Mostly Maximum Principle

5 th edition: in Latin America for the first time
An upper bound for the least energy of a sign-changing solution to a zero mass problem

Liliane A. Maia
University of Brasília
June 24 - 28, 2024, PUC-Rio, Rio de Janeiro, BR

Mónica Clapp
(UNAM, MX)

Benedetta Pellacci (U.C."'Luigi

Vanvitelli",IT)

Open problem

Tobias Weth (CVPDE 2006): Energy bounds for entire nodal solutions of autonomous superlinear equations,
considers the autonomous problems:

$$
-\Delta u=|u|^{\frac{4}{N-2}} u, \quad u \in D^{1,2}\left(\mathbb{R}^{N}\right), \quad N \geq 3
$$

and

$$
-\Delta u+a u=f(u), \quad u \in H^{1}\left(\mathbb{R}^{N}\right) ;
$$

Theorem

There is $\varepsilon_{\Phi}>0$ such that $J(u)>\frac{2}{N} S^{N / 2}+\varepsilon_{\Phi}$ for every sign changing solution $u \in D^{1,2}\left(\mathbb{R}^{N}\right)$ of first problem above.
Moreover, there is $\varepsilon_{\Psi}>0$ such that $J(u)>2 c_{0}+\varepsilon_{\Psi}$ for every sign changing solution $u \in H^{1}\left(\mathbb{R}^{N}\right)$ of second problem above.

Open problem

Tobias Weth (CVPDE 2006): Energy bounds for entire nodal solutions of autonomous superlinear equations,
considers the autonomous problems:

$$
-\Delta u=|u|^{\frac{4}{N-2}} u, \quad u \in D^{1,2}\left(\mathbb{R}^{N}\right), \quad N \geq 3
$$

and

$$
-\Delta u+a u=f(u), \quad u \in H^{1}\left(\mathbb{R}^{N}\right) ;
$$

Theorem

There is $\varepsilon_{\Phi}>0$ such that $J(u)>\frac{2}{N} S^{N / 2}+\varepsilon_{\Phi}$ for every sign changing solution $u \in D^{1,2}\left(\mathbb{R}^{N}\right)$ of first problem above.
Moreover, there is $\varepsilon_{\Psi}>0$ such that $J(u)>2 c_{0}+\varepsilon_{\Psi}$ for every sign changing solution $u \in H^{1}\left(\mathbb{R}^{N}\right)$ of second problem above.

We obtain an upper bound:

$$
2 c_{0}+\varepsilon_{\psi}<J(u)<10 c_{0}
$$

Least energy of a sign-changing solution to the problem

$$
\begin{equation*}
-\Delta u=f(u), \quad u \in D^{1,2}\left(\mathbb{R}^{N}\right) \tag{1}
\end{equation*}
$$

where $N \geq 1$ and the nonlinearity f is subcritical at infinity and supercritical near the origin.

Least energy of a sign-changing solution to the problem

$$
\begin{equation*}
-\Delta u=f(u), \quad u \in D^{1,2}\left(\mathbb{R}^{N}\right) \tag{1}
\end{equation*}
$$

where $N \geq 1$ and the nonlinearity f is subcritical at infinity and supercritical near the origin.

- Berestycki and Lions (1983): problem (1) has a ground state solution which is positive, radially symmetric and decreasing in the radial direction.
- Benci and Micheletti (2006), Alves and Souto (2012), Clapp-M. (2018), Clapp, M. and Pellacci (2021) and others: one or multiple positive solutions for a similar equation involving a scalar potential that decays to zero at infinity, both in the whole space and in an exterior domain.
- Mederski (2021) a nonradial sign-changing solution (but its energy is not known).

$$
-\Delta u=f(u), \quad u \in D^{1,2}\left(\mathbb{R}^{N}\right), \quad N \geq 5
$$

$\left(f_{1}\right) f \in \mathcal{C}_{\operatorname{loc}}^{1, \alpha}(\mathbb{R})$ with $\alpha \in\left(\frac{N}{2(N-2)}, 1\right]$, and there exist $a_{1}>0$ and $2<p<2^{*}:=\frac{2 N}{N-2}<q$ such that, for $\kappa=-1,0,1$,

$$
\left|f^{(\kappa)}(s)\right| \leq \begin{cases}a_{1}|s|^{p-(\kappa+1)} & \text { if }|s| \geq 1 \\ a_{1}|s|^{q-(\kappa+1)} & \text { if }|s| \leq 1\end{cases}
$$

where $f^{(-1)}:=F, f^{(0)}:=f, f^{(1)}:=f^{\prime}$, and $F(s):=\int_{0}^{s} f(t) \mathrm{d} t$.
$\left(f_{2}\right)$ There is a constant $\theta>2$ such that $0 \leq \theta F(s) \leq f(s) s<f^{\prime}(s) s^{2}$ for all $s>0$.
$\left(f_{3}\right) f$ is odd.
Example: $f(s)=\frac{u^{q-1}}{1+u^{(q-p)}}$, for $2<p<2^{*}<q$.

A nonradial sign-changing solution

Theorem [Clapp-M.-Pellacci 2024]

Assume that f satisfies $\left(f_{1}\right)-\left(f_{3}\right)$. Then, there exists a nonradial sign-changing solution $\widehat{\omega}$ to the problem (1) whose energy satisfies

$$
2 c_{0}<\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla \widehat{\omega}|^{2}-\int_{\mathbb{R}^{N}} F(\widehat{\omega})< \begin{cases}12 c_{0} & \text { if } N=5,6 \\ 10 c_{0} & \text { if } N \geq 7,\end{cases}
$$

where c_{0} is the ground state energy of (1). Furthermore, for each $\left(z_{1}, z_{2}, y\right) \in \mathbb{R}^{N} \equiv \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4}$,
(a) $\widehat{\omega}\left(z_{1}, z_{2}, y\right)=\widehat{\omega}\left(\mathrm{e}^{2 \pi \mathrm{i} j / m} z_{1}, \mathrm{e}^{2 \pi \mathrm{i} j / m} z_{2}, y\right)$ for all $j=0, \ldots, m-1$,
(b) $\widehat{\omega}\left(z_{1}, z_{2}, y\right)=-\widehat{\omega}\left(z_{2}, z_{1}, y\right)$,
(c) $\widehat{\omega}\left(z_{1}, z_{2}, y_{1}\right)=\widehat{\omega}\left(z_{1}, z_{2}, y_{2}\right)$ if $\left|y_{1}\right|=\left|y_{2}\right|$,
with $m=6$ if $N=5,6$ and $m=5$ if $N \geq 7$, and $\widehat{\omega}$ has least energy among all nontrivial solutions satisfying (a), (b), (c).

Previous upper bounds of energy of sign-changing solution

- Clapp and Srikanth (2016) in the positive mass case, $-\Delta u+u=|u|^{p-2} u, \quad u \in H^{1}\left(\mathbb{R}^{N}\right)$, for the subcritical pure power nonlinearity $2<p<2^{*}$, an estimate for the least possible energy of a sign-changing solution:

$$
J_{\infty}(\widehat{w})<12 c_{0} .
$$

- Clapp and Soares (2023): recently improved

$$
J_{\infty}(\widehat{w})<10 c_{0} .
$$

- Clapp, Pistoia and Weth (2022): it was shown that the same estimates as in our main Theorem hold true for the critical pure power nonlinearity $f(u)=|u|^{2^{*}-2} u$.

Existence of a sign-changing solution

- To prove the existence of a sign-changing solution to (1) we take advantage of suitable symmetries that produce a change of sign by construction.

Existence of a sign-changing solution

- To prove the existence of a sign-changing solution to (1) we take advantage of suitable symmetries that produce a change of sign by construction.
- The symmetries introduced in the work of Mederski, however, have only infinite and trivial orbits. This does not allow us to estimate the energy of the solution.

Existence of a sign-changing solution

- To prove the existence of a sign-changing solution to (1) we take advantage of suitable symmetries that produce a change of sign by construction.
- The symmetries introduced in the work of Mederski, however, have only infinite and trivial orbits. This does not allow us to estimate the energy of the solution.
- Here, in contrast, we consider symmetries given by a finite group. This makes it harder to show existence due to the lack of compactness but, once the existence of a solution is established, one immediately gets an upper estimate for its energy.

The symmetric variational setting

- G is a closed subgroup of the group $O(N)$ of linear isometries of \mathbb{R}^{N} and denote by

$$
G x:=\{g x: g \in G\} \quad \text { and } \quad G_{x}:=\{g \in G: g x=x\}
$$

the G-orbit and the G-isotropy group of a point $x \in \mathbb{R}^{N}$. The G-orbit $G x$ is G-homeomorphic to the homogeneous space G / G_{x}. So both have the same cardinality, i.e., $\left|G_{x}\right|=\left|G / G_{x}\right|$.

The symmetric variational setting

- G is a closed subgroup of the group $O(N)$ of linear isometries of \mathbb{R}^{N} and denote by

$$
G x:=\{g x: g \in G\} \quad \text { and } \quad G_{x}:=\{g \in G: g x=x\}
$$

the G-orbit and the G-isotropy group of a point $x \in \mathbb{R}^{N}$. The G-orbit $G x$ is G-homeomorphic to the homogeneous space G / G_{x}. So both have the same cardinality, i.e., $\left|G_{x}\right|=\left|G / G_{x}\right|$.

- $\phi: G \rightarrow \mathbb{Z}_{2}:=\{-1,1\}$ is a continuous homomorphism of groups. A function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that

$$
u(g x)=\phi(g) u(x) \text { for all } g \in G, x \in \mathbb{R}^{N},
$$

will be called ϕ-equivariant.

The symmetric variational setting

- If $\phi \equiv 1$ is the trivial homomorphism then u is G-invariant $u(g x)=u(x)$, i.e., it is constant on every G-orbit, while if ϕ is surjective and $u \neq 0$ then u is nonradial and changes sign $u(g x)=\phi(g) u(x)=-u(x)$. There are surjective homomorphisms for which the only ϕ-equivariant function is the trivial one, as occurs, for example, when $G=O(N)$ and $\phi(g)$ is the determinant of g.

The symmetric variational setting

- If $\phi \equiv 1$ is the trivial homomorphism then u is G-invariant $u(g x)=u(x)$, i.e., it is constant on every G-orbit, while if ϕ is surjective and $u \neq 0$ then u is nonradial and changes sign $u(g x)=\phi(g) u(x)=-u(x)$. There are surjective homomorphisms for which the only ϕ-equivariant function is the trivial one, as occurs, for example, when $G=O(N)$ and $\phi(g)$ is the determinant of g. To avoid this behavior we assume, from now on, that
$\left(A_{\phi}\right)$ If ϕ is surjective, then there exists $\zeta \in \mathbb{R}^{N}$ such that $(\operatorname{ker} \phi) \zeta \neq G \zeta$, where $\operatorname{ker} \phi:=\{g \in G: \phi(g)=1\}$.

If K is a closed subgroup of G we write $\phi \mid K: K \rightarrow \mathbb{Z}_{2}$ for the restriction of ϕ to K. Note that $\phi \mid K$ satisfies $\left(A_{\phi \mid K}\right)$ if ϕ satisfies $\left(A_{\phi}\right)$, more precisely, if $\phi \mid K: K \rightarrow \mathbb{Z}_{2}$ is surjective, then $(\operatorname{ker}(\phi \mid K)) \zeta \neq K \zeta$.

The symmetric variational setting

$D^{1,2}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2^{*}}\left(\mathbb{R}^{N}\right): \nabla u \in L^{2}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right\}$,

$$
\langle u, v\rangle:=\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v, \quad\|u\|:=\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}\right)^{1 / 2},
$$

and set

$$
D^{1,2}\left(\mathbb{R}^{N}\right)^{\phi}:=\left\{u \in D^{1,2}\left(\mathbb{R}^{N}\right): u \text { is } \phi \text {-equivariant }\right\} .
$$

Proposition

If ϕ satisfies $\left(A_{\phi}\right)$ then $D^{1,2}\left(\mathbb{R}^{N}\right)^{\phi}$ has infinite dimension.

ϕ-equivariant solutions to the problem

Critical points of the functional $J: D^{1,2}\left(\mathbb{R}^{N}\right)^{\phi} \rightarrow \mathbb{R}$ given by

$$
J(u):=\frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{N}} F(u),
$$

where $F(u):=\int_{0}^{u} f(s) \mathrm{d} s$.

$$
J^{\prime}(u) v=\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v-\int_{\mathbb{R}^{N}} f(u) v, \quad u, v \in D^{1,2}\left(\mathbb{R}^{N}\right)^{\phi} ;
$$

The nontrivial ϕ-equivariant solutions belong to the set

$$
\mathcal{N}^{\phi}:=\left\{u \in D^{1,2}\left(\mathbb{R}^{N}\right)^{\phi}: u \neq 0, J^{\prime}(u) u=0\right\}
$$

which is a closed \mathcal{C}^{1}-submanifold of $D^{1,2}\left(\mathbb{R}^{N}\right)^{\phi}$ and a natural constraint for J,

$$
c^{\phi}:=\inf _{u \in \mathcal{N}^{\phi}} J(u)>0
$$

Range of energy for existence of solution

Proposition

If

$$
c^{\phi}<\left|G / G_{\xi}\right| c^{\phi \mid G_{\xi}} \quad \text { for every } \xi \in \mathbb{R}^{N} \text { with } G_{\xi} \neq G
$$

then c^{ϕ} is attained.

Range of energy for existence of solution

Proposition

If

$$
c^{\phi}<\left|G / G_{\xi}\right| c^{\phi \mid G_{\xi}} \quad \text { for every } \xi \in \mathbb{R}^{N} \text { with } G_{\xi} \neq G
$$

then c^{ϕ} is attained.
This previous result depends crucially on the following:

Lemma [Clapp-M. 2018]

If $\left(u_{k}\right)$ is bounded in $D^{1,2}\left(\mathbb{R}^{N}\right)$ and there exists $R>0$ such that

$$
\lim _{k \rightarrow \infty}\left(\sup _{y \in \mathbb{R}^{N}} \int_{B_{R}(y)}\left|u_{k}\right|^{2}\right)=0
$$

then $\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{N}} f\left(u_{k}\right) u_{k}=0$.

An upper bound for the energy of symmetric minimizers

A ground state solution $\omega \in \mathcal{C}^{2}\left(\mathbb{R}^{N}\right)$ to (1):

$$
\begin{gathered}
0<b_{1}(1+|x|)^{-(N-2)} \leq \omega(x) \leq b_{2}(1+|x|)^{-(N-2)}, \\
|\nabla \omega(x)| \leq b_{3}(1+|x|)^{-(N-1)} .
\end{gathered}
$$

An upper bound for the energy of symmetric minimizers

A ground state solution $\omega \in \mathcal{C}^{2}\left(\mathbb{R}^{N}\right)$ to (1):

$$
\begin{gathered}
0<b_{1}(1+|x|)^{-(N-2)} \leq \omega(x) \leq b_{2}(1+|x|)^{-(N-2)}, \\
|\nabla \omega(x)| \leq b_{3}(1+|x|)^{-(N-1)} .
\end{gathered}
$$

Definition

We write $\mathbb{R}^{N} \equiv \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4}$ and a point in \mathbb{R}^{N} as
$\left(z_{1}, z_{2}, y\right) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4}$. For $m \in \mathbb{N}$, let

$$
\mathbb{Z}_{m}:=\left\{\mathrm{e}^{2 \pi \mathrm{i} j / m}: j=0, \ldots, m-1\right\},
$$

G_{m} be the group generated by $\mathbb{Z}_{m} \cup\{\tau\}$, acting on \mathbb{R}^{N} as
$\mathrm{e}^{2 \pi \mathrm{i} j / m}\left(z_{1}, z_{2}, y\right):=\left(\mathrm{e}^{2 \pi \mathrm{i} j / m} z_{1}, \mathrm{e}^{2 \pi \mathrm{i} j / m} z_{2}, y\right), \quad \tau\left(z_{1}, z_{2}, y\right):=\left(z_{2}, z_{1}, y\right)$,
and $\phi: G_{m} \rightarrow \mathbb{Z}_{2}$ be the homomorphism satisfying $\phi\left(\mathrm{e}^{2 \pi \mathrm{ij} / m}\right)=1$ and $\phi(\tau)=-1$. Set $\zeta:=(1,0,0)$, and for each $R>1$ define sum on $g \in G_{m}$

$$
\widehat{\sigma}_{R}(x):=\sum \phi(g) \omega(x-R g \zeta), \quad x \in \mathbb{R}^{N} .
$$

Properties of $\widehat{\sigma}_{R}(\cdot)$

- $\widehat{\sigma}_{R}(g x)=\phi(g) \widehat{\sigma}_{R}(x)$ for every $g \in G_{m}, x \in \mathbb{R}^{N}$.
- There exists $R_{0}>0$ and for each $R \geq R_{0}$ a unique $t_{R}>0$ such that

$$
\sigma_{R}:=t_{R} \widehat{\sigma}_{R} \in \mathcal{N}^{\phi} .
$$

- $t_{R} \rightarrow 1$ as $R \rightarrow \infty$.

Properties of $\widehat{\sigma}_{R}(\cdot)$

- $\widehat{\sigma}_{R}(g x)=\phi(g) \widehat{\sigma}_{R}(x)$ for every $g \in G_{m}, x \in \mathbb{R}^{N}$.
- There exists $R_{0}>0$ and for each $R \geq R_{0}$ a unique $t_{R}>0$ such that

$$
\sigma_{R}:=t_{R} \widehat{\sigma}_{R} \in \mathcal{N}^{\phi} .
$$

- $t_{R} \rightarrow 1$ as $R \rightarrow \infty$.

Proposition

If

$$
\begin{equation*}
m \geq \sqrt{2} \pi\left(\frac{\pi}{\sqrt{2}}\right)^{\frac{1}{N-3}} \tag{2}
\end{equation*}
$$

then, for R large enough,

$$
c^{\phi} \leq J\left(\sigma_{R}\right)<2 m c_{0},
$$

where c_{0} is the ground state energy of (1).

Interaction of translated solitons

Lemma[Clapp-M.-Pellacci 2024]

Let y_{1}, \ldots, y_{n} be n different points in \mathbb{R}^{N} and $\vartheta_{1}, \ldots, \vartheta_{n} \in(0, N)$ be such that $\vartheta:=\vartheta_{1}+\cdots+\vartheta_{n}>N$. Then there exists $C=C\left(\vartheta_{i}, N\right)>0$ such that

$$
\int_{\mathbb{R}^{N}} \prod_{i=1}^{n}\left(1+\left|x-R y_{i}\right|\right)^{-\vartheta_{i}} \mathrm{~d} x \leq C d^{-\mu} R^{-\mu}
$$

for all $R \geq 1$, where $d:=\min \left\{\left|y_{i}-y_{j}\right|: i, j=1, \ldots, n, i \neq j\right\}$ and $\mu:=\vartheta-N$.

Proof of $c^{\phi} \leq J\left(\sigma_{R}\right)<2 m c_{0}$

We write the G_{m}-orbit of $\zeta=(1,0,0)$ as
$G_{m} \zeta=\left\{\zeta_{1}, \ldots, \zeta_{2 m}\right\} \quad$ with $\quad \zeta_{i}:=\mathrm{e}^{2 \pi \mathrm{i}(i-1) / m} \zeta \quad$ and $\quad \zeta_{m+i}:=\tau \zeta_{i}, \quad i=1, \ldots$ and set

$$
\omega_{i R}(x):= \begin{cases}\omega\left(x-R \zeta_{i}\right) & \text { for } \quad i=1, \ldots, m, \\ -\omega\left(x-R \zeta_{i}\right) & \text { for } i=m+1, \ldots, 2 m .\end{cases}
$$

Then, $\sigma_{R}=\sum_{i=1}^{2 m} t_{R} \omega_{i R}$; and $J\left(\omega_{i R}\right)=J(\omega)$. So

Proof of $c^{\phi} \leq J\left(\sigma_{R}\right)<2 m c_{0}$

We write the G_{m}-orbit of $\zeta=(1,0,0)$ as
$G_{m} \zeta=\left\{\zeta_{1}, \ldots, \zeta_{2 m}\right\} \quad$ with $\quad \zeta_{i}:=\mathrm{e}^{2 \pi \mathrm{i}(i-1) / m} \zeta \quad$ and $\quad \zeta_{m+i}:=\tau \zeta_{i}, \quad i=1, \ldots$ and set

$$
\omega_{i R}(x):= \begin{cases}\omega\left(x-R \zeta_{i}\right) & \text { for } \quad i=1, \ldots, m \\ -\omega\left(x-R \zeta_{i}\right) & \text { for } \quad i=m+1, \ldots, 2 m\end{cases}
$$

Then, $\sigma_{R}=\sum_{i=1}^{2 m} t_{R} \omega_{i R}$; and $J\left(\omega_{i R}\right)=J(\omega)$. So

$$
\begin{aligned}
J\left(\sigma_{R}\right) & =\frac{1}{2}\left\|\sum_{i=1}^{2 m} t_{R} \omega_{i R}\right\|^{2}-\int_{\mathbb{R}^{N}} F\left(\sum_{i=1}^{2 m} t_{R} \omega_{i R}\right) \\
& \leq 2 m c_{0}-\frac{t_{R}^{2}}{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{2 m} \int_{\mathbb{R}^{N}} f\left(\omega_{i R}\right) \omega_{j R}+C\left|t_{R}-1\right| R^{2-N}+C R^{-\mu_{1}}+C R^{-\mu_{2}},
\end{aligned}
$$

Since, by assumption $\left(f_{1}\right), \alpha>\frac{N}{2(N-2)}$, we have that $\mu_{1}, \mu_{2}>N-2$.

Non-homogeneous nonlinearity

Lemma 1

Given $n \in \mathbb{N}, \bar{u}>0$ and $f \in \mathcal{C}_{\text {loc }}^{1, \beta}(\mathbb{R})$ with $\beta \in(0,1]$ such that $f(0)=0$, there exists $b_{1}>0$ such that for any $u_{1}, \ldots, u_{n} \in[-\bar{u}, \bar{u}]$,

$$
\left|f\left(\sum_{i=1}^{n} u_{i}\right)-\left(\sum_{i=1}^{n} f\left(u_{i}\right)\right)\right| \leq b_{1} \sum_{\substack{i, j=1 \\ i<j}}^{n}\left|u_{i} u_{j}\right|^{\beta} .
$$

Non-homogeneous nonlinearity

Lemma 1

Given $n \in \mathbb{N}, \bar{u}>0$ and $f \in \mathcal{C}_{\text {loc }}^{1, \beta}(\mathbb{R})$ with $\beta \in(0,1]$ such that $f(0)=0$, there exists $b_{1}>0$ such that for any $u_{1}, \ldots, u_{n} \in[-\bar{u}, \bar{u}]$,

$$
\left|f\left(\sum_{i=1}^{n} u_{i}\right)-\left(\sum_{i=1}^{n} f\left(u_{i}\right)\right)\right| \leq b_{1} \sum_{\substack{i, j=1 \\ i<j}}^{n}\left|u_{i} u_{j}\right|^{\beta} .
$$

Lemma 2

Given $n \in \mathbb{N}, \bar{u}>0$ and $f \in \mathcal{C}_{\text {loc }}^{1, \beta}(\mathbb{R})$ with $\beta \in(0,1]$ such that $f(0)=0=f^{\prime}(0)$, there exists $b_{2}>0$ such that

$$
\left|F\left(\sum_{i=1}^{n} u_{i}\right)-\sum_{i=1}^{n} F\left(u_{i}\right)-\sum_{\substack{i, j=1 \\ i \neq j}}^{n} f\left(u_{i}\right) u_{j}\right| \leq b_{2}\left(\sum_{\substack{i, j=1 \\ i<j}}^{n}\left|u_{i} u_{j}\right|^{1+\frac{\beta}{2}}+\sum_{\substack{i, j, k=1 \\ i<j<k}}^{n}\left|u_{i} u_{j}\right|^{\beta}\left|u_{k}\right|\right)
$$

for any $u_{1}, \ldots, u_{n} \in[-\bar{u}, \bar{u}]$, where $F(u):=\int_{0}^{u} f$.

Decay and interaction

Lemma

There are positive constants C_{0} and \widehat{C}_{0} such that

$$
\begin{aligned}
\lim _{|y| \rightarrow \infty}|y|^{N-2} \int_{\mathbb{R}^{N}} f(\omega(x)) \omega(x-y) \mathrm{d} x & =C_{0} \\
\lim _{|y| \rightarrow \infty}|y|^{N-2} \int_{\mathbb{R}^{N}}|\omega(x)|^{2^{*}-1} \omega(x-y) \mathrm{d} x & =\widehat{C}_{0}
\end{aligned}
$$

Next, we estimate the second summand $-\frac{t_{R}^{2}}{2} \sum_{\substack{i, j=1 \\ i \neq j}}^{2 m} \int_{\mathbb{R}^{N}} f\left(\omega_{i R}\right) \omega_{j R}$. Set $d_{i j}:=\left|\zeta_{i}-\zeta_{j}\right|$ for $i \neq j$. Note that $d_{12}=2 \sin \left(\frac{\pi}{m}\right)$, and $d_{i j}=\sqrt{2}$ if $1 \leq i \leq m<j \leq 2 m$. Therefore,

$$
\begin{aligned}
& \sum_{\substack{i, j=1 \\
i \neq j}}^{m} d_{i j}^{2-N}-\sum_{i=1}^{m} \sum_{j=m+1}^{2 m} d_{i j}^{2-N} \\
& \geq\left(d_{12}^{2-N}+d_{m 1}^{2-N}\right)+\sum_{i=2}^{m-1}\left(d_{i(i+1)}^{2-N}+d_{(i-1) i}^{2-N}\right) \\
& +\left(d_{m 1}^{2-N}+d_{(m-1) m}^{2-N}\right)-\sum_{i=1}^{m} \sum_{j=m+1}^{2 m} d_{i j}^{2-N} \\
& =2 m\left(2 \sin \left(\frac{\pi}{m}\right)\right)^{2-N}-m^{2}(\sqrt{2})^{2-N} \\
& >m\left[2\left(\frac{2 \pi}{m}\right)^{2-N}-m(\sqrt{2})^{2-N}\right] \geq 0
\end{aligned}
$$

because, by assumption,

$$
m \geq \sqrt{2} \pi\left(\frac{\pi}{\sqrt{2}}\right)^{\frac{1}{N-3}}
$$

For $C_{0}>0$,

$$
M_{0}:=2\left(C_{0}-\varepsilon\right) \sum_{\substack{i, j=1 \\ i \neq j}}^{m} d_{i j}^{2-N}-2\left(C_{0}+\varepsilon\right) \sum_{i=1}^{m} \sum_{j=m+1}^{2 m} d_{i j}^{2-N}>0 .
$$

Then, for R large enough we have that

$$
\begin{aligned}
\sum_{\substack{i, j=1 \\
i \neq j}}^{2 m} \int_{\mathbb{R}^{N}} f\left(\omega_{i R}\right) \omega_{j R}= & 2 \sum_{\substack{i, j=1 \\
i \neq j}}^{m} \int_{\mathbb{R}^{N}} f(\omega) \omega\left(\cdot-R\left(\zeta_{j}-\zeta_{i}\right)\right) \\
& -2 \sum_{i=1}^{m} \sum_{j=m+1}^{2 m} \int_{\mathbb{R}^{N}} f(\omega) \omega\left(\cdot-R\left(\zeta_{j}-\zeta_{i}\right)\right) \geq M_{0} R^{2-N},
\end{aligned}
$$

and we derive that

$$
J\left(\sigma_{R}\right) \leq 2 m c_{0}-\frac{t_{R}^{2}}{2} M_{0} R^{2-N}+C\left|t_{R}-1\right| R^{2-N}+o\left(R^{2-N}\right)
$$

Since $M_{0}>0$ and $t_{R} \rightarrow 1$ as $R \rightarrow \infty$, we conclude that $J\left(\sigma_{R}\right)<2 m c_{0}$ for R large enough, as claimed.

Conclusion

Summary

The function $\psi(t):=\sqrt{2} \pi\left(\frac{\pi}{\sqrt{2}}\right)^{\frac{1}{t}}$ is decreasing in $t>0$. Since $\psi(t) \rightarrow \sqrt{2} \pi$ as $t \rightarrow \infty$ and $\sqrt{2} \pi>4$, any number m satisfying $m \geq \sqrt{2} \pi\left(\frac{\pi}{\sqrt{2}}\right)^{\frac{1}{N-3}}$ must be greater than or equal to 5 . Direct computation shows that the least integer greater than or equal to $\sqrt{2} \pi\left(\frac{\pi}{\sqrt{2}}\right)^{\frac{1}{N-3}}$ is 6 if $N=5,6$, and it is 5 if $N \geq 7$.

Thank You!

