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Introduction

The results in this talk were obtained in collaboration with

Ariel Salort Juan Spedaletti Hernán Vivas
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Introduction

The eigenvalue problem for the p−Laplacian

−∆pu = −div(|∇u|p−2∇u) = λ|u|p−2u

in a domain Ω ⊂ Rn + B.C.

This problem has been widely studied

Fucik-Necas, Amann 70’s

Lindqvist 90’s

Anane-Tsouli 00’s

Cuesta-De Figueiredo-Gossez 98

Drabek 10’s

etc....
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Introduction

Main problem: Study the structure of the eigenset

Σp = {λ ∈ R : is an eigenvalue of ∆p}

and associated eigenfunctions.

Some known properties:

Σp ⊂ (0,∞) is closed.

λ1 = inf Σp is also the minimizer of the Rayleigh quotient
‖∇u‖pp/‖u‖pp and is isolated in Σp.

There exists a sequence Σvar
p = {λk}k∈N ⊂ Σp (the

Ljusternik-Schnirelman eigenvalues).

Eigenfunctions are C1,α for some α > 0. Moreover, u1 > 0
and is simple.

much more...
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The generalized Laplacian

What happens if in the p−Laplacian we change the power rule
in the diffusion coefficient for a more general rule

∆pu = div( |∇u|p−2︸ ︷︷ ︸
diffusion coefficient

∇u)←→ ∆φu = div

(
φ(|∇u|)
|∇u|

∇u
)

When φ(t) = tp−1 =⇒ ∆φ = ∆p.

We call ∆φu = div
(
φ(|∇u|)
|∇u| ∇u

)
the generalized Laplacian

Allows for different behaviors of the diffusion coefficient when
|∇u| � 1 and |∇u| � 1.
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The generalized Laplacian

Examples: Is better to state the hypotheses and examples for
the primitive of φ

Φ(t) =

∫ t

0
φ(τ) dτ

Φ(t) ∼ tp (i.e. the p−Laplacian like case)

Φ(t) = tp

p + tq

q −→ the (p, q)−Laplacian.

Φ(t) ∼ tp lnα t for t� 1.

Φ(t) ∼ tp lnα t lnβ(ln t) for t� 1.

Φ(t) = et −
∑n−1

k=0
tk

k!

Φ(t) ∼ e−t−α for t� 1.
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The generalized Laplacian

Elliptic problems involving the generalized Laplacian were
analyzed since the 70’s (e.g. Gossez ’74, Lieberman ’90, Tienari
’00...)

−∆φu = −div

(
φ(|∇u|)
|∇u|

∇u
)

= f

in Ω ⊂ Rn + B.C.

The source term f may depend on x, u,∇u.
A key feature is that the generalized Laplacian is the E-L
equation of the energy

JΦ(u) =

∫
Ω

Φ(|∇u|) dx
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The generalized Laplacian

When Φ satisfies the ∆2 condition (i.e. Φ(2t) ≤ CΦ(t)), the
energy JΦ is differentiable in the corresponding Sobolev space.

Moreover, if the conjugate Φ̄(s) = sup{st− Φ(t) : t > 0} also
satisfies the ∆2 condition, the Sobolev space is reflexive and the
usual variational techniques can be applied.

Gossez ’74 showed how to treat the problem without
imposing ∆2 condition on Φ or Φ̄.

Tienari ’00 extend Gossez results to deal with the
eigenvalue problem
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Regularity results for the generalized Laplacian

Lieberman ’90 (On the natural generalizations of the natural
conditions of Ladyzhenskaya and Uraltseva) proved Hölder
continuity under the stronger assumption

0 < δ ≤ tφ′(t)

φ(t)
≤ g0. (Lieberman conditions)

This condition implies the ∆2 condition on Φ and Φ̄.
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What is known in the fractional world?
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The fractional p−Laplacian

(−∆p)
su = p.v.

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy

The eigenvalue problem:{
(−∆p)

su = λ|u|p−2u in Ω

u = 0 in Rn \ Ω

Lindgrem-Lindqvist ’14

Franzina-Palatucci ’14

Brasco-Parini-Squassina ’16

FB-Silva-Spedaletti ’21
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Fractional p−eigenvalues

The spectrum is defined as

Σs
p = {λ ∈ R : is an eigenvalue of (−∆p)

s}

Similar questions to the ones posed for Σp are posed and
(almost) answered for the fractional case.
Also the question Σs

p → Σp as s ↑ 1 is considered in the above
mentioned papers.
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The fractional p−Laplacian

The operator (−∆p)
su is the derivative of the fractional

p−energy

Jsp(u) =

∫∫
R2n

|u(x)− u(y)|p

|x− y|n+sp
dxdy.

Observe that this energy can be rewritten as

Jsp(u) =

∫∫
R2n

(
|u(x)− u(y)|
|x− y|s

)p dxdy

|x− y|n

This is the p−energy of the Hölder quotient

Dsu(x, y) =
u(x)− u(y)

|x− y|s

with respect to the measure

dνn =
dxdy

|x− y|n
.
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The fractional Φ−energy

So, the fractional p−energy is written as

Jsp(u) =

∫∫
R2n

|Dsu|p dνn

With A. Salort (’18), we define the fractional Φ−energy as

JsΦ(u) =

∫∫
R2n

Φ(|Dsu|) dνn
(
dνn =

dxdy

|x− y|n

)

This energy gives a natural way to define the fractional order
Orlicz-Sobolev spaces (see also Cianchi and coauthors ’21-’22)
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The fractional generalized Laplacian

We defined the fractional generalized Laplacian as the
derivative of the fractional Φ−energy.

(−∆φ)su(x) := p.v.

∫
Rn
φ(|Dsu|) D

su

|Dsu|
dy

|x− y|n+s

and consider problems of the form{
(−∆φ)su = f in Ω

u = 0 in Rn \ Ω

where f may depend on x, u.

Let us begin with regularity properties for solutions
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Regularity issues
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Known regularity results

Regularity results for fractional elliptic type operators:

Caffarelli – Silvestre → general theory for interior
regularity for uniformly elliptic, fully nonlinear operators
(2009–2011).

Ros Otton – Serra → boundary regularity for uniformly
elliptic fully nonlinear operators (2016).

Di Castro – Kuusi – Palatucci → weak Harnack inequality
and interior Hölder regularity for the fractional
p−Laplacian (non uniformly elliptic) (2016)

Iannizzotto – Mosconi – Squassina → interior and up to the
boundary regularity for the fractional p−Laplacian (2016).
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Regularity results for the fractional generalized
Laplacian

Theorem (FB, Salort, Vivas ’22)

Let u be a weak solution of{
(−∆φ)su = f in Ω

u = 0 in Rn \ Ω,

Ω bounded, open with C1,1 boundary, f ∈ L∞(Ω) and φ satisfies

0 < δ ≤ tφ′(t)

φ(t)
≤ g0, t > 0.

Then, there exist α ∈ (0, s] and C0 > 0 depending on
n, s,Ω, δ, g0 such that u ∈ Cα(Ω) and

‖u‖Cα(Ω) ≤ C0.
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Weak Harnack ⇒ local regularity

Maximum principle detected

Weak Harnack inequality (FB, Salort, Vivas ’22)

If u satisfies weakly{
(−∆φ)su ≥ −K in BR/3

u ≥ 0 in Rn

for some K ≥ 0, then there exists universal σ ∈ (0, 1), and an
explicit constant C0 > 0 such that

inf
BR/4

u ≥ σRsφ−1

(
–

∫
–
BR\BR/2

φ(R−s|u|) dx

)
−Rsφ−1 (C0K) .

Interior regularity follows by a standard oscillation decay
argument.
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Barrier ⇒ boundary regularity

Maximum principle detected

Boundary behavior (FB, Salort, Vivas ’22)

Let u be a weak solution of

|(−∆φ)su| ≤ K in Ω

for some K > 0.
Then

|u| ≤ Cds(x) a.e. in Ω

d(x) = dist(x, ∂Ω) and C is a positive constant depending only
on s, n, δ, g0,K and Ω.

Basic observation: (−∆φ)sxs+ = 0. This implies (−∆φ)sds is
bounded.
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The eigenvalue problem
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The eigenvalue problem for (−∆φ)
s

The associated eigenvalue problem is the following:{
(−∆φ)su = λg(u) in Ω,

u = 0 in Rn \ Ω.

where g ∼ φ.

In order to find eigenvalues, one seek for critical values of∫∫
R2n

Φ(|Dsu|) dνn

restricted to ∫
Ω

Φ(|u|) dx = µ,

where µ > 0 is a normalizing constant.
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Existence of eigenvalues

The main difference is that the normalizing constant µ is
relevant.

Existence of eigenvalues (FB, Spedaletti ’23)

For any µ > 0, there exists a sequence of eigenvalues
0 < λµ1 ≤ λ

µ
2 ≤ · · · ≤ λ

µ
k ↑ ∞

For this result we do not require Φ to verify the ∆2 condition.
Observe that since there is no homogeneity, the sequence
depends on the normalizing constant µ.
Since we are no assuming the ∆2 condition, the energy
functional is not differentiable, so we use a Galerkin-type
approximation. Moreover, since the underlying space is not
reflexive we need to use the concept of complementary pair
(Gossez ’74)
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Observe that since there is no homogeneity, the sequence
depends on the normalizing constant µ.
Since we are no assuming the ∆2 condition, the energy
functional is not differentiable, so we use a Galerkin-type
approximation. Moreover, since the underlying space is not
reflexive we need to use the concept of complementary pair
(Gossez ’74)
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Dependance on µ

Since there is no homogeneity, the eigenvalues depend on the
normalization parameter µ.

Moreover, the energy of eigenfunctions does not agree with the
eigenvalue.

Theorem (FB-Salort ’24)

Let

E(µ) = inf

{∫∫
R2n

Φ(|Dsu|) dνn :

∫
Ω

Φ(|u|) dx = µ

}
.

Then E(µ) is differentiable and E′(µ) = λµ1 .
Moreover,

if Φ does not satisfies ∆2, then λµ1 → 0 as µ→∞
if Φ does satisfies ∆2, then λµ1 → λ1,p as µ→∞ (p being
the “power at infinity of Φ”)
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Regularity of eigenfunctions

What about the regularity of eigenfunctions?{
(−∆φ)su = λg(u) in Ω,

u = 0 in Rn \ Ω.

By the previous results, it is enough to show that u is bounded
to get Hölder continuity.
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Regularity of eigenfunctions

Theorem (FB, Salort, Vivas ’23)

Let Φ be a Young function satisfying

1 < p− ≤ tφ(t)

Φ(t)
≤ p+

with sp+ < n and p+ ≤ np−

n−sp− .

There for µ > 0 there exists a constant C0 = C0(n, s, p±, µ) > 0
such that if u is an eigenfunction normalized as∫

Ω Φ(|u|) dx = µ then

‖u‖L∞(Ω) ≤ C0.

J. F. Bonder Fractional generalized Laplacian



Regularity of eigenfunctions

The proof follows a De Giorgi-type scheme: if∫∫
R2n

Φ(Dsu) dνn ≤ cλ
∫

Ω
Φ(u) dx

for some constant c = c(p+, p−), then there exists ε0 > 0 such
that ∫

Ω
Φ(u) dx = µ ≤ ε0 ⇒ ‖u‖L∞(Ω) ≤ 1.
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Buena Copa América Good Euro Cup
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Thank you!!!
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