# Hessian regularity in Hölder spaces for a semi-linear bi-Laplacian equation 

Claudemir Alcantara
Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, June 25, 2024

## Outline

## Outline

$\longrightarrow$ Our problem;
$\longrightarrow$ Strategy;
$\longrightarrow$ Main result;
$\longrightarrow$ Sketch of the proof;
$\longrightarrow$ A simple consequence.

# Our problem 

## Bi-Laplacian

## Our interest is

Examine the regularity of weak solutions to the semi-linear bi-Laplacian equation

$$
\Delta^{2} u=f(x, u, D u) \text { in } \Omega
$$

where $\Omega \subset \mathbb{R}^{d}$ is a bounded smooth domain, and the right-hand side is a function $f: \Omega \times \mathbb{R} \times \mathbb{R}^{d} \longrightarrow \mathbb{R}$ satisfying a polynomial growth condition.

## Bi-Laplacian

## Our interest is

Examine the regularity of weak solutions to the semi-linear bi-Laplacian equation

$$
\Delta^{2} u=f(x, u, D u) \text { in } \Omega
$$

where $\Omega \subset \mathbb{R}^{d}$ is a bounded smooth domain, and the right-hand side is a function $f: \Omega \times \mathbb{R} \times \mathbb{R}^{d} \longrightarrow \mathbb{R}$ satisfying a polynomial growth condition. That is,

$$
|f(x, r, p)| \leq h(x)+C\left(|r|^{\alpha}+|p|^{\beta}\right) .
$$

where $h \in L^{d}(\Omega)$ and $\alpha, \beta \in[1,2)$.

## Strategy

## Strategy

We write the fourth-order PDE as a system of two second-order equations.

## Strategy

We write the fourth-order PDE as a system of two second-order equations.

$$
\Delta(\Delta u)=f(x, u, D u)
$$

## Strategy

We write the fourth-order PDE as a system of two second-order equations.

$$
\Delta(\Delta u)=f(x, u, D u) \quad \text { implies }
$$

## Strategy

We write the fourth-order PDE as a system of two second-order equations.


## Strategy

We write the fourth-order PDE as a system of two second-order equations.

$$
\Delta(\Delta u)=f(x, u, D u)
$$



This strategy is inspired by ideas introduced in the works of L. C. Evans [2003; 2009] and D. A. Gomes and H. S. Morgado [2014].

## Auxiliary results

## Sobolev regularity for very weak solutions

## Theorem (Sobolev regularity for very weak solutions)

Fix $1<s<\infty$. Let $w \in L_{\text {loc }}^{1}(\Omega)$ be a very weak solution to

$$
\Delta w=g \quad \text { in } \Omega,
$$

with $g \in L_{\text {loc }}^{s}(\Omega)$, then $D w \in W_{\text {loc }}^{1, s}(\Omega)$. If $w \in L_{\text {loc }}^{s}(\Omega)$, then $w \in W_{\text {loc }}^{2, s}(\Omega)$. Moreover, for $\Omega^{\prime \prime} \in \Omega^{\prime} \in \Omega$, there exists $C>0$ such that

$$
\|w\|_{w^{2, s}\left(\Omega^{\prime \prime}\right)} \leq C\left(\|w\|_{L^{s}(\Omega)}+\|g\|_{L^{s}(\Omega)}\right) .
$$

## Lemma

## Lemma

Let $u \in W^{2, q}(\Omega)$ be a local weak solution to

$$
\Delta^{2} u=f(x, u, D u) \quad \text { in } \quad \Omega,
$$

with $q \geq 2$. Then, there exists $m \in L^{q}(\Omega)$ such that $(u, m)$ is a solution to

$$
\begin{cases}\Delta u=m & \text { in } \Omega \\ \Delta m=f(x, u, D u) & \text { in } \Omega\end{cases}
$$

Main result

## Assumptions

For better presentation, we set $\Omega \equiv B_{1}$.

## Assumptions

For better presentation, we set $\Omega \equiv B_{1}$. Suppose the nonlinearity satisfies the growth condition

$$
|f(x, r, p)| \leq h(x)+C\left(|r|^{\alpha}+|p|^{\beta}\right)
$$

where $h \in L^{d}\left(B_{1}\right)$, and fixed constants $C>0$ and

$$
\alpha, \beta \in[1,2) .
$$

Suppose further that

$$
\max (\alpha, \beta) \frac{d}{2}<q \leq d
$$

## Regularity estimates

## Theorem (A.-Pimentel-Urbano, 2024)

Let $2 \leq q \leq d$ and $u \in W^{2, q}\left(B_{1}\right)$ be a local weak solution to

$$
\begin{equation*}
\Delta^{2} u=f(x, u, D u) \quad \text { in } B_{1} . \tag{1}
\end{equation*}
$$

Then $u \in C_{\text {loc }}^{2, \sigma}\left(B_{1}\right)$ for

$$
\sigma:=2-\frac{d \max (\alpha, \beta)}{q} \in(0,1) .
$$

Moreover, there exists $C>0$ such that

$$
\|u\|_{C^{2, \sigma}\left(B_{7 / 8}\right)} \leq C\left(\|h\|_{L^{d}\left(B_{1}\right)}+\|u\|_{W^{2, q}\left(B_{1}\right)}^{\max (\alpha, \beta)}\right) .
$$

Set

$$
s:=\frac{q}{\max (\alpha, \beta)}
$$

so by our assumptions we have $s \in\left(\frac{d}{2}, d\right]$.

## Proof

Set

$$
s:=\frac{q}{\max (\alpha, \beta)},
$$

so by our assumptions we have $s \in\left(\frac{d}{2}, d\right]$. Moreover, for $B_{9 / 10} \Subset B_{1}$ it follows from the growth condition that

$$
\|f(\cdot, u, D u)\|_{L^{s}\left(B_{9 / 10}\right)} \leq C\left(\|h\|_{L^{d}\left(B_{1}\right)}+\|u\|_{W^{2, q}\left(B_{1}\right)}^{\max (\alpha, \beta)}\right) .
$$

## Proof

Using our approach, we can apply the Lemma, which ensures the existence of a function $m \in L^{q}\left(B_{1}\right)$ such that $m$ is a very weak solution to the Poisson equation

$$
\Delta m=f(x, u, D u) \quad \text { in } \quad B_{1} .
$$

## Proof

Using our approach, we can apply the Lemma, which ensures the existence of a function $m \in L^{q}\left(B_{1}\right)$ such that $m$ is a very weak solution to the Poisson equation

$$
\Delta m=f(x, u, D u) \quad \text { in } \quad B_{1} .
$$

Duo to Proposition, we conclude $D m \in W_{l o c}^{1, s}\left(B_{99 / 100}\right)$.

## Proof

Using our approach, we can apply the Lemma, which ensures the existence of a function $m \in L^{q}\left(B_{1}\right)$ such that $m$ is a very weak solution to the Poisson equation

$$
\Delta m=f(x, u, D u) \quad \text { in } \quad B_{1} .
$$

Duo to Proposition, we conclude $D m \in W_{l o c}^{1, s}\left(B_{99 / 100}\right)$. Since $d / 2<s \leq q$, we also have $m \in L^{s}\left(B_{1}\right)$ and therefore $m \in W_{l o c}^{2, s}\left(B_{99 / 100}\right)$.

## Proof

Moreover, there exists $C>0$ such that

$$
\|m\|_{W^{2, s}\left(B_{9 / 10}\right)} \leq C\left(\|h\|_{L^{d}\left(B_{1}\right)}+\|u\|_{W^{2, q}\left(B_{1}\right)}+\|u\|_{W^{2, q}\left(B_{1}\right)}^{\max (\alpha, \beta)}\right) .
$$

## Proof

Moreover, there exists $C>0$ such that

$$
\|m\|_{W^{2, s}\left(B_{9 / 10}\right)} \leq C\left(\|h\|_{L^{d}\left(B_{1}\right)}+\|u\|_{W^{2, q}\left(B_{1}\right)}+\|u\|_{W^{2, q}\left(B_{1}\right)}^{\max (\alpha, \beta)}\right) .
$$

Because of Gagliardo-Nirenberg-Sobolev's embedding theorem, we obtain $m \in C^{0, \sigma}\left(\overline{B_{8 / 9}}\right)$, with

$$
\sigma:=2-\frac{d \max (\alpha, \beta)}{q} .
$$

Now we focus on the Poisson equation

$$
\Delta u=m \quad \text { in } \quad B_{1} .
$$

## Proof

Now we focus on the Poisson equation

$$
\Delta u=m \quad \text { in } \quad B_{1} .
$$

Because $u$ is an $L^{q}$-strong solution to this problem, we have $u \in C^{2, \sigma}\left(\overline{B_{8 / 9}}\right)$.

## Proof

Now we focus on the Poisson equation

$$
\Delta u=m \quad \text { in } \quad B_{1} .
$$

Because $u$ is an $L^{q}$-strong solution to this problem, we have $u \in C^{2, \sigma}\left(\overline{B_{8 / 9}}\right)$. Also, by Schauder's theory, there exists a positive constant, such that

$$
\|u\|_{C^{2, \sigma}\left(B_{7 / 8}\right)} \leq C\left(\|u\|_{L^{\infty}\left(B_{8 / 9}\right)}+\|m\|_{C^{0, \sigma}\left(B_{8 / 9}\right)}\right) .
$$

## Proof

To complete the proof, we only need to notice that

$$
\begin{aligned}
\|m\|_{C^{0, \sigma}\left(B_{8 / 9}\right)} & \leq C\|m\|_{W^{2, s}\left(B_{8 / 9}\right)} \\
& \leq C\|f(\cdot, u, D u)\|_{L^{s}\left(B_{9 / 10}\right)} \\
& \leq C\left(\|h\|_{L^{d}\left(B_{1}\right)}+\|u\|_{W^{2, q}\left(B_{1}\right)}^{\max (\alpha, \beta)}\right)
\end{aligned}
$$

## A simple consequence - $C^{\infty}$-regularity estimates

## Corollary (A.-Pimentel-Urbano, 2024)

Let $u \in W^{2, q}\left(B_{1}\right)$ be a weak solution to the (1), with $q \geq 2$. Suppose that our assumptions are in force, with

$$
f(x, r, p):=h(x)+a(x) r+c(x) \cdot p,
$$

where $h, a \in C^{\infty}\left(B_{1}\right)$ and $c \in C^{\infty}\left(B_{1}, \mathbb{R}^{d}\right)$. Suppose further there exists $C>0$ such that

$$
\|h\|_{C^{\infty}\left(B_{1}\right)}+\|a\|_{C^{\infty}\left(B_{1}\right)}+\|c\|_{C^{\infty}\left(B_{1}, \mathbb{R}^{d}\right)} \leq C .
$$

Then $u \in C_{\text {loc }}^{\infty}\left(B_{1}\right)$. Moreover, for every $k \in \mathbb{N}$ and every multi-index $\alpha$ with $|\alpha|=k$, we have

$$
\sup _{B_{7 / 6}}\left|D^{\alpha} u\right| \leq C\left(1+\|u\|_{W^{2, q}\left(B_{1}\right)}\right) .
$$

## Pre－print

## 回歺的至回躇 ，家 

## Thank you for your attention!

