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The Schiffer problem

To find domains Ω ⊂ R
2 that support a solution of the

overdetermined problem
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where µ is a constant and ν is the normal vector on ∂Ω.
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= 0 on ∂Ω

u = constant on ∂Ω

where µ is a constant and ν is the normal vector on ∂Ω.

Schiffer conjecture (’50 - stated by Yau in 1982). If Ω is
bounded and smooth and u is nonconstant, then Ω is a disk.

The conjecture is still open.
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The Pompeiu problem (1929)

Let f : R2 → R an (unknown) continuous function and Ω ⊂ R
2 a

given bounded domain. Is it possible to determine f if we know
the values

ˆ

R(Ω)
f(x)dx

for any rigid motion R in R
2?
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The Pompeiu problem (1929)

Let f : R2 → R an (unknown) continuous function and Ω ⊂ R
2 a

given bounded domain. Is it possible to determine f if we know
the values

ˆ

R(Ω)
f(x)dx

for any rigid motion R in R
2?

Applications: Remote sensing, Image recovery, Tomography.

The answer is YES if and only if Ω has the Pompeiu property:

[

ˆ

R(Ω)
f(x)dx = 0 ∀R

]

=⇒ f ≡ 0

Ellipses and Polygons have the Pompeiu property.
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Williams’ Theorem (1976). If Ω is simply connected then Ω has
the Pompeiu property if and only if the Schiffer problem cannot
be solved in Ω.
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Equivalence

Williams’ Theorem (1976). If Ω is simply connected then Ω has
the Pompeiu property if and only if the Schiffer problem cannot
be solved in Ω.

S = class of smooth simply connected domains (bounded).

Open problem 1. Is it true that disks are the only domains in S
not having the Pompeiu property?

Open problem 2. Is it true that disks are the only domains in S
where the Schiffer Problem can be solved? (most important
case of the Schiffer conjecture)
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1. ∂Ω is connected and there exists an infinite sequence of
orthogonal Neumann eigenfunctions that are constant on ∂Ω
(Berenstein 1980, Berenstein-Yang 1987).
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Partial results. The Schiffer conjecture is true if:

1. ∂Ω is connected and there exists an infinite sequence of
orthogonal Neumann eigenfunctions that are constant on ∂Ω
(Berenstein 1980, Berenstein-Yang 1987).

2. ∂Ω is connected and the third order interior normal derivative
of u is constant on ∂Ω (Liu, 2010).

3. Ω is simply connected and u has no saddle points in the
interior of Ω (Willms-Gladwell, 1994).

4. Ω is simply connected and the eigenvalue µ is among its
seven lowest Neumann eigenvalues (Aviles 1986, Deng 2012).

5. The fourth or fifth order interior normal derivative of u is
constant on ∂Ω (Kawohl-Lucia, 2020).
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A stronger version of the Schiffer conjecture.

Let Ω ⊂ R
2 a smooth domain, and let us denote by Γi the

connected components of ∂Ω. Assume that there exists a
solution to the "Schiffer-type" problem:
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for some some constants ci and a positive constant µ.
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A stronger version of the Schiffer conjecture.

Let Ω ⊂ R
2 a smooth domain, and let us denote by Γi the

connected components of ∂Ω. Assume that there exists a
solution to the "Schiffer-type" problem:























∆u+ µu = 0 in Ω

∂u

∂ν
= 0 on ∂Ω

u = ci on ∂Ω

for some some constants ci and a positive constant µ.

A stronger Schiffer conjecture would be that Ω must be a disk or
an annulus.

"Question". Is it true that Ω must be a disk or an annulus?
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Shared rigidity results with the original conjecture

Theorem 1. (Enciso, Fernández, Ruiz, S. 2023)

1. If there exists an infinite sequence of orthogonal Neumann
eigenfunctions that are constant on each component of ∂Ω, then
this stronger version of the Schiffer conjecture is true.

2. If the eigenvalue µ is among its four lowest Neumann
eigenvalues, then again this stronger version of the Schiffer
conjecture is true.

In this talk we skip the proof of such two results.
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Main result (Enciso, Fernández, Ruiz, S. 2023)

In general, the second conjecture is false.

Theorem 2. For many integer numbers l there exist domains

Ωl,s ⊂ R
2 given in polar coordinates by

Ωl,s := {(r, θ) : al + s bl,s(θ) < r < 1 + sBl,s(θ)} , s ∈ (−ǫ, ǫ) ,

where al ∈ (0, 1) and bl,s , Bl,s are analytic functions of the form

bl,s(θ) = αl cos lθ +O(s) , Bl,s(θ) = βl cos lθ +O(s) ,

with αl and βl nonzero constants, such that the "Schiffer-type"
problem can be solved in Ωl,s.
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Main result (Enciso, Fernández, Ruiz, S. 2023)

In general, the second conjecture is false.

Theorem 2. For many integer numbers l there exist domains

Ωl,s ⊂ R
2 given in polar coordinates by

Ωl,s := {(r, θ) : al + s bl,s(θ) < r < 1 + sBl,s(θ)} , s ∈ (−ǫ, ǫ) ,

where al ∈ (0, 1) and bl,s , Bl,s are analytic functions of the form

bl,s(θ) = αl cos lθ +O(s) , Bl,s(θ) = βl cos lθ +O(s) ,

with αl and βl nonzero constants, such that the "Schiffer-type"
problem can be solved in Ωl,s.

The result holds for example for l = 4 and for any l large enough.
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The shape of the domains Ωl,s
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The case l = 4
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Euler equations

The stationary incompressible Euler equations in the plane are:

{

v · ∇v +∇p = 0 in R
2 ,

div v = 0 in R
2 .

Here v : R2 → R
2 is the velocity of the fluid and p : R2 → R is the

pressure.
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2 .

Here v : R2 → R
2 is the velocity of the fluid and p : R2 → R is the

pressure.

Since div v = 0, there exists a "stream function" u with ∇u = v⊥.

Old question. Is it true that if (v, p) are C1 solutions and have

compact support, then the streamlines (trajectories of the fluid)
must be circular?

This question is still open.
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Corollary. There exist continuous weak solutions (v, p) with
non-circular streamlines and compact support, and such that the
stream function u satisfies an elliptic PDE.
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Application of our main theorem

Corollary. There exist continuous weak solutions (v, p) with
non-circular streamlines and compact support, and such that the
stream function u satisfies an elliptic PDE.

Take u as given by our main theorem. Then, define

v =

{

(∇u)⊥ in Ω,

0 in R
2\Ω,

p =











µ
(

c2
0

2 − c2
1

2

)

in Ωint,

−1
2(|∇u|

2 + µ(u2 − c20)) in Ωl,s,

0 in Ωext .

where Ωint and Ωext are the two connected components of

R
2\Ωl,s respectively bounded and unbounded.
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2 + µ(u2 − c20)) in Ωl,s,

0 in Ωext .

where Ωint and Ωext are the two connected components of

R
2\Ωl,s respectively bounded and unbounded.

Gómez-Serrano, Park and Shi (Memoirs AMS, 2023).

Construction of other compactly supported C0 weak solutions
(vortex-patch),
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Application of our main theorem

Corollary. There exist continuous weak solutions (v, p) with
non-circular streamlines and compact support, and such that the
stream function u satisfies an elliptic PDE.

Take u as given by our main theorem. Then, define

v =

{

(∇u)⊥ in Ω,

0 in R
2\Ω,

p =










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(

c2
0

2 − c2
1

2

)

in Ωint,

−1
2(|∇u|

2 + µ(u2 − c20)) in Ωl,s,

0 in Ωext .

where Ωint and Ωext are the two connected components of

R
2\Ωl,s respectively bounded and unbounded.

Gómez-Serrano, Park and Shi (Memoirs AMS, 2023).

Construction of other compactly supported C0 weak solutions
(vortex-patch), but with stream function not satisfying any PDE.
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Crandall–Rabinowitz Theorem. X, Y = Banach spaces, U

neighborhood of 0 in X, Λ real interval. F : Λ× U → Y C1 s.t.

i) F (a, 0) = 0 for all a ∈ Λ;

ii) KerDw F (a∗, 0) = Rw0 for some a∗ ∈ Λ and w0 ∈ X \ {0};

iii) codim ImDw F (a∗, 0) = 1;

iv) DaDw F (a∗, 0)(w0) /∈ ImDw F (a∗, 0) ("transversality").
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Strategy of the proof: bifurcation.

Crandall–Rabinowitz Theorem. X, Y = Banach spaces, U

neighborhood of 0 in X, Λ real interval. F : Λ× U → Y C1 s.t.

i) F (a, 0) = 0 for all a ∈ Λ;

ii) KerDw F (a∗, 0) = Rw0 for some a∗ ∈ Λ and w0 ∈ X \ {0};

iii) codim ImDw F (a∗, 0) = 1;

iv) DaDw F (a∗, 0)(w0) /∈ ImDw F (a∗, 0) ("transversality").

If X = Rw0 ⊕ Ẋ, there exists a nontrivial smooth curve

(−ǫ, ǫ) → Λ̇×X, s 7→ (a(s), w(s))

such that

1) w(0) = 0, a(0) = a∗, and s (w0 + w(s)) ∈ U ;

2) F (s (w0 + w(s)) , a(s)) = 0.
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Ideas of the proof

Ωa := {a < r < 1}.

µ2(a) = second radial Neumann eigenvalue on Ωa:

∆ψa + µ2(a)ψa = 0 in Ωa , |∇u| = 0 on ∂Ωa

We consider the canonical diffeomorphisme

Φb,B
a : Ω := Ω 1

2

→ Ωb,B
a := {a+ b(θ) < r < 1 +B(θ)} .

and the pullback PDE:

Lb,B
a := (Φb,B

a )∗∆+ µ2(a) Id , Lb,B
a (u) = 0 in Ω .
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Symmetry and regularity

We need to impose symmetry.

Let Ck,α

l (Ω) the space of Ck,α(Ω) functions with mode l, i.e. of

type

φ(r) cos(l θ) .

We need also regularity, i.e. very special Hölder spaces:

Xk := {u ∈ Ck,α

l (Ω) | ∂ru ∈ Ck,α(Ω)}.

Xk
D := {u ∈ Xk |u = 0 on ∂Ω}.

Xk
DN := {u ∈ Xk |u = 0, ∂ru = 0 on ∂Ω}.

Y := C1,α
l (Ω) +X0

D , ‖y‖Y = inf{‖y1‖+ ‖y2‖ |, y = y1 + y2}.
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The operator to performe the bifurcation

For v ∈ X2
D small we define two functions on ∂Ω

bv(θ) = c1(a)∂rv

(

1

2
, θ

)

, Bv(θ) = c2(a)∂rv(1, θ) ,

for some suitable constants c1(a), c2(a).
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The operator to performe the bifurcation

For v ∈ X2
D small we define two functions on ∂Ω

bv(θ) = c1(a)∂rv

(

1

2
, θ

)

, Bv(θ) = c2(a)∂rv(1, θ) ,

for some suitable constants c1(a), c2(a). We define also

wv(r, θ) = v(r, θ)+
ψ
′

a(r)

2(1− a)

[

2(1−r)bv(θ)+(2r−1)Bv(θ)
]

∈ X 2,α
DN .
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The operator to performe the bifurcation

For v ∈ X2
D small we define two functions on ∂Ω

bv(θ) = c1(a)∂rv

(

1

2
, θ

)

, Bv(θ) = c2(a)∂rv(1, θ) ,

for some suitable constants c1(a), c2(a). We define also

wv(r, θ) = v(r, θ)+
ψ
′

a(r)

2(1− a)

[

2(1−r)bv(θ)+(2r−1)Bv(θ)
]

∈ X 2,α
DN .

With this, we define the operator:

F (a, v) := Lbv,Bv

a [ψ̄a + wv] ∈ Y

where ψ̄a is the pullback of ψa for the operator L0,0
a .
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The linearized operator

Proposition. We have

DwF (a, 0) := L0,0
a : X2

D → Y
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(in particular it is a Fredholm operator of index 0).
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(in particular it is a Fredholm operator of index 0). And it
becomes degenerate when µ2(a) is also a Dirichlet eigenvalue.
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The linearized operator

Proposition. We have

DwF (a, 0) := L0,0
a : X2

D → Y

(in particular it is a Fredholm operator of index 0). And it
becomes degenerate when µ2(a) is also a Dirichlet eigenvalue.

We denote by λl(a) the first Dirichlet eigenvalue of Ωa of mode l
(i.e. with eigenfunction of the form φ(r) cos(lθ)).
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The linearized operator

Proposition. We have

DwF (a, 0) := L0,0
a : X2

D → Y

(in particular it is a Fredholm operator of index 0). And it
becomes degenerate when µ2(a) is also a Dirichlet eigenvalue.

We denote by λl(a) the first Dirichlet eigenvalue of Ωa of mode l
(i.e. with eigenfunction of the form φ(r) cos(lθ)).

Proposition. We have:

• If a is close to 1, then µ2(a) > λl(a)

• If a is close to 0 and l ≥ 4, then µ2(a) < λl(a)

So there exist a = a∗ such that the two eigenvalues are equal,
and there DwF (a, 0) is degenerate.
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The transversality condition

In order to apply the Crandall-Rabinowitz Bifurcatiion Theorem
we just need the "transversality condition".
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The transversality condition

In order to apply the Crandall-Rabinowitz Bifurcatiion Theorem
we just need the "transversality condition".

Such condition in our case is

µ′2(a∗) 6= λ′l(a∗)

Proposition. For l = 4 and for any integer l large enough we
have

µ′2(a∗) > λ′l(a∗)
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The transversality condition

In order to apply the Crandall-Rabinowitz Bifurcatiion Theorem
we just need the "transversality condition".

Such condition in our case is

µ′2(a∗) 6= λ′l(a∗)

Proposition. For l = 4 and for any integer l large enough we
have

µ′2(a∗) > λ′l(a∗)

=⇒ all the hypothesis of the Crandall-Rabinowitz theorem
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Mostly maximum principle

THANK YOU FOR YOUR ATTENTION
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