that

$$\int_{\mathbb{R}^N} \prod_{i=1}^n (1+|x-Ry_i|)^{-\vartheta_i} \, \mathrm{d} x \le C d^{-\mu} R^{-\mu}$$

for all $R \ge 1$, where $d := \min\{|y_i - y_j| : i, j = 1, ..., n, i \ne j\}$ and $\mu := \vartheta - N$.

Proof of $c^{\phi} \leq J(\sigma_R) < 2mc_0$

We write the
$$G_m$$
-orbit of $\zeta = (1, 0, 0)$ as
 $G_m \zeta = \{\zeta_1, \ldots, \zeta_{2m}\}$ with $\zeta_i := e^{2\pi i (i-1)/m} \zeta$ and $\zeta_{m+i} := \tau \zeta_i$, $i = 1, \ldots$
and set

$$\omega_{iR}(x) := \begin{cases} \omega(x - R\zeta_i) & \text{for } i = 1, \dots, m, \\ -\omega(x - R\zeta_i) & \text{for } i = m + 1, \dots, 2m. \end{cases}$$

Then, $\sigma_R = \sum_{i=1}^{2m} t_R \omega_{iR}$; and $J(\omega_{iR}) = J(\omega)$. So

Proof of $c^{\phi} \leq J(\sigma_R) < 2mc_0$

We write the
$$G_m$$
-orbit of $\zeta = (1, 0, 0)$ as
 $G_m \zeta = \{\zeta_1, \ldots, \zeta_{2m}\}$ with $\zeta_i := e^{2\pi i (i-1)/m} \zeta$ and $\zeta_{m+i} := \tau \zeta_i$, $i = 1, \ldots$
and set

$$\omega_{iR}(x) := \begin{cases} \omega(x - R\zeta_i) & \text{for } i = 1, \dots, m, \\ -\omega(x - R\zeta_i) & \text{for } i = m + 1, \dots, 2m. \end{cases}$$

Then, $\sigma_R = \sum_{i=1}^{2m} t_R \omega_{iR}$; and $J(\omega_{iR}) = J(\omega)$. So

$$J(\sigma_{R}) = \frac{1}{2} \left\| \sum_{i=1}^{2m} t_{R} \omega_{iR} \right\|^{2} - \int_{\mathbb{R}^{N}} F\left(\sum_{i=1}^{2m} t_{R} \omega_{iR}\right)$$

$$\leq 2mc_{0} - \frac{t_{R}^{2}}{2} \sum_{\substack{i,j=1\\i \neq j}}^{2m} \int_{\mathbb{R}^{N}} f(\omega_{iR}) \omega_{jR} + C|t_{R} - 1|R^{2-N} + CR^{-\mu_{1}} + CR^{-\mu_{2}},$$

Since, by assumption (f₁), $\alpha > \frac{N}{2(N-2)}$, we have that $\mu_1, \mu_2 > N-2$.

Non-homogeneous nonlinearity

Lemma 1

Given $n \in \mathbb{N}$, $\overline{u} > 0$ and $f \in C_{loc}^{1,\beta}(\mathbb{R})$ with $\beta \in (0,1]$ such that f(0) = 0, there exists $b_1 > 0$ such that for any $u_1, \ldots, u_n \in [-\overline{u}, \overline{u}]$,

$$\left|f\left(\sum_{i=1}^{n} u_{i}\right) - \left(\sum_{i=1}^{n} f(u_{i})\right)\right| \leq b_{1} \sum_{\substack{i,j=1\\i < j}}^{n} |u_{i}u_{j}|^{\beta}$$

Non-homogeneous nonlinearity

Lemma 1

Given $n \in \mathbb{N}$, $\overline{u} > 0$ and $f \in C_{loc}^{1,\beta}(\mathbb{R})$ with $\beta \in (0,1]$ such that f(0) = 0, there exists $b_1 > 0$ such that for any $u_1, \ldots, u_n \in [-\overline{u}, \overline{u}]$,

$$\left|f\left(\sum_{i=1}^{n} u_{i}\right) - \left(\sum_{i=1}^{n} f(u_{i})\right)\right| \leq b_{1} \sum_{\substack{i,j=1\\i < j}}^{n} |u_{i}u_{j}|^{\beta}$$

Lemma 2

Given $n \in \mathbb{N}$, $\overline{u} > 0$ and $f \in \mathcal{C}_{loc}^{1,\beta}(\mathbb{R})$ with $\beta \in (0,1]$ such that f(0) = 0 = f'(0), there exists $b_2 > 0$ such that

$$F\left(\sum_{i=1}^{n} u_{i}\right) - \sum_{i=1}^{n} F(u_{i}) - \sum_{\substack{i,j=1\\i\neq j}}^{n} f(u_{i})u_{j} \left| \leq b_{2} \left(\sum_{\substack{i,j=1\\i< j}}^{n} |u_{i}u_{j}|^{1+\frac{\beta}{2}} + \sum_{\substack{i,j,k=1\\i< j< k}}^{n} |u_{i}u_{j}|^{\beta} |u_{k}| \right) \right|$$

for any $u_1, \ldots, u_n \in [-\overline{u}, \overline{u}]$, where $F(u) := \int_0^u f$.

Lemma

There are positive constants C_0 and \widehat{C}_0 such that

$$\lim_{|y|\to\infty} |y|^{N-2} \int_{\mathbb{R}^N} f(\omega(x))\omega(x-y) \,\mathrm{d}x = C_0$$
$$\lim_{|y|\to\infty} |y|^{N-2} \int_{\mathbb{R}^N} |\omega(x)|^{2^*-1}\omega(x-y) \,\mathrm{d}x = \widehat{C}_0.$$

Next, we estimate the second summand $-\frac{t_R^2}{2}\sum_{\substack{i,j=1\\i\neq j}}^{2m}\int_{\mathbb{R}^N} f(\omega_{iR})\omega_{jR}$. Set $d_{ij} := |\zeta_i - \zeta_j|$ for $i \neq j$. Note that $d_{12} = 2\sin(\frac{\pi}{m})$, and $d_{ij} = \sqrt{2}$ if $1 \leq i \leq m < j \leq 2m$. Therefore,

$$\sum_{\substack{i,j=1\\i\neq j}}^{m} d_{ij}^{2-N} - \sum_{i=1}^{m} \sum_{j=m+1}^{2m} d_{ij}^{2-N}$$

$$\geq (d_{1\,2}^{2-N} + d_{m\,1}^{2-N}) + \sum_{i=2}^{m-1} (d_{i\,(i+1)}^{2-N} + d_{(i-1)\,i}^{2-N})$$

$$+ (d_{m1}^{2-N} + d_{(m-1)m}^{2-N}) - \sum_{i=1}^{m} \sum_{j=m+1}^{2m} d_{ij}^{2-N}$$

$$= 2m\left(2\sin\left(\frac{\pi}{m}\right)\right)^{2-N} - m^2(\sqrt{2})^{2-N}$$
$$> m\left[2\left(\frac{2\pi}{m}\right)^{2-N} - m(\sqrt{2})^{2-N}\right] \ge 0$$

because, by assumption,

$$m \ge \sqrt{2}\pi \left(rac{\pi}{\sqrt{2}}
ight)^{rac{1}{N-3}}.$$

19

For $C_0 > 0$,

$$M_{0} := 2(C_{0} - \varepsilon) \sum_{\substack{i,j=1\\i\neq j}}^{m} d_{ij}^{2-N} - 2(C_{0} + \varepsilon) \sum_{i=1}^{m} \sum_{\substack{j=m+1\\j=m+1}}^{2m} d_{ij}^{2-N} > 0.$$

Then, for R large enough we have that

$$\begin{split} \sum_{\substack{i,j=1\\i\neq j}}^{2m} \int_{\mathbb{R}^N} f(\omega_{iR}) \omega_{jR} &= 2 \sum_{\substack{i,j=1\\i\neq j}}^m \int_{\mathbb{R}^N} f(\omega) \omega(\cdot - R(\zeta_j - \zeta_i)) \\ &- 2 \sum_{i=1}^m \sum_{j=m+1}^{2m} \int_{\mathbb{R}^N} f(\omega) \omega(\cdot - R(\zeta_j - \zeta_i)) \geq M_0 R^{2-N}, \end{split}$$

and we derive that

$$J(\sigma_R) \leq 2mc_0 - \frac{t_R^2}{2}M_0R^{2-N} + C|t_R - 1|R^{2-N} + o(R^{2-N}).$$

Since $M_0 > 0$ and $t_R \to 1$ as $R \to \infty$, we conclude that $J(\sigma_R) < 2mc_0$ for R large enough, as claimed.

Summary

The function $\psi(t) := \sqrt{2}\pi \left(\frac{\pi}{\sqrt{2}}\right)^{\frac{1}{t}}$ is decreasing in t > 0. Since $\psi(t) \to \sqrt{2}\pi$ as $t \to \infty$ and $\sqrt{2}\pi > 4$, any number *m* satisfying $m \ge \sqrt{2}\pi \left(\frac{\pi}{\sqrt{2}}\right)^{\frac{1}{N-3}}$ must be greater than or equal to 5. Direct computation shows that the least integer greater than or equal to $\sqrt{2}\pi \left(\frac{\pi}{\sqrt{2}}\right)^{\frac{1}{N-3}}$ is 6 if N = 5, 6, and it is 5 if $N \ge 7$.

Thank You!