Sharp regularity for the obstacle problem for quasilinear elliptic equations

João Vitor da Silva - jdasilva@unicamp.br

Mostly Maximum Principle (MMP 2024) - PUC-Rio - Brazil
5th edition: in Latin America for the first time

June 24th to 28th, 2024

UNICAMP

Summary

(1) The obstacle problem: State-of-the-Art and our motivation
(2) Mathematical Problem Statement
(3) Main Theorems - Part I: Sharp regularity estimates
(4) Main Theorems - Part II: Non-degeneracy of solutions and beyond
(5) Applications and beyond
(6) References
(7) Acknowledgments and Sponsors

Mostly
 Maximum
 Principle

$5^{\text {th }}$ edition: in Latin America for the first time

June 24-28, 2024
Centre Ternico Cientilice
Pontificia Unirersidade cielciea

Rua Marques de Saso Virente. 225. Bavea Mio de Janeiro - Brazil

Organizins Cornmittee

Co Surtica tan
tanturntion

Genersat wictiercum ous
Bynus Srahow
meintiter
Fither Stiontit

10

https://go.cmm.uchile.cl/mmp2024

The results in this Lecture are based on joint works with

Figure: Elzon C. Bezerra Júnior (UFCA-Brazil) and Romário T. Frias (UNICAMP-Brazil)

The obstacle problem: State-of-the-Art and our motivation

The obstacle problem: Old and New

- The classical obstacle problem

[^0]
The obstacle problem: Old and New

- The classical obstacle problem

Physically, the obstacle problem consists of finding the equilibrium position of an elastic membrane, which can be thought as the graph of a function $x \mapsto u(x)$ on a regular domain $\Omega \subset \mathbb{R}^{n}$, with a fixed boundary condition $u(x)=g(x)$ and subjected to a transversal force $f(x)$ for $x \in \Omega$.

[^1]
The obstacle problem: Old and New

- The classical obstacle problem

Physically, the obstacle problem consists of finding the equilibrium position of an elastic membrane, which can be thought as the graph of a function $x \mapsto u(x)$ on a regular domain $\Omega \subset \mathbb{R}^{n}$, with a fixed boundary condition $u(x)=g(x)$ and subjected to a transversal force $f(x)$ for $x \in \Omega$. Such an equilibrium position will be the one which minimizes the potential energy involved in such a process ${ }^{1}$.

[^2]
The obstacle problem: Old and New

- The classical obstacle problem

Physically, the obstacle problem consists of finding the equilibrium position of an elastic membrane, which can be thought as the graph of a function $x \mapsto u(x)$ on a regular domain $\Omega \subset \mathbb{R}^{n}$, with a fixed boundary condition $u(x)=g(x)$ and subjected to a transversal force $f(x)$ for $x \in \Omega$. Such an equilibrium position will be the one which minimizes the potential energy involved in such a process ${ }^{1}$.

[^3]
The obstacle problem: Old and New

- The classical obstacle problem

Physically, the obstacle problem consists of finding the equilibrium position of an elastic membrane, which can be thought as the graph of a function $x \mapsto u(x)$ on a regular domain $\Omega \subset \mathbb{R}^{n}$, with a fixed boundary condition $u(x)=g(x)$ and subjected to a transversal force $f(x)$ for $x \in \Omega$. Such an equilibrium position will be the one which minimizes the potential energy involved in such a process ${ }^{1}$.

\checkmark The region $\{u>\varphi\}$ is denoted the non-contact set;

[^4]
The obstacle problem: Old and New

- The classical obstacle problem

Physically, the obstacle problem consists of finding the equilibrium position of an elastic membrane, which can be thought as the graph of a function $x \mapsto u(x)$ on a regular domain $\Omega \subset \mathbb{R}^{n}$, with a fixed boundary condition $u(x)=g(x)$ and subjected to a transversal force $f(x)$ for $x \in \Omega$. Such an equilibrium position will be the one which minimizes the potential energy involved in such a process ${ }^{1}$.

\checkmark The region $\{u>\varphi\}$ is denoted the non-contact set;
\checkmark The region $\{u=\varphi\}$ is denoted the contact set;

[^5]
The obstacle problem: Old and New

- The classical obstacle problem

Physically, the obstacle problem consists of finding the equilibrium position of an elastic membrane, which can be thought as the graph of a function $x \mapsto u(x)$ on a regular domain $\Omega \subset \mathbb{R}^{n}$, with a fixed boundary condition $u(x)=g(x)$ and subjected to a transversal force $f(x)$ for $x \in \Omega$. Such an equilibrium position will be the one which minimizes the potential energy involved in such a process ${ }^{1}$.

\checkmark The region $\{u>\varphi\}$ is denoted the non-contact set;
\checkmark The region $\{u=\varphi\}$ is denoted the contact set;
\checkmark The region $\Gamma=\partial\{u>\varphi\}$ is denoted the free boundary.

[^6]
The obstacle problem: Old and New

- Mathematical formulation via minimization:

$$
\min _{v \in \mathcal{K}}\left(\int_{\Omega} \frac{1}{2}|\nabla v|^{2} d x+\int_{\Omega} f v d x\right) \text { with } \mathcal{K}=\left\{v \in H^{1}(\Omega): v \geq \varphi \quad \text { in } \Omega \text { and } v=g \text { on } \partial \Omega\right\}
$$

The obstacle problem: Old and New

- Mathematical formulation via minimization:

$$
\min _{v \in \mathcal{K}}\left(\int_{\Omega} \frac{1}{2}|\nabla v|^{2} d x+\int_{\Omega} f v d x\right) \text { with } \mathcal{K}=\left\{v \in H^{1}(\Omega): v \geq \varphi \quad \text { in } \Omega \text { and } v=g \text { on } \partial \Omega\right\}
$$

Reformulating via Euler-Lagrange equation: Minimizers satisfy

$$
\left\{\begin{aligned}
& \Delta u \leq f \\
& \Delta u \text { in } \Omega \text { (in the weak sense) } \\
& u \geq \varphi \\
& \text { in }\{u>\varphi\} \text { (in the weak sense) } \\
& u=g \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

The obstacle problem: Old and New

- Mathematical formulation via minimization:

$$
\min _{v \in \mathcal{K}}\left(\int_{\Omega} \frac{1}{2}|\nabla v|^{2} d x+\int_{\Omega} f v d x\right) \text { with } \mathcal{K}=\left\{v \in H^{1}(\Omega): v \geq \varphi \quad \text { in } \quad \Omega \text { and } v=g \text { on } \partial \Omega\right\} \text { (co। }
$$

Reformulating via Euler-Lagrange equation: Minimizers satisfy

$$
\left\{\begin{array}{rll}
\Delta u & \leq f & \text { in } \Omega \text { (in the weak sense) } \\
\Delta u & =f & \text { in }\{u>\varphi\} \text { (in the weak sense) } \\
u & \geq \varphi & \text { in } \Omega \\
u & =g & \text { on } \partial \Omega
\end{array}\right.
$$

[1] Wolanski, N. Introducción a los problemas de frontera libre. Cursos y Seminarios de Matemática - Serie B. Fascículo 2. 2007 Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

The obstacle problem: Old and New

- Mathematical formulation via minimization:

$$
\min _{v \in \mathcal{K}}\left(\int_{\Omega} \frac{1}{2}|\nabla v|^{2} d x+\int_{\Omega} f v d x\right) \text { with } \mathcal{K}=\left\{v \in H^{1}(\Omega): v \geq \varphi \quad \text { in } \quad \Omega \text { and } v=g \text { on } \partial \Omega\right\} \text { (co। }
$$

Reformulating via Euler-Lagrange equation: Minimizers satisfy

$$
\left\{\begin{array}{rll}
\Delta u & \leq f & \text { in } \Omega \text { (in the weak sense) } \\
\Delta u & =f & \text { in }\{u>\varphi\} \text { (in the weak sense) } \\
u & \geq \varphi & \text { in } \Omega \\
u & =g & \text { on } \partial \Omega
\end{array}\right.
$$

[1] Wolanski, N. Introducción a los problemas de frontera libre. Cursos y Seminarios de Matemática - Serie B. Fascículo 2. 2007 Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
Moreover:
(1) Existence/uniqueness of minimizers
(2) H^{1} regularity (Lions-Stampacchia Theorem):

$$
\|u\|_{H^{1}(\Omega)} \leq \mathrm{C}(\text { universal }) \cdot\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{H^{1}(\Omega)}\right) .
$$

(3) Optimal regularity: If $f \in L^{\infty}$ and $\varphi \in C^{1,1}$, then $u \in C_{\text {loc }}^{1,1}$ (Freshe (1972) and Brézis-Kinderleher (1974))

The obstacle problem: Old and New - References

- Rodrigues, José Francisco. Obstacle problems in mathematical physics. North-Holland Mathematics Studies, 134. Notas de Matemática [Mathematical Notes], 114. North-Holland Publishing Co., Amsterdam, 1987. xvi+352 pp. ISBN: 0-444-70187-7.
- Caffarelli, Luis A. The obstacle problem. Lezioni Fermiane. [Fermi Lectures] Accademia Nazionale dei Lincei, Rome; Scuola Normale Superiore, Pisa, 1998. ii +54 pp.
- Fernández-Real, Xavier and Ros-Oton, Xavier. Regularity theory for elliptic PDE. Zur. Lect. Adv. Math., 28 EMS Press, Berlin, [2022], ©2022. viii+228 pp. ISBN:978-3-98547-028-0

- Quasi-linear scenario:

Reference

Andersson, J., Lindgren, E. and Shahgholian, H., Optimal regularity for the obstacle problem for the p-Laplacian. J. Differential Equations 259 (2015), no. 6, 2167-2179.

- Quasi-linear scenario:

Reference

Andersson, J., Lindgren, E. and Shahgholian, H., Optimal regularity for the obstacle problem for the p-Laplacian. J. Differential Equations 259 (2015), no. 6, 2167-2179.

$$
\left\{\begin{array}{l}
\text { Find } u \in \mathcal{K}_{p} \text { such that } \tag{1}\\
\mathcal{J}_{p}(u)=\inf _{w \in \mathcal{K}_{p}} \mathcal{J}_{p}(w)
\end{array}\right.
$$

where

$$
\mathcal{J}_{p}(w)=\int_{B_{1}}\left(\frac{1}{p}|\nabla w|^{p}+f w\right) d x, \quad w \in W_{0}^{1, p}\left(B_{1}\right)
$$

and

$$
\mathcal{K}_{p}:=\left\{w \in W^{1, p}\left(B_{1}\right): w \geq \phi \text { and } w=g \text { on } \partial B_{1}\right\} \quad \text { (admissible functions) }
$$ and $B_{1} \subset \mathbb{R}^{n}$ with $n \geq 2, \phi \in C^{1, \beta}(\Omega), f \in L^{\infty}\left(B_{1}\right)$ and $g \in W^{1, p}\left(B_{1}\right)$.

- Quasi-linear scenario:

Reference

Andersson, J., Lindgren, E. and Shahgholian, H., Optimal regularity for the obstacle problem for the p-Laplacian. J. Differential Equations 259 (2015), no. 6, 2167-2179.

$$
\left\{\begin{array}{l}
\text { Find } u \in \mathcal{K}_{p} \text { such that } \tag{1}\\
\mathcal{J}_{p}(u)=\inf _{w \in \mathcal{K}_{p}} \mathcal{J}_{p}(w)
\end{array}\right.
$$

where

$$
\mathcal{J}_{p}(w)=\int_{B_{1}}\left(\frac{1}{p}|\nabla w|^{p}+f w\right) d x, \quad w \in W_{0}^{1, p}\left(B_{1}\right)
$$

and

$$
\mathcal{K}_{p}:=\left\{w \in W^{1, p}\left(B_{1}\right): w \geq \phi \text { and } w=g \text { on } \partial B_{1}\right\} \quad \text { (admissible functions), }
$$

and $B_{1} \subset \mathbb{R}^{n}$ with $n \geq 2, \phi \in C^{1, \beta}(\Omega), f \in L^{\infty}\left(B_{1}\right)$ and $g \in W^{1, p}\left(B_{1}\right)$.
This statement is equivalent to find a function u such that

$$
\left\{\begin{array}{llll}
\Delta_{p} u & =f(x) & \text { in } & \{u>\varphi\} \cap B_{1} \\
\Delta_{p} u & f(x) & \text { in } & B_{1} \\
u(x) \geq \phi(x) & \text { in } & B_{1} \\
u(x) & =g(x) & \text { on } & \partial B_{1} .
\end{array}\right.
$$

They address the following optimal regularity estimate ${ }^{2}$:

Theorem (Andersson-Lindgren-Shahgholian'2015)

Let $p \in(1, \infty), \beta \in(0,1]$, and let u be a weak solution to the p-obstacle problem in B_{1} with obstacle $\phi \in C^{1, \beta}\left(B_{1}\right)$ and $f \in L^{\infty}\left(B_{1}\right)$. Suppose further

$$
\|\phi\|_{C^{1, \beta}\left(B_{1}\right)} \leq \mathrm{N} \quad \text { and } \quad\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \mathrm{L}
$$

[^7]They address the following optimal regularity estimate ${ }^{2}$:

Theorem (Andersson-Lindgren-Shahgholian'2015)

Let $p \in(1, \infty), \beta \in(0,1]$, and let u be a weak solution to the p-obstacle problem in B_{1} with obstacle $\phi \in C^{1, \beta}\left(B_{1}\right)$ and $f \in L^{\infty}\left(B_{1}\right)$. Suppose further

$$
\|\phi\|_{C^{1, \beta}\left(B_{1}\right)} \leq \mathrm{N} \quad \text { and } \quad\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \mathrm{L}
$$

Then, for any point $y \in \Gamma \cap B_{1 / 2}$ and for $r<1 / 2$

$$
\sup _{x \in B_{r}(y)}|u(x)-u(y)-(x-y) \cdot \nabla u(y)| \leq \mathrm{C} \cdot\left(\mathrm{~N}^{p-1}+\mathrm{L}\right)^{\frac{1}{p-1}} r^{1+\alpha},
$$

where $\mathrm{C}=\mathrm{C}(\beta, p)$ and

$$
\alpha=\min \left\{\frac{1}{p-1}, \beta\right\}
$$

In particular,

$$
\sup _{x \in B_{r}(y)}|u(x)-\phi(x)| \leq(\mathrm{C}+1)\left(\mathrm{N}^{p-1}+\mathrm{L}\right)^{\frac{1}{p-1}} r^{1+\alpha}
$$

[^8]Choe and Lewis - SIAM J. Math. Anal. (1991)
Rodrigues - Calc. Var. Partial Differential Equations (2005)
Byun, Cho and Ok - Forum Math. (2016)
Eleuteri and Passarelli di Napoli - Calc. Var. Partial Differential Equations (2018)

In addition, they establish the following non-degeneracy result ${ }^{3}$:

Proposition - Non-degeneracy of solutions

Let $p \in(2, \infty)$ and let u be a weak solution to the p-obstacle problem in B_{1} with obstacle $\phi \in C^{2}\left(B_{1}\right)$ with $f \equiv 0$. Suppose further that $\Delta_{p} \phi<0$. Then there is a constant $\varepsilon=$ $\varepsilon\left(\sup \Delta_{p} \phi\right)$ such that for any $x^{0} \in \Gamma$ and $r<\operatorname{dist}\left(x^{0}, \partial B_{1}\right)$ there holds

$$
\sup _{\partial B_{r}\left(x^{0}\right) \cap\{u>\phi\}}(u-\phi) \geq \varepsilon \cdot r^{2}
$$

[^9]
Mathematical Problem Statement

We will study sharp regularity estimates to obstacle problem of p-Laplacian type

$$
\left\{\begin{array}{rlll}
\operatorname{div} \mathfrak{a}(x, \nabla u) & =f(x) & \text { in } & \{u>\varphi\} \cap B_{1} \tag{2}\\
\operatorname{div} \mathfrak{a}(x, \nabla u) & \leq f(x) & \text { in } & B_{1} \\
u(x) & \geq \varphi(x) & \text { in } & B_{1} \\
u(x) & =0 & \text { on } & \partial B_{1}
\end{array}\right.
$$

where $B_{1} \subset \mathbb{R}^{n}$ with $n \geq 2, \varphi \in C^{1, \beta}\left(B_{1}\right) \cap \mathfrak{X}_{p, q}$ where

$$
\mathfrak{X}_{p, q}:=\left\{v \in W^{1, p}\left(B_{1}\right) ; \quad \operatorname{div} \mathfrak{a}(x, \nabla v) \in L^{q}\left(B_{1}\right)\right\}
$$

$1<p<\infty, q>n, q \geq \frac{p}{p-1}$, the vector field $\mathfrak{a}: B_{1} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is C^{1}-regular at second variable.

We will study sharp regularity estimates to obstacle problem of p-Laplacian type

$$
\left\{\begin{array}{rlll}
\operatorname{div} \mathfrak{a}(x, \nabla u) & =f(x) & \text { in } & \{u>\varphi\} \cap B_{1} \tag{2}\\
\operatorname{div} \mathfrak{a}(x, \nabla u) & \leq f(x) & \text { in } & B_{1} \\
u(x) & \geq \varphi(x) & \text { in } & B_{1} \\
u(x) & =0 & \text { on } & \partial B_{1}
\end{array}\right.
$$

where $B_{1} \subset \mathbb{R}^{n}$ with $n \geq 2, \varphi \in C^{1, \beta}\left(B_{1}\right) \cap \mathfrak{X}_{p, q}$ where

$$
\mathfrak{X}_{p, q}:=\left\{v \in W^{1, p}\left(B_{1}\right) ; \quad \operatorname{div} \mathfrak{a}(x, \nabla v) \in L^{q}\left(B_{1}\right)\right\}
$$

$1<p<\infty, q>n, q \geq \frac{p}{p-1}$, the vector field $\mathfrak{a}: B_{1} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is C^{1}-regular at second variable. Structural conditions: for all $x, y \in B_{1}$ and $\xi, \eta \in \mathbb{R}^{n}$, we have

$$
\left\{\begin{align*}
|\mathfrak{a}(x, \xi)|+\left|\partial_{\xi} \mathfrak{a}(x, \xi)\right| \xi \mid & \leq \Lambda|\xi|^{p-1} \tag{3}\\
\lambda|\xi|^{p-2}|\eta|^{2} & \leq\left\langle\partial_{\xi} \mathfrak{a}(x, \xi) \eta, \eta\right\rangle \\
\frac{|\mathfrak{a}(x, \xi)-\mathfrak{a}(y, \xi)|}{|\xi|^{p-1}} & \leq \omega(|x-y|), \forall|\xi| \neq 0
\end{align*}\right.
$$

where $0<\lambda \leq \Lambda<\infty$ and $\omega:[0, \infty) \rightarrow[0, \infty)$ is a non-decreasing function with $\omega(0)=0$.

Finally, we further assume

$$
\omega \in C^{0, \sigma}\left(B_{1}\right) \quad \text { and } \quad f \in L^{q}\left(B_{1}\right) \quad \text { with } \quad 0<\sigma \leq 1
$$

[^10]Finally, we further assume

$$
\begin{equation*}
\omega \in C^{0, \sigma}\left(B_{1}\right) \quad \text { and } \quad f \in L^{q}\left(B_{1}\right) \quad \text { with } \quad 0<\sigma \leq 1 . \tag{4}
\end{equation*}
$$

The archetypal model case for (2) is the p-obstacle problem with continuous coefficients

$$
\left\{\begin{array}{rlll}
\operatorname{div}\left(|\nabla u|^{p-2} \mathfrak{A}(x) \nabla u\right) & =f(x) & \text { in } & \{u>\varphi\} \cap B_{1} \\
\operatorname{div}\left(|\nabla u|^{p-2} \mathfrak{A}(x) \nabla u\right) & \leq f(x) & \text { in } & B_{1} \\
u(x) & \geq \varphi(x) & \text { in } & B_{1} \\
u(x) & =0 & \text { on } & \partial B_{1},
\end{array}\right.
$$

where $0<\lambda \leq \mathfrak{A}(\cdot) \leq \Lambda$ is a matrix with entries σ-Hölder continuous.

The previous archetypal model appears, for instance, when we consider the problem of an elastic membrane over a heated plane ${ }^{4}$:

[^11]Finally, we further assume

$$
\begin{equation*}
\omega \in C^{0, \sigma}\left(B_{1}\right) \quad \text { and } \quad f \in L^{q}\left(B_{1}\right) \quad \text { with } \quad 0<\sigma \leq 1 . \tag{4}
\end{equation*}
$$

The archetypal model case for (2) is the p-obstacle problem with continuous coefficients

$$
\left\{\begin{array}{rllll}
\operatorname{div}\left(|\nabla u|^{p-2} \mathfrak{A}(x) \nabla u\right) & =f(x) & \text { in } & \{u>\varphi\} \cap B_{1} \\
\operatorname{div}\left(|\nabla u|^{p-2} \mathfrak{A}(x) \nabla u\right) & \leq f(x) & \text { in } & B_{1} \\
u(x) & \geq \varphi(x) & \text { in } & B_{1} \\
u(x) & =0 & \text { on } & \partial B_{1},
\end{array}\right.
$$

where $0<\lambda \leq \mathfrak{A}(\cdot) \leq \Lambda$ is a matrix with entries σ-Hölder continuous.
The previous archetypal model appears, for instance, when we consider the problem of an elastic membrane over a heated plane ${ }^{4}$: Find a pair $(u, \Theta) \in \mathcal{K}_{\varphi, g} \times H^{1}(\Omega)$ such that

$$
\left\{\begin{array}{rll}
\int_{\Omega} \Upsilon(\Theta)|\nabla u|^{p-2} \nabla u \cdot \nabla(v-u) d x & \geq \int_{\Omega} f(v-u) d x, & \forall v \in \mathcal{K}_{g, \varphi} . \\
\kappa \int_{\Omega} \nabla \Theta \cdot \nabla \Psi d x+\int_{\Omega} \Theta \Psi d x & =\int_{\Omega} \theta \chi_{\{u=\varphi\}} \Psi d x \quad, \quad \forall \Psi \in H^{1}(\Omega) .
\end{array}\right.
$$

[^12]
Main Theorems - Part I: Sharp regularity estimates

Motivated by the Anderson et's work, and investigations to the fully nonlinear degenerate scenario ${ }^{5}$, we addressed:

Theorem 1 - Sharp regularity estimates [Bezerra Júnior-Da S.-Frias'2023]

Assuming (3) and (4) with $1<p<\infty$ and $n \geq 2$, and considering $\varphi \in C^{1, \beta}\left(B_{1}\right) \cap \mathfrak{X}_{p, q}$, with $\beta \in(0,1]$, there exists a unique weak solution $u \in C_{l o c}^{1, \alpha}\left(B_{1}\right) \cap W^{1, p}\left(B_{1}\right)$ of (2) with

$$
\alpha=\min \left\{\beta, \min \left\{\sigma, 1-\frac{n}{q}\right\} \cdot \min \left\{1, \frac{1}{p-1}\right\}\right\} .
$$

[^13]Motivated by the Anderson et's work, and investigations to the fully nonlinear degenerate scenario ${ }^{5}$, we addressed:

Theorem 1 - Sharp regularity estimates [Bezerra Júnior-Da S.-Frias'2023]

Assuming (3) and (4) with $1<p<\infty$ and $n \geq 2$, and considering $\varphi \in C^{1, \beta}\left(B_{1}\right) \cap \mathfrak{X}_{p, q}$, with $\beta \in(0,1]$, there exists a unique weak solution $u \in C_{l o c}^{1, \alpha}\left(B_{1}\right) \cap W^{1, p}\left(B_{1}\right)$ of (2) with

$$
\alpha=\min \left\{\beta, \min \left\{\sigma, 1-\frac{n}{q}\right\} \cdot \min \left\{1, \frac{1}{p-1}\right\}\right\} .
$$

Furthermore, we have the following regularity estimate

$$
\|u\|_{C^{1, \alpha}\left(B_{1 / 2}\right)} \leq \mathrm{C}_{0} \cdot\left(\|\varphi\|_{C^{1, \beta}\left(B_{1}\right)}^{p-1}+\|f\|_{L^{q}\left(B_{1}\right)}\right)^{\frac{1}{p-1}}
$$

where $\mathrm{C}_{0}=\mathrm{C}_{0}\left(\alpha, n, p, q, \Lambda, \lambda,\|\omega\|_{C^{0, \sigma}\left(B_{1}\right)}\right)$.

[^14] Iberoam. 37 (2021), no. 5, 1991-2020.

- For the existence we use a strategy of penalization:

[^15]- For the existence we use a strategy of penalization:

$$
\left\{\begin{array}{rlrl}
\operatorname{div} \mathfrak{a}\left(x, \nabla u_{\varepsilon}\right) & = & \mathrm{h}^{+}(x) \beta_{\varepsilon}\left(u_{\varepsilon}-\varphi\right)+f(x)-\mathrm{h}^{+}(x) & \\
\text { in } \Omega \\
u_{\varepsilon}(x) & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
\mathrm{h}(x)=f(x)-\operatorname{div} \mathfrak{a}(x, \nabla \varphi)
$$

for $\varphi \in \mathfrak{X}_{p, q} \cap C^{1, \beta}(\Omega)$. Moreover, for each $\varepsilon \in(0,1)$ consider $\beta_{\varepsilon}: \mathbb{R} \rightarrow[0,1]$ a non-decreasing Lipschitz function as follows

$$
\beta_{\varepsilon}(s)= \begin{cases}0, & \text { if } s \leq 0 \\ \frac{s}{\varepsilon} & \text { if } 0<s \leq \varepsilon \\ 1, & \text { if } s>\varepsilon\end{cases}
$$

[^16]- For the existence we use a strategy of penalization:

$$
\left\{\begin{array}{rlrl}
\operatorname{div} \mathfrak{a}\left(x, \nabla u_{\varepsilon}\right) & =\mathrm{h}^{+}(x) \beta_{\varepsilon}\left(u_{\varepsilon}-\varphi\right)+f(x)-\mathrm{h}^{+}(x) & & \text { in } \Omega \\
u_{\varepsilon}(x) & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
\mathrm{h}(x)=f(x)-\operatorname{div} \mathfrak{a}(x, \nabla \varphi)
$$

for $\varphi \in \mathfrak{X}_{p, q} \cap C^{1, \beta}(\Omega)$. Moreover, for each $\varepsilon \in(0,1)$ consider $\beta_{\varepsilon}: \mathbb{R} \rightarrow[0,1]$ a non-decreasing Lipschitz function as follows

$$
\beta_{\varepsilon}(s)= \begin{cases}0, & \text { if } s \leq 0 \\ s & \text { if } 0<s \leq \varepsilon \\ \bar{\varepsilon} & \text { if } s>\varepsilon\end{cases}
$$

The sequence $\left\{u_{\varepsilon}\right\}_{\varepsilon>0}$ is uniformly bounded in the space ${ }^{6} C_{l o c}^{1, \tau_{0}}(\Omega)$, where $\tau_{0} \in(0,1)$, i.e.,

$$
\left\|u_{\varepsilon}\right\|_{C^{1, \tau_{0}\left(\Omega^{\prime}\right)}} \leq \mathrm{C}\left(n, \lambda, \Lambda, p, q, \Omega^{\prime},\|\mathfrak{a}\|_{C^{0, \sigma}(\Omega)},\left\|u_{\varepsilon}\right\|_{L^{\infty}(\Omega)},\left\|f_{\varepsilon}\right\|_{L^{q}(\Omega)}\right), \quad \forall \Omega^{\prime} \subset \subset \Omega .
$$

Moreover, $u_{0}:=\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}$ is a solution to original problem via stability (see, [Boccardo and Murat]).

[^17]We need the following A.B.P. estimates ${ }^{7}$:

Theorem - Aleksandrov-Bakel'man-Pucci estimates [Bezerra Júnior-Da S.-Frias'2023]

Let $f \in L^{q}(\Omega)$ with $q>\frac{n}{p}, 1<p<\infty, \frac{1}{p}+\frac{1}{q} \leq 1$ and $u \in W^{1, p}(\Omega) \cap C(\bar{\Omega})$ be a subsolution (resp. supersolution) of

$$
-\operatorname{div} \mathfrak{a}(x, \nabla u)=f(x) \quad \text { in } \quad \Omega
$$

Then, there exists a constant $\mathrm{C}>0$ depending on p, q, n and Λ such that

$$
\begin{gathered}
\sup _{\Omega} u \leq \sup _{\partial \Omega} u^{+}+\mathrm{C} \cdot \operatorname{diam}(\Omega)^{\frac{p}{p-1}-\frac{n}{q(p-1)}} \cdot\left\|f^{+}\right\|_{L^{q}\left(\Omega_{\psi_{1}}\right)}^{\frac{1}{p-1}} \\
\left(\operatorname{resp} . \quad \inf _{\Omega} u \geqslant-\inf _{\partial \Omega} u^{-}-\mathrm{C} \cdot \operatorname{diam}(\Omega)^{\frac{p}{p-1}-\frac{n}{q(p-1)}}\left\|f^{-}\right\|_{L^{q}\left(\Omega_{\psi_{2}}\right)}^{\frac{1}{p-1}}\right)
\end{gathered}
$$

[^18]Talenti, G. Ann. Mat. Pura Appl. (1979), for related results

- For the proof of the regularity we need some important tools like Weak Harnack Inequality, Local Maximum Principle and the following regularity estimates ${ }^{8}$.

[^19]- For the proof of the regularity we need some important tools like Weak Harnack Inequality, Local Maximum Principle and the following regularity estimates ${ }^{8}$.

Theorem 2 - Estimates for the linear case [Bezerra Júnior-Da S.-Frias'2023]

Let $u \in H_{0}^{1}(\Omega)$ be a weak solution of (2) satisfying the conditions of Theorem 1 with $p=2$ and $\varphi \in C^{1, \beta}\left(B_{1}\right) \cap \mathfrak{X}_{2, q}$. Then, $u \in C_{l o c}^{1, \iota_{0}}\left(B_{1}\right)$ with

$$
\iota_{0}=\min \left\{\beta, \sigma, 1-\frac{n}{q}\right\} \quad \text { for } \quad n<q \leq \infty
$$

Furthermore, we have the following estimate

$$
\|u\|_{C^{1, \iota_{0}}\left(B_{1 / 2}\right)} \leq \mathrm{C}_{0} \cdot\left(n, \lambda, \Lambda, \beta, \sigma, q,\|f\|_{L^{q}(\Omega)},\|\varphi\|_{H^{1}(\Omega)}\right) .
$$

[^20]- For the proof of the regularity we need some important tools like Weak Harnack Inequality, Local Maximum Principle and the following regularity estimates ${ }^{8}$.

Theorem 2 - Estimates for the linear case [Bezerra Júnior-Da S.-Frias'2023]

Let $u \in H_{0}^{1}(\Omega)$ be a weak solution of (2) satisfying the conditions of Theorem 1 with $p=2$ and $\varphi \in C^{1, \beta}\left(B_{1}\right) \cap \mathfrak{X}_{2, q}$. Then, $u \in C_{l o c}^{1, \iota_{0}}\left(B_{1}\right)$ with

$$
\iota_{0}=\min \left\{\beta, \sigma, 1-\frac{n}{q}\right\} \quad \text { for } \quad n<q \leq \infty
$$

Furthermore, we have the following estimate

$$
\|u\|_{C^{1, \iota_{0}}\left(B_{1 / 2}\right)} \leq \mathrm{C}_{0} \cdot\left(n, \lambda, \Lambda, \beta, \sigma, q,\|f\|_{L^{q}(\Omega)},\|\varphi\|_{H^{1}(\Omega)}\right) .
$$

- The proof is based on some ideas from [Malý and Ziemer] and [Ok, J]

[^21]- For the proof of the regularity we need some important tools like Weak Harnack Inequality, Local Maximum Principle and the following regularity estimates ${ }^{8}$.

Theorem 2 - Estimates for the linear case [Bezerra Júnior-Da S.-Frias'2023]

Let $u \in H_{0}^{1}(\Omega)$ be a weak solution of (2) satisfying the conditions of Theorem 1 with $p=2$ and $\varphi \in C^{1, \beta}\left(B_{1}\right) \cap \mathfrak{X}_{2, q}$. Then, $u \in C_{l o c}^{1, \iota_{0}}\left(B_{1}\right)$ with

$$
\iota_{0}=\min \left\{\beta, \sigma, 1-\frac{n}{q}\right\} \quad \text { for } \quad n<q \leq \infty
$$

Furthermore, we have the following estimate

$$
\|u\|_{C^{1, \iota_{0}}\left(B_{1 / 2}\right)} \leq \mathrm{C}_{0} \cdot\left(n, \lambda, \Lambda, \beta, \sigma, q,\|f\|_{L^{q}(\Omega)},\|\varphi\|_{H^{1}(\Omega)}\right) .
$$

- The proof is based on some ideas from [Malý and Ziemer] and [Ok, J]
- Sketch of the proof: Let $B_{R}\left(x_{0}\right) \subset \subset B_{1}$. Consider

$$
\begin{aligned}
& \left\{\begin{array}{clll}
-\operatorname{div} \mathfrak{a}\left(x_{0}, \nabla w\right) & =-\operatorname{div} \mathfrak{a}\left(x_{0}, \nabla \varphi\right) & \text { in } \quad B_{R}\left(x_{0}\right) \\
w(x) & =u(x) & \text { on } \quad \partial B_{R}\left(x_{0}\right),
\end{array}\right.
\end{aligned}
$$

[^22]$$
\int_{B_{R}\left(x_{0}\right)}|\nabla w-\nabla u|^{2} d x \leq \mathrm{C} R^{2 \sigma} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{2} d x+\mathrm{C} R^{n+2 \beta}+\mathrm{C} R^{n+2\left(1-\frac{n}{q}\right)}\|f\|_{L^{q}\left(B_{1}\right)}^{2}
$$
${ }^{9}$ Maly, J. and Ziemer, W.P., Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997. xiv+291 pp. ISBN-0-8218-0335-2․․
\[

$$
\begin{aligned}
\int_{B_{R}\left(x_{0}\right)}|\nabla w-\nabla u|^{2} d x \leq & \mathrm{C} R^{2 \sigma} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{2} d x+\mathrm{C} R^{n+2 \beta}+\mathrm{C} R^{n+2\left(1-\frac{n}{q}\right)}\|f\|_{L^{q}\left(B_{1}\right)}^{2} \\
& \int_{B_{R}\left(x_{0}\right)}|\nabla w-\nabla \mathfrak{h}|^{2} d x \leq \mathrm{C} R^{n+2 \beta}
\end{aligned}
$$
\]

${ }^{9}$ Maly, J. and Ziemer, W.P., Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997. xiv+291 pp. ISBN-0-8218-0335-2․․

$$
\begin{gathered}
\int_{B_{R}\left(x_{0}\right)}|\nabla w-\nabla u|^{2} d x \leq \mathrm{C} R^{2 \sigma} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{2} d x+\mathrm{C} R^{n+2 \beta}+\mathrm{C} R^{n+2\left(1-\frac{n}{q}\right)}\|f\|_{L^{q}\left(B_{1}\right)}^{2} . \\
\int_{B_{R}\left(x_{0}\right)}|\nabla w-\nabla \mathfrak{h}|^{2} d x \leq \mathrm{C} R^{n+2 \beta} \\
\int_{B_{R}\left(x_{0}\right)}|\nabla u-\nabla \mathfrak{h}|^{2} d x \leq \mathrm{C} R^{2 \sigma} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{2} d x+\mathrm{C} R^{n+2 \beta}+\mathrm{C} R^{n+2\left(1-\frac{n}{q}\right)}\|f\|_{L^{q}\left(B_{1}\right)}^{2} .
\end{gathered}
$$

[^23] and Monographs, 51. American Mathematical Society, Providence, RI, 1997. xiv+291 pp. ISBN5 0-8218-0335-2
\[

$$
\begin{gathered}
\int_{B_{R}\left(x_{0}\right)}|\nabla w-\nabla u|^{2} d x \leq \mathrm{C} R^{2 \sigma} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{2} d x+\mathrm{C} R^{n+2 \beta}+\mathrm{C} R^{n+2\left(1-\frac{n}{q}\right)}\|f\|_{L^{q}\left(B_{1}\right)}^{2} . \\
\int_{B_{R}\left(x_{0}\right)}|\nabla w-\nabla \mathfrak{h}|^{2} d x \leq \mathrm{C} R^{n+2 \beta} \\
\int_{B_{R}\left(x_{0}\right)}|\nabla u-\nabla \mathfrak{h}|^{2} d x \leq \mathrm{C} R^{2 \sigma} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{2} d x+\mathrm{C} R^{n+2 \beta}+\mathrm{C} R^{n+2\left(1-\frac{n}{q}\right)}\|f\|_{L^{q}\left(B_{1}\right)}^{2} .
\end{gathered}
$$
\]

Hence, there exists an $R_{0}>0$ such that

$$
\int_{B_{r}\left(x_{0}\right)}\left|\nabla u-(\nabla u)_{x_{0}, r}\right|^{2} d x \leq \mathrm{C}\left(\frac{r}{R}\right)^{n+2 \alpha} \int_{B_{R}\left(x_{0}\right)}\left|\nabla u-(\nabla u)_{x_{0}, R}\right|^{2} d x+\mathrm{C} r^{n+2 \alpha}
$$

for any $0<r \leq R \leq R_{0}$. For $R=R_{0}$ and $0<r \leq R_{0}$, we have

$$
\int_{B_{r}\left(x_{0}\right)}\left|\nabla u-(\nabla u)_{x_{0}, r}\right|^{2} d x \leq \mathrm{C} r^{n+2 \alpha}, \quad \text { with } \quad \alpha=\min \left\{\beta, \sigma, 1-\frac{n}{q}\right\} \quad \text { for } \quad n<q \leq \infty
$$

Therefore, using a Campanato Embedding Theorem ${ }^{9}$, we obtain the desired Hölder regularity.

[^24]
Sketch of the proof of optimal regularity

Sketch of the proof of optimal regularity

- (Normalization)

$$
\|\varphi\|_{C^{1, \beta}\left(B_{1}\right)} \leq \frac{1}{2} \quad \text { and } \quad\|f\|_{L^{q}\left(B_{1}\right)} \leq 1 .
$$

Sketch of the proof of optimal regularity

- (Normalization)

$$
\|\varphi\|_{C^{1, \beta}\left(B_{1}\right)} \leq \frac{1}{2} \quad \text { and } \quad\|f\|_{L^{q}\left(B_{1}\right)} \leq 1 .
$$

- For $y \in \partial\{u>\varphi\} \cap B_{1 / 2}$ and $r<\frac{1}{2}$ we show that

$$
\begin{equation*}
\sup _{x \in B_{r}(y)}|u(x)-u(y)-(x-y) \cdot \nabla u(y)| \leq \mathrm{C} r^{1+\alpha} \tag{5}
\end{equation*}
$$

where $\mathrm{C}=\mathrm{C}\left(\beta, p, n, q,\|\varphi\|_{C^{1, \beta}\left(B_{1}\right)},\|f\|_{L^{q}\left(B_{1}\right)} \lambda, \Lambda\right)$.

Sketch of the proof of optimal regularity

- (Normalization)

$$
\|\varphi\|_{C^{1, \beta}\left(B_{1}\right)} \leq \frac{1}{2} \quad \text { and } \quad\|f\|_{L^{q}\left(B_{1}\right)} \leq 1 .
$$

- For $y \in \partial\{u>\varphi\} \cap B_{1 / 2}$ and $r<\frac{1}{2}$ we show that

$$
\begin{equation*}
\sup _{x \in B_{r}(y)}|u(x)-u(y)-(x-y) \cdot \nabla u(y)| \leq \mathrm{C} r^{1+\alpha} \tag{5}
\end{equation*}
$$

where $\mathrm{C}=\mathrm{C}\left(\beta, p, n, q,\|\varphi\|_{C^{1, \beta}\left(B_{1}\right)},\|f\|_{L^{q}\left(B_{1}\right)} \lambda, \Lambda\right)$.

- Case 1: $|\nabla u(y)| \leq r^{\alpha}$.

Sketch of the proof of optimal regularity

- (Normalization)

$$
\|\varphi\|_{C^{1, \beta}\left(B_{1}\right)} \leq \frac{1}{2} \quad \text { and } \quad\|f\|_{L^{q}\left(B_{1}\right)} \leq 1 .
$$

- For $y \in \partial\{u>\varphi\} \cap B_{1 / 2}$ and $r<\frac{1}{2}$ we show that

$$
\begin{equation*}
\sup _{x \in B_{r}(y)}|u(x)-u(y)-(x-y) \cdot \nabla u(y)| \leq \mathrm{C} r^{1+\alpha} \tag{5}
\end{equation*}
$$

where $\mathrm{C}=\mathrm{C}\left(\beta, p, n, q,\|\varphi\|_{C^{1, \beta}\left(B_{1}\right)},\|f\|_{L^{q}\left(B_{1}\right)} \lambda, \Lambda\right)$.

- Case 1: $|\nabla u(y)| \leq r^{\alpha}$.

$$
\tilde{\varphi}(x)=\frac{\varphi(r x+y)-\varphi(y)}{r^{1+\alpha}} \quad \text { and } \quad \tilde{u}(x)=\frac{u(r x+y)-u(y)}{r^{1+\alpha}}
$$

Sketch of the proof of optimal regularity

- (Normalization)

$$
\|\varphi\|_{C^{1, \beta}\left(B_{1}\right)} \leq \frac{1}{2} \quad \text { and } \quad\|f\|_{L^{q}\left(B_{1}\right)} \leq 1 .
$$

- For $y \in \partial\{u>\varphi\} \cap B_{1 / 2}$ and $r<\frac{1}{2}$ we show that

$$
\begin{equation*}
\sup _{x \in B_{r}(y)}|u(x)-u(y)-(x-y) \cdot \nabla u(y)| \leq \mathrm{C} r^{1+\alpha} \tag{5}
\end{equation*}
$$

where $\mathrm{C}=\mathrm{C}\left(\beta, p, n, q,\|\varphi\|_{C^{1, \beta}\left(B_{1}\right)},\|f\|_{L^{q}\left(B_{1}\right)} \lambda, \Lambda\right)$.

- Case 1: $|\nabla u(y)| \leq r^{\alpha}$.

$$
\begin{gathered}
\tilde{\varphi}(x)=\frac{\varphi(r x+y)-\varphi(y)}{r^{1+\alpha}} \quad \text { and } \tilde{u}(x)=\frac{u(r x+y)-u(y)}{r^{1+\alpha}} \\
\|\tilde{\varphi}\|_{L^{\infty}\left(B_{1}\right)} \leq \frac{r^{1+\beta}}{2 r^{1+\alpha}}+1 \leq \frac{3}{2}
\end{gathered}
$$

Then, $\tilde{u} \geq \tilde{\varphi}$, it satisfies

$$
\operatorname{div} \tilde{\mathfrak{a}}(x, \nabla \tilde{u}) \leq \tilde{f}(x) \quad \text { in } B_{1}
$$

for

$$
\tilde{\mathfrak{a}}(x, \xi):=r^{\alpha(1-p)} \mathfrak{a}\left(r x, r^{\alpha} \xi\right) \quad \text { and } \quad \tilde{f}(x)=r^{\alpha(1-p)+1} f(r x+y)
$$

10
(WHI) $\|u\|_{L^{\gamma}\left(B_{\kappa r}\right)} \leq \mathrm{C}\left[\inf _{B_{\tau_{0} r}} u(x)+\|f\|_{L}^{\frac{1}{p-1}\left(B_{1}\right)}\right], \kappa, \tau_{0} \in(0,1)$ and $\gamma \in\left(0, \frac{n(p-1)}{n-p}\right), u$ a weak super-sol..
11
(LMP) $\sup _{B_{\kappa r} r} u^{+}(x) \leq \frac{\mathrm{C}(p, n, \lambda, j, r)}{\sqrt[j]{(1-\kappa)^{n}}}\left[\left\|u^{+}\right\|_{L^{j}\left(B_{r}\right)}+\|f\|_{L^{q}(\Omega)}^{\frac{1}{p-1}}\right], \quad 0<j \leq p, \quad u$ a weak sub-solution.

Then, $\tilde{u} \geq \tilde{\varphi}$, it satisfies

$$
\operatorname{div} \tilde{\mathfrak{a}}(x, \nabla \tilde{u}) \leq \tilde{f}(x) \quad \text { in } B_{1}
$$

for

$$
\begin{aligned}
& \tilde{\mathfrak{a}}(x, \xi):=r^{\alpha(1-p)} \mathfrak{a}\left(r x, r^{\alpha} \xi\right) \quad \text { and } \quad \tilde{f}(x)=r^{\alpha(1-p)+1} f(r x+y) \\
&|\tilde{\mathfrak{a}}(x, \xi)-\tilde{\mathfrak{a}}(y, \xi)| \leq r^{\alpha(1-p)+\sigma} \omega(|x-y|)|\xi|^{p-1} \\
& \leq \omega(|x-y|)|\xi|^{p-1}
\end{aligned}
$$

10
$(\mathrm{WHI})\|u\|_{L \gamma\left(B_{\kappa r}\right)} \leq \mathrm{C}\left[\inf _{B_{\tau_{0} r}} u(x)+\|f\|_{L}^{\frac{1}{p-1}}{ }^{\frac{p}{q}\left(B_{1}\right)}\right], \kappa, \tau_{0} \in(0,1)$ and $\gamma \in\left(0, \frac{n(p-1)}{n-p}\right), u$ a weak super-sol..
11
(LMP) $\sup _{B_{\kappa r}} u^{+}(x) \leq \frac{\mathrm{C}(p, n, \lambda, j, r)}{\sqrt[j]{(1-\kappa)^{n}}}\left[\left\|u^{+}\right\|_{L^{j}\left(B_{r}\right)}+\|f\|_{L^{q}(\Omega)}^{\frac{1}{p-1}}\right], \quad 0<j \leq p, \quad u$ a weak sub-solution.

Then, $\tilde{u} \geq \tilde{\varphi}$, it satisfies

$$
\operatorname{div} \tilde{\mathfrak{a}}(x, \nabla \tilde{u}) \leq \tilde{f}(x) \quad \text { in } B_{1}
$$

for

$$
\begin{aligned}
& \tilde{\mathfrak{a}}(x, \xi):=r^{\alpha(1-p)} \mathfrak{a}\left(r x, r^{\alpha} \xi\right) \quad \text { and } \quad \tilde{f}(x)=r^{\alpha(1-p)+1} f(r x+y) \\
&|\tilde{\mathfrak{a}}(x, \xi)-\tilde{\mathfrak{a}}(y, \xi)| \leq r^{\alpha(1-p)+\sigma} \omega(|x-y|)|\xi|^{p-1} \\
& \leq \omega(|x-y|)|\xi|^{p-1} \\
&\|\tilde{f}\|_{L^{q}\left(B_{1}\right)}=r^{\alpha(1-p)+1-n / q}\|f\|_{L^{q}\left(B_{1}\right)} \leq 1
\end{aligned}
$$

$(\mathrm{WHI})\|u\|_{L \gamma\left(B_{\kappa r}\right)} \leq \mathrm{C}\left[\inf _{B_{\tau_{0} r}} u(x)+\|f\|_{L}^{\frac{1}{p-1}}{ }^{\frac{p}{q}\left(B_{1}\right)}\right], \kappa, \tau_{0} \in(0,1)$ and $\gamma \in\left(0, \frac{n(p-1)}{n-p}\right), u$ a weak super-sol..
(LMP) $\sup _{B_{\kappa r}} u^{+}(x) \leq \frac{\mathrm{C}(p, n, \lambda, j, r)}{\sqrt[j]{(1-\kappa)^{n}}}\left[\left\|u^{+}\right\|_{L^{j}\left(B_{r}\right)}+\|f\|_{L^{q}(\Omega)}^{\frac{1}{p-1}}\right], \quad 0<j \leq p, \quad u$ a weak sub-solution.

Then, $\tilde{u} \geq \tilde{\varphi}$, it satisfies

$$
\operatorname{div} \tilde{\mathfrak{a}}(x, \nabla \tilde{u}) \leq \tilde{f}(x) \quad \text { in } B_{1}
$$

for

$$
\begin{aligned}
& \tilde{\mathfrak{a}}(x, \xi):=r^{\alpha(1-p)} \mathfrak{a}\left(r x, r^{\alpha} \xi\right) \quad \text { and } \quad \tilde{f}(x)=r^{\alpha(1-p)+1} f(r x+y) \\
&|\tilde{\mathfrak{a}}(x, \xi)-\tilde{\mathfrak{a}}(y, \xi)| \leq r^{\alpha(1-p)+\sigma} \omega(|x-y|)|\xi|^{p-1} \\
& \leq \omega(|x-y|)|\xi|^{p-1} \\
&\|\tilde{f}\|_{L^{q}\left(B_{1}\right)}=r^{\alpha(1-p)+1-n / q}\|f\|_{L^{q}\left(B_{1}\right)} \leq 1
\end{aligned}
$$

Therefore, using the Weak Harnack Inequality ${ }^{10}$ and the Local Maximum Principle ${ }^{11}$, we obtain the desired regularity estimate.
$(\mathrm{WHI})\|u\|_{L \gamma\left(B_{\kappa r}\right)} \leq \mathrm{C}\left[\inf _{B \tau_{0} r} u(x)+\|f\|_{L}^{\frac{1}{p-1} \mathcal{Q}_{\left(B_{1}\right)}}\right], \kappa, \tau_{0} \in(0,1)$ and $\gamma \in\left(0, \frac{n(p-1)}{n-p}\right)$, u a weak super-sol..
11
(LMP) $\sup _{B_{\kappa r}} u^{+}(x) \leq \frac{\mathrm{C}(p, n, \lambda, j, r)}{\sqrt[j]{(1-\kappa)^{n}}}\left[\left\|u^{+}\right\|_{L^{j}\left(B_{r}\right)}+\|f\|_{L^{q}(\Omega)}^{\frac{1}{p-1}}\right], \quad 0<j \leq p, \quad u$ a weak sub-solution.

- Case 2: $\mathfrak{L} \geq|\nabla u(y)| \geq r^{\alpha}$.

Let $r_{y}^{\alpha}=|\nabla u(y)|$. From Case 1, we know the following

$$
\begin{equation*}
\sup _{B_{r_{y}}(y)}|u(x)-u(y)| \leq \mathrm{C} r_{y}^{1+\alpha} \tag{6}
\end{equation*}
$$

- Case 2: $\mathfrak{L} \geq|\nabla u(y)| \geq r^{\alpha}$.

Let $r_{y}^{\alpha}=|\nabla u(y)|$. From Case 1, we know the following

$$
\begin{equation*}
\sup _{B_{r_{y}}(y)}|u(x)-u(y)| \leq \mathrm{C} r_{y}^{1+\alpha} \tag{6}
\end{equation*}
$$

Define

$$
\left\{\begin{aligned}
\hat{\varphi}(x) & =\frac{\varphi\left(r_{y} x+y\right)-\varphi(y)}{r_{y}^{1+\alpha}} \\
\hat{u}(x) & =\frac{u\left(r_{y} x+y\right)-u(y)}{r_{y}^{1+\alpha}} \\
\hat{f}(x) & =r_{y}^{1-\alpha(p-1)} f\left(r_{y} x+y\right)
\end{aligned}\right.
$$

Note that

$$
\begin{equation*}
|\nabla \hat{\varphi}(0)|=|\nabla \hat{u}(0)|=1 . \tag{7}
\end{equation*}
$$

Moreover, $\hat{u}(x) \geq \hat{\varphi}(x)$ in B_{1} and satisfies

$$
\operatorname{div} \hat{\mathfrak{a}}(x, \nabla \hat{u}) \leq \hat{f}(x) \quad \text { in } B_{1}
$$

for

$$
\hat{\mathfrak{a}}(x, \xi):=r_{y}^{\alpha(1-p)} \mathfrak{a}\left(r_{y} x, r_{y}^{\alpha} \xi\right) \quad \text { and } \quad \hat{f}(x)=r_{y}^{\alpha(1-p)+1} f\left(r_{y} x+y\right)
$$

Moreover, $\hat{u}(x) \geq \hat{\varphi}(x)$ in B_{1} and satisfies

$$
\operatorname{div} \hat{\mathfrak{a}}(x, \nabla \hat{u}) \leq \hat{f}(x) \quad \text { in } B_{1}
$$

for

$$
\hat{\mathfrak{a}}(x, \xi):=r_{y}^{\alpha(1-p)} \mathfrak{a}\left(r_{y} x, r_{y}^{\alpha} \xi\right) \quad \text { and } \quad \hat{f}(x)=r_{y}^{\alpha(1-p)+1} f\left(r_{y} x+y\right)
$$

Using that $\hat{u} \in C_{l o c}^{1, \tau_{0}}\left(B_{1}\right)$ and $|\nabla \hat{u}(0)|=1$ we can find a radius r_{0} and a constant c_{0} such that

$$
\mathrm{c}_{0} \leq|\nabla \hat{u}(x)| \leq \mathrm{c}_{0}^{-1} \quad \text { in } \quad B_{r_{0}}
$$

Moreover, $\hat{u}(x) \geq \hat{\varphi}(x)$ in B_{1} and satisfies

$$
\operatorname{div} \hat{\mathfrak{a}}(x, \nabla \hat{u}) \leq \hat{f}(x) \quad \text { in } B_{1}
$$

for

$$
\hat{\mathfrak{a}}(x, \xi):=r_{y}^{\alpha(1-p)} \mathfrak{a}\left(r_{y} x, r_{y}^{\alpha} \xi\right) \quad \text { and } \quad \hat{f}(x)=r_{y}^{\alpha(1-p)+1} f\left(r_{y} x+y\right)
$$

Using that $\hat{u} \in C_{l o c}^{1, \tau_{0}}\left(B_{1}\right)$ and $|\nabla \hat{u}(0)|=1$ we can find a radius r_{0} and a constant c_{0} such that

$$
\mathrm{c}_{0} \leq|\nabla \hat{u}(x)| \leq \mathrm{c}_{0}^{-1} \quad \text { in } \quad B_{r_{0}}
$$

Then, $\hat{\mathfrak{a}}(\cdot, \cdot)$ satisfies (3) (Structural Conditions) for " $p=2$ " in $B_{r_{0}}$. From the Theorem 2 (linear case), we have $\hat{u} \in C_{l o c}^{1, \iota_{0}}\left(B_{r_{0} r_{y}}(y)\right)$.

Moreover, $\hat{u}(x) \geq \hat{\varphi}(x)$ in B_{1} and satisfies

$$
\operatorname{div} \hat{\mathfrak{a}}(x, \nabla \hat{u}) \leq \hat{f}(x) \quad \text { in } B_{1}
$$

for

$$
\hat{\mathfrak{a}}(x, \xi):=r_{y}^{\alpha(1-p)} \mathfrak{a}\left(r_{y} x, r_{y}^{\alpha} \xi\right) \quad \text { and } \quad \hat{f}(x)=r_{y}^{\alpha(1-p)+1} f\left(r_{y} x+y\right)
$$

Using that $\hat{u} \in C_{l o c}^{1, \tau_{0}}\left(B_{1}\right)$ and $|\nabla \hat{u}(0)|=1$ we can find a radius r_{0} and a constant c_{0} such that

$$
\mathrm{c}_{0} \leq|\nabla \hat{u}(x)| \leq \mathrm{c}_{0}^{-1} \quad \text { in } \quad B_{r_{0}} .
$$

Then, $\hat{\mathfrak{a}}(\cdot, \cdot)$ satisfies (3) (Structural Conditions) for " $p=2$ " in $B_{r_{0}}$. From the Theorem 2 (linear case), we have $\hat{u} \in C_{l o c}^{1, \iota_{0}}\left(B_{r_{0} r_{y}}(y)\right)$.
Therefore, by re-scaling, we obtain the desired sharp regularity estimates

$$
\sup _{B_{r}(y)}|u(x)-u(y)-(x-y) \cdot \nabla u(y)| \leq \mathrm{C} r^{1+\iota_{0}} \leq \mathrm{C} r^{1+\alpha},
$$

for $r \leq r_{0} r_{y}=r_{0}|\nabla u(y)|^{\frac{1}{\alpha}}$.

Main Theorems - Part II: Non-degeneracy of solutions and beyond

For obtaining further geometric properties of solutions, we need to assume:

$$
\begin{equation*}
\left|\frac{\partial \mathfrak{a}_{i}}{\partial x_{i}}(x, \xi)\right| \leq \Lambda_{0}|\xi|^{p-1} \quad(\text { for every } 1 \leq i \leq n, \text { for } \quad p \geq 2) \tag{8}
\end{equation*}
$$

For obtaining further geometric properties of solutions, we need to assume:

$$
\begin{equation*}
\left|\frac{\partial \mathfrak{a}_{i}}{\partial x_{i}}(x, \xi)\right| \leq \Lambda_{0}|\xi|^{p-1} \quad(\text { for every } 1 \leq i \leq n, \text { for } \quad p \geq 2) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
0<\mathrm{c}_{0}:=\inf _{B_{1}} f(x) \leqslant f(x), \quad \text { a.e. in } \quad B_{1} \tag{9}
\end{equation*}
$$

For obtaining further geometric properties of solutions, we need to assume:

$$
\begin{equation*}
\left|\frac{\partial \mathfrak{a}_{i}}{\partial x_{i}}(x, \xi)\right| \leq \Lambda_{0}|\xi|^{p-1} \quad(\text { for every } 1 \leq i \leq n, \text { for } \quad p \geq 2) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
0<\mathrm{c}_{0}:=\inf _{B_{1}} f(x) \leqslant f(x), \quad \text { a.e. in } \quad B_{1} \tag{9}
\end{equation*}
$$

- We will assume that $\varphi \in C^{1,1}\left(B_{1}\right)$ such that

$$
\begin{equation*}
2^{p-2} n \Lambda_{0}|\nabla \varphi|^{p-1}+\Lambda \max \left\{1,2^{p-3}\right\}|\nabla \varphi|^{p-2} \sum_{i, j=1}^{n}\left|\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}\right| \leq \mathrm{c}_{0}-\delta \tag{10}
\end{equation*}
$$

where $0<\delta<\mathrm{c}_{0}$ is a fixed constant.

For obtaining further geometric properties of solutions, we need to assume:

$$
\begin{equation*}
\left|\frac{\partial \mathfrak{a}_{i}}{\partial x_{i}}(x, \xi)\right| \leq \Lambda_{0}|\xi|^{p-1} \quad(\text { for every } 1 \leq i \leq n, \text { for } \quad p \geq 2) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
0<\mathrm{c}_{0}:=\inf _{B_{1}} f(x) \leqslant f(x), \quad \text { a.e. in } \quad B_{1} \tag{9}
\end{equation*}
$$

- We will assume that $\varphi \in C^{1,1}\left(B_{1}\right)$ such that

$$
\begin{equation*}
2^{p-2} n \Lambda_{0}|\nabla \varphi|^{p-1}+\Lambda \max \left\{1,2^{p-3}\right\}|\nabla \varphi|^{p-2} \sum_{i, j=1}^{n}\left|\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}\right| \leq \mathrm{c}_{0}-\delta \tag{10}
\end{equation*}
$$

where $0<\delta<\mathrm{c}_{0}$ is a fixed constant.
Remark: We must stress that the assumption (10) implies the following

$$
\operatorname{div} \mathfrak{a}(x, \nabla \varphi)<c_{0}
$$

Therefore, under the previous assumptions, we can address the following non-degeneracy result:
Theorem 3 - Non-degeneracy of solutions [Bezerra Júnior-Da S.-Frias'2023]
Assume assumptions (8) and (9) are in force. Let $p \in(2, \infty)$ and $u \in W^{1, p}\left(B_{1}\right)$ be a weak solution of the obstacle problem (2) for $\varphi \in C^{1,1}\left(B_{1}\right)$ satisfying (10). Then, there exist $r^{*}>0$ and a constant $\epsilon_{0}=\epsilon_{0}$ (universal)) such that for every $x^{0} \in \overline{\{u>\varphi\}} \cap B_{1}$ and every $r \in\left(0, r^{*}\right)$ fulfilling $B_{r}\left(x^{0}\right) \subset B_{1}$ we obtain

$$
\sup _{\partial B_{r}\left(x_{0}\right) \cap\{u>\varphi\}}(u-\varphi) \geq \epsilon_{0} \cdot r^{2} .
$$

Therefore, under the previous assumptions, we can address the following non-degeneracy result:

Theorem 3 - Non-degeneracy of solutions [Bezerra Júnior-Da S.-Frias'2023]

Assume assumptions (8) and (9) are in force. Let $p \in(2, \infty)$ and $u \in W^{1, p}\left(B_{1}\right)$ be a weak solution of the obstacle problem (2) for $\varphi \in C^{1,1}\left(B_{1}\right)$ satisfying (10). Then, there exist $r^{*}>0$ and a constant $\epsilon_{0}=\epsilon_{0}$ (universal)) such that for every $x^{0} \in \overline{\{u>\varphi\}} \cap B_{1}$ and every $r \in\left(0, r^{*}\right)$ fulfilling $B_{r}\left(x^{0}\right) \subset B_{1}$ we obtain

$$
\sup _{\partial B_{r}\left(x_{0}\right) \cap\{u>\varphi\}}(u-\varphi) \geq \epsilon_{0} \cdot r^{2} .
$$

Particularly, along the set of critical points, i.e., if $\left|\nabla \varphi\left(x^{0}\right)\right|=0$, then

$$
\sup _{\partial B_{r}\left(x_{0}\right) \cap\{u>\varphi\}}(u-\varphi) \geq \epsilon_{0} \cdot r^{1+\gamma},
$$

for any $\frac{1}{p-1} \leq \gamma \leq 1$.

Sketch of the proof of Non-degeneracy

Sketch of the proof of Non-degeneracy

By continuity, it is sufficient to prove the result for $y \in\{u>\varphi\}$. Take $y \in\{u>\varphi\}$. Let

$$
v(x):=\varphi(x)+\epsilon_{0}|x-y|^{1+\gamma}
$$

be a comparison function, where $\gamma>0$ will be determined a posteriori.

Sketch of the proof of Non-degeneracy

By continuity, it is sufficient to prove the result for $y \in\{u>\varphi\}$. Take $y \in\{u>\varphi\}$. Let

$$
v(x):=\varphi(x)+\epsilon_{0}|x-y|^{1+\gamma}
$$

be a comparison function, where $\gamma>0$ will be determined a posteriori. For suitable values of γ, there exists a universal $r^{*}>0$ such that:

$$
\forall r \in\left(0, r^{*}\right), \quad \forall y \in \overline{\{u>\varphi\}}, \quad \forall x \in B_{r}(y) \subset B_{1}, \quad \operatorname{div} \mathfrak{a}(x, \nabla v) \leq \mathrm{c}_{0}
$$

Since $u(y)>\varphi(y)=v(y)$, thus by the Comparison Principle, there must exists a $z_{y} \in \partial\left(B_{r}(y)\right.$ $\cap\{u>\varphi\})$ such that $u\left(z_{y}\right) \geqslant v\left(z_{y}\right)$. Moreover, note that:

$$
\partial\left(B_{r}(y) \cap\{u>\varphi\}\right)=\left(\partial B_{r}(y) \cap\{u>\varphi\}\right) \cup\left(B_{r}(y) \cap \partial\{u>\varphi\}\right)
$$

Since $u<v$ in $B_{r}(y) \cap \partial\{u>\varphi\}$, we have $z_{y} \notin B_{r}(y) \cap \partial\{u>\varphi\}$, which implies that $z_{y} \in \partial B_{r}(y) \cap\{u>\varphi\}$.

Sketch of the proof of Non-degeneracy

By continuity, it is sufficient to prove the result for $y \in\{u>\varphi\}$. Take $y \in\{u>\varphi\}$. Let

$$
v(x):=\varphi(x)+\epsilon_{0}|x-y|^{1+\gamma}
$$

be a comparison function, where $\gamma>0$ will be determined a posteriori. For suitable values of γ, there exists a universal $r^{*}>0$ such that:

$$
\forall r \in\left(0, r^{*}\right), \quad \forall y \in \overline{\{u>\varphi\}}, \quad \forall x \in B_{r}(y) \subset B_{1}, \quad \operatorname{div} \mathfrak{a}(x, \nabla v) \leq \mathrm{c}_{0}
$$

Since $u(y)>\varphi(y)=v(y)$, thus by the Comparison Principle, there must exists a $z_{y} \in \partial\left(B_{r}(y)\right.$ $\cap\{u>\varphi\})$ such that $u\left(z_{y}\right) \geqslant v\left(z_{y}\right)$. Moreover, note that:

$$
\partial\left(B_{r}(y) \cap\{u>\varphi\}\right)=\left(\partial B_{r}(y) \cap\{u>\varphi\}\right) \cup\left(B_{r}(y) \cap \partial\{u>\varphi\}\right)
$$

Since $u<v$ in $B_{r}(y) \cap \partial\{u>\varphi\}$, we have $z_{y} \notin B_{r}(y) \cap \partial\{u>\varphi\}$, which implies that $z_{y} \in \partial B_{r}(y) \cap\{u>\varphi\}$.
Therefore,

$$
\sup _{\partial B_{r}(y) \cap\{u>\varphi\}}(u-\varphi) \geq \epsilon_{0} \cdot r^{2} .
$$

and along the set of critical points,

$$
\sup _{\partial B_{r}(y) \cap\{u>\varphi\}}(u-\varphi) \geq \epsilon_{0} \cdot r^{1+\gamma} \quad \text { for any } \quad \frac{1}{p-1} \leq \gamma \leq 1 .
$$

Applications and beyond

As a result of Theorem 1, we obtain the following: if a solution of p-evolution obstacle problem has its time derivative L^{q}-integrable, then it exhibits optimal growth of $\left(1+\alpha_{\sharp}\right)$-order, where

$$
\alpha_{\sharp}=\frac{1-\frac{n+2}{q}}{(p-1)\left(1-\frac{1}{q}\right)+\frac{1}{q}}=\frac{q-(n+2)}{(p-1)(q-1)+1} .
$$

Such a growth occurs in the spatial variable along free boundary points.

As a result of Theorem 1, we obtain the following: if a solution of p-evolution obstacle problem has its time derivative L^{q}-integrable, then it exhibits optimal growth of $\left(1+\alpha_{\sharp}\right)$-order, where

$$
\alpha_{\sharp}=\frac{1-\frac{n+2}{q}}{(p-1)\left(1-\frac{1}{q}\right)+\frac{1}{q}}=\frac{q-(n+2)}{(p-1)(q-1)+1} .
$$

Such a growth occurs in the spatial variable along free boundary points.

Theorem (Bezerra Júnior-Da S.-Frias'2023)

Let $p \in(1, \infty)$, and let u be a weak solution to the inhomogeneous p-parabolic obstacle problem

$$
\left\{\begin{array}{rllll}
\max \left\{\operatorname{div} \mathfrak{a}(x, \nabla u)-u_{t}-f, u-\varphi\right\} & = & 0 & \text { in } \quad Q_{r}^{-} \tag{11}\\
u & = & 0 & \text { on } \quad \partial_{p} Q_{r}^{-}
\end{array}\right.
$$

with the obstacle $\varphi \in C_{x}^{2}\left(Q_{1}^{-}\right)$. Suppose further that $q>n+2, \sigma=1$ and

$$
\left\|u_{t}\right\|_{L^{q}\left(Q_{1}^{-}\right)} \leq \mathbf{L}_{*}, \quad\|f\|_{L^{q}\left(Q_{1}^{-}\right)} \leq \mathbf{L}_{\sharp} \quad \text { and } \quad\|\varphi\|_{C_{x}^{2}\left(Q_{1}^{-}\right)} \leq \mathbf{N}_{*} .
$$

As a result of Theorem 1, we obtain the following: if a solution of p -evolution obstacle problem has its time derivative L^{q}-integrable, then it exhibits optimal growth of $\left(1+\alpha_{\sharp}\right)$-order, where

$$
\alpha_{\sharp}=\frac{1-\frac{n+2}{q}}{(p-1)\left(1-\frac{1}{q}\right)+\frac{1}{q}}=\frac{q-(n+2)}{(p-1)(q-1)+1} .
$$

Such a growth occurs in the spatial variable along free boundary points.

Theorem (Bezerra Júnior-Da S.-Frias'2023)

Let $p \in(1, \infty)$, and let u be a weak solution to the inhomogeneous p-parabolic obstacle problem

$$
\left\{\begin{array}{rllll}
\max \left\{\operatorname{div} \mathfrak{a}(x, \nabla u)-u_{t}-f, u-\varphi\right\} & = & 0 & \text { in } Q_{r}^{-} \tag{11}\\
u & = & 0 & \text { on } \quad \partial_{p} Q_{r}^{-}
\end{array}\right.
$$

with the obstacle $\varphi \in C_{x}^{2}\left(Q_{1}^{-}\right)$. Suppose further that $q>n+2, \sigma=1$ and

$$
\left\|u_{t}\right\|_{L^{q}\left(Q_{1}^{-}\right)} \leq \mathbf{L}_{*}, \quad\|f\|_{L^{q}\left(Q_{1}^{-}\right)} \leq \mathbf{L}_{\sharp} \quad \text { and } \quad\|\varphi\|_{C_{x}^{2}\left(Q_{1}^{-}\right)} \leq \mathbf{N}_{*} .
$$

Then, for any point $(y, s) \in \partial\{u>\varphi\} \cap Q_{\frac{1}{2}}^{-}$and for $r \in\left(0, \frac{1}{4}\right)$, there holds

$$
\sup _{(x, t) \in Q_{r}^{-}(y, s)}|u(x, t)-u(y, s)-\nabla u(y, s) \cdot(x-y)| \leq \mathrm{C}\left(p, \mathbf{L}_{*}, \mathbf{L}_{\sharp}, \mathbf{N}_{*}\right) r^{1+\alpha_{\sharp}}
$$

References

[1] Andersson, J., Lindgren, E. and Shahgholian, H., Optimal regularity for the obstacle problem for the p-Laplacian. J. Differential Equations 259 (2015), no. 6, 2167-2179.
[2] Bezerra Júnior, E.C., da Silva, J.V. and Tomilhero Frias, R. A version of the Aleksandrov-Bakel'man-Pucci Maximum Principle for p-Laplacian type equations and applications. Preprint 2023.
[3] Bezerra Júnior, E.C., da Silva, J.V. and Tomilhero Frias, R. Sharp regularity for the obstacle problem for quasilinear elliptic equations of p-Laplacian type and applications. Preprint 2023.
[4] Boccardo, L. and Murat, F. Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19 (1992), no. 6, 581-597.
[5] Byun, S., Cho, Y., Ok, J.: Global gradient estimates for nonlinear obstacle problems with nonstandard growth. Forum Math. 28(4), 729-747 (2016).
[6] Malý, J. and Ziemer, W.P., Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997. xiv+291 pp. ISBN: 0-8218-0335-2.
[7] Ok, J., Gradient continuity for nonlinear obstacle problems. Mediterr. J. Math. 14 (2017), no. 1, Paper No. 16, 24 pp.
[8] Rodrigues, J.F., Stability remarks to the obstacle problem for p-Laplacian type equations. Calc. Var. Partial Differential Equations 23 (2005), no. 1, 51-65.

Acknowledgments and Sponsors

This Work/Lecture has been financially supported by:

@cNPq
 Fafpex
 Fundo de Apoio ao Ensino, Pesquisa e Extensão

Thank you very much for your attention!

Welcome to visit the Mathematics Department at UNICAMP!
Do you want to know a bit about my research? Please, follow me on ResearchGate!
https://www.researchgate.net/profile/Joao-Da-Silva-13

[^0]: ${ }^{1}$ For complete surveys on this topic, see
 Figalli, A., Regularity of interfaces in phase transitions via obstacle problems - Fields Medal lecture. Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018. Vol. I. Plenary lectures, 225-247, 2018.
 Danielli, D., An overview of the obstacle problem. Notices Amer. Math. Soc. 67 (2020), no. 10, 1487-1497.
 Ros - Oton, X., Obstacle problems and free boundaries: an overview, SeMA J. 75 (2018), 399-419.

[^1]: ${ }^{1}$ For complete surveys on this topic, see
 Figalli, A., Regularity of interfaces in phase transitions via obstacle problems - Fields Medal lecture. Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018. Vol. I. Plenary lectures, 225-247, 2018.
 Danielli, D., An overview of the obstacle problem. Notices Amer. Math. Soc. 67 (2020), no. 10, 1487-1497.
 Ros - Oton, X., Obstacle problems and free boundaries: an overview, SeMA J. 75 (2018), 399-419.

[^2]: ${ }^{1}$ For complete surveys on this topic, see
 Figalli, A., Regularity of interfaces in phase transitions via obstacle problems - Fields Medal lecture. Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018. Vol. I. Plenary lectures, 225-247, 2018.
 Danielli, D., An overview of the obstacle problem. Notices Amer. Math. Soc. 67 (2020), no. 10, 1487-1497.
 Ros - Oton, X., Obstacle problems and free boundaries: an overview, SeMA J. 75 (2018), 399-419.

[^3]: ${ }^{1}$ For complete surveys on this topic, see
 Figalli, A., Regularity of interfaces in phase transitions via obstacle problems - Fields Medal lecture. Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018. Vol. I. Plenary lectures, 225-247, 2018.
 Danielli, D., An overview of the obstacle problem. Notices Amer. Math. Soc. 67 (2020), no. 10, 1487-1497.
 Ros - Oton, X., Obstacle problems and free boundaries: an overview, SeMA J. 75 (2018), 399-419.

[^4]: ${ }^{1}$ For complete surveys on this topic, see
 Figalli, A., Regularity of interfaces in phase transitions via obstacle problems - Fields Medal lecture. Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018. Vol. I. Plenary lectures, 225-247, 2018.
 Danielli, D., An overview of the obstacle problem. Notices Amer. Math. Soc. 67 (2020), no. 10, 1487-1497.
 Ros - Oton, X., Obstacle problems and free boundaries: an overview, SeMA J. 75 (2018), 399-419.

[^5]: ${ }^{1}$ For complete surveys on this topic, see
 Figalli, A., Regularity of interfaces in phase transitions via obstacle problems - Fields Medal lecture. Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018. Vol. I. Plenary lectures, 225-247, 2018.
 Danielli, D., An overview of the obstacle problem. Notices Amer. Math. Soc. 67 (2020), no. 10, 1487-1497.
 Ros - Oton, X., Obstacle problems and free boundaries: an overview, SeMA J. 75 (2018), 399-419.

[^6]: ${ }^{1}$ For complete surveys on this topic, see
 Figalli, A., Regularity of interfaces in phase transitions via obstacle problems - Fields Medal lecture. Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018. Vol. I. Plenary lectures, 225-247, 2018.
 Danielli, D., An overview of the obstacle problem. Notices Amer. Math. Soc. 67 (2020), no. 10, 1487-1497.
 Ros - Oton, X., Obstacle problems and free boundaries: an overview, SeMA J. 75 (2018), 399-419.

[^7]: ${ }^{2}$ For other regularity results in the quasi-linear setting, see:
 Choe and Lewis - SIAM J. Math. Anal. (1991)
 Rodrigues - Calc. Var. Partial Differential Equations (2005)
 Byun, Cho and Ok - Forum Math. (2016)
 Eleuteri and Passarelli di Napoli - Calc. Var. Partial Differential Equations (2018)

[^8]: ${ }^{2}$ For other regularity results in the quasi-linear setting, see:

[^9]: ${ }^{3}$ See, Figalli, Krummel and Ros - Oton - J. Differential Equations (2017) for a complete and crystal clear proof for $p \in(1, \infty)$;
 See also, Challal, Lyaghfouri, Rodrigues and Teymurazyan - Interfaces Free Bouñd. (2014) for related rēsults.) Q

[^10]: ${ }^{4}$ For more details, see:
 Rodrigues - Calc. Var. Partial Differential Equations (2005)

[^11]: ${ }^{4}$ For more details, see:
 Rodrigues - Calc. Var. Partial Differential Equations (2005)

[^12]: ${ }^{4}$ For more details, see:
 Rodrigues - Calc. Var. Partial Differential Equations (2005)

[^13]: ${ }^{5}$ da Silva, J.V. and Vivas, H., The obstacle problem for a class of degenerate fully non- linear operators. Rev. Mat. Iberoam. 37 (2021), no. 5, 1991-2020.

[^14]: ${ }^{5}$ da Silva, J.V. and Vivas, H., The obstacle problem for a class of degenerate fully non- linear operators. Rev. Mat.

[^15]: ${ }^{6}$ Dong and Zhu - J. Eur. Math. Soc. (2023)
 Duzaar and Mingione - Calc. Var. Partial Differential Equations (2010)
 Kuusi and Mingione - J. Funct. Anal. (2012)

[^16]: ${ }^{6}$ Dong and Zhu - J. Eur. Math. Soc. (2023)
 Duzaar and Mingione - Calc. Var. Partial Differential Equations (2010)
 Kuusi and Mingione - J. Funct. Anal. (2012)

[^17]: ${ }^{6}$ Dong and Zhu - J. Eur. Math. Soc. (2023)
 Duzaar and Mingione - Calc. Var. Partial Differential Equations (2010)
 Kuusi and Mingione - J. Funct. Anal. (2012)

[^18]: ${ }^{7}$ See, Argiolas, Charro and Peral - Arch. Ration. Mech. Anal. (2011)

[^19]: ${ }^{8}$ See, Caffarelli and Kinderlehrer - J. Analyse Math. (1980) for related results

[^20]: ${ }^{8}$ See, Caffarelli and Kinderlehrer - J. Analyse Math. (1980) for related results

[^21]: ${ }^{8}$ See, Caffarelli and Kinderlehrer - J. Analyse Math. (1980) for related results

[^22]: ${ }^{8}$ See, Caffarelli and Kinderlehrer - J. Analyse Math. (1980) for related results

[^23]: ${ }^{9}$ Maly, J. and Ziemer, W.P., Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys

[^24]: ${ }^{9}$ Maly, J. and Ziemer, W.P., Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997. xiv+291 pp. ISBN-0-8218-0335-2․․

