Juliana Fernandes

Universidade Federal do Rio de Janeiro

Mostly Maximum Principle - 5th edition

June 26, 2024

イロト イポト イヨト イヨト

2

Joint work with L. Maia.

Investigate solutions of the degenerate logistic equation with a general superlinear nonlinearity

$$\begin{cases} \partial_t u = \Delta u + \lambda u + b(x)f(u), & (x, t) \text{ in } \Omega \times \mathbb{R}^+, \\ u|_{\partial\Omega} = 0, \\ u|_{t=0} = u_0(x), \end{cases}$$

글 제 귀 글 제

Joint work with L. Maia.

Investigate solutions of the degenerate logistic equation with a general superlinear nonlinearity

$$\begin{cases} \partial_t u = \Delta u + \lambda u + b(x)f(u), & (x, t) \text{ in } \Omega \times \mathbb{R}^+, \\ u|_{\partial\Omega} = 0, \\ u|_{t=0} = u_0(x), \end{cases}$$

• Ω is a smooth bounded domain in \mathbb{R}^N , $N \ge 2$

글 에 에 글 에 다

Joint work with L. Maia.

Investigate solutions of the degenerate logistic equation with a general superlinear nonlinearity

$$\begin{cases} \partial_t u = \Delta u + \lambda u + b(x)f(u), & (x, t) \text{ in } \Omega \times \mathbb{R}^+, \\ u|_{\partial\Omega} = 0, \\ u|_{t=0} = u_0(x), \end{cases}$$

- Ω is a smooth bounded domain in \mathbb{R}^N , $N \ge 2$
- λ is a real positive parameter,

ヨト イヨト

Joint work with L. Maia.

Investigate solutions of the degenerate logistic equation with a general superlinear nonlinearity

$$\begin{cases} \partial_t u = \Delta u + \lambda u + b(x)f(u), & (x, t) \text{ in } \Omega \times \mathbb{R}^+, \\ u|_{\partial\Omega} = 0, \\ u|_{t=0} = u_0(x), \end{cases}$$

- Ω is a smooth bounded domain in \mathbb{R}^N , $N \ge 2$
- λ is a real positive parameter,

Main goal

- Exploit the interplay of variational methods with dynamical systems to analyze the behavior of solutions.
- Nehari manifold: the existence and non-existence of stationary solutions. It is used to locate the stationary solutions, and identify convergence regions of evolutionary trajectories.
- Detailed picture of the positive dynamics and local behavior of solutions near a nodal equilibrium.

• 3 3

Intermediate prototype model linking Malthus and Verhulst laws of population dynamics within the same region:

医下颌 医下颌

臣

Intermediate prototype model linking Malthus and Verhulst laws of population dynamics within the same region:

$$\partial_t u = \Delta u + \lambda u + b(x)u^{p-1}u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$,

Intermediate prototype model linking Malthus and Verhulst laws of population dynamics within the same region:

$$\partial_t u = \Delta u + \lambda u + b(x)u^{p-1}u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$,

 $\bullet\,$ Models the distribution of a single species in $\Omega\,$

Intermediate prototype model linking Malthus and Verhulst laws of population dynamics within the same region:

$$\partial_t u = \Delta u + \lambda u + b(x)u^{p-1}u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$,

- $\bullet\,$ Models the distribution of a single species in $\Omega\,$
- λ intrinsic growth rate of u

Intermediate prototype model linking Malthus and Verhulst laws of population dynamics within the same region:

$$\partial_t u = \Delta u + \lambda u + b(x)u^{p-1}u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$,

- \bullet Models the distribution of a single species in Ω
- λ intrinsic growth rate of u
- b(x) crowding effects of population in Ω₋ = {b(x) < 0}

글 제 귀 글 제

Intermediate prototype model linking Malthus and Verhulst laws of population dynamics within the same region:

$$\partial_t u = \Delta u + \lambda u + b(x)u^{p-1}u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$,

- \bullet Models the distribution of a single species in Ω
- λ intrinsic growth rate of u
- b(x) crowding effects of population in Ω₋ = {b(x) < 0}

•
$$\Omega_0 = \{b(x) = 0\}$$
: favorable region

글 제 귀 글 제

Intermediate prototype model linking Malthus and Verhulst laws of population dynamics within the same region:

$$\partial_t u = \Delta u + \lambda u + b(x)u^{p-1}u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$,

- $\bullet\,$ Models the distribution of a single species in Ω
- λ intrinsic growth rate of u
- b(x) crowding effects of population in Ω₋ = {b(x) < 0}
- $\Omega_0 = \{b(x) = 0\}$: favorable region
- \bullet DBC: Ω is fully surrounded by completely hostile regions

Intermediate prototype model linking Malthus and Verhulst laws of population dynamics within the same region:

$$\partial_t u = \Delta u + \lambda u + b(x)u^{p-1}u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$,

- \bullet Models the distribution of a single species in Ω
- λ intrinsic growth rate of u
- b(x) crowding effects of population in Ω₋ = {b(x) < 0}
- $\Omega_0 = \{b(x) = 0\}$: favorable region
- \bullet DBC: Ω is fully surrounded by completely hostile regions
- u_0 initial population distribution

Interplay between laws of population dynamics Heterogeneous environment

1. Spatial logistic equation $g(x, u) = u, b < 0, \Omega_{-} = \{b(x) < 0\} = \Omega$

$$u_t - \Delta u = \lambda u + b(x)u^2, \quad x \in \Omega$$

(日) (四) (三) (三) (三)

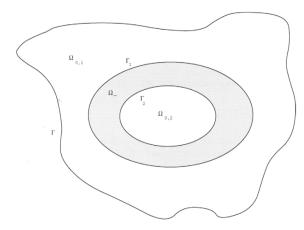
Interplay between laws of population dynamics Heterogeneous environment

1. Spatial logistic equation $g(x, u) = u, b < 0, \Omega_{-} = \{b(x) < 0\} = \Omega$

$$u_t - \Delta u = \lambda u + b(x)u^2, \quad x \in \Omega$$

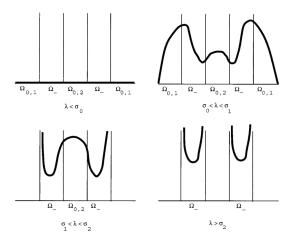
2. Spatial Malthus equation $b \equiv 0$, $\Omega_{-} = \emptyset$, $x \in \Omega$

Example: nodal configuration induced by b(x)



López-Gómez 05: two components $\Omega_0 = \Omega_{0,1} \cup \Omega_{0,2}$ (with corresponding first eigenvalues σ_1 and σ_2).

Example: nodal configuration induced by b(x)Limiting profiles of solutions



López-Gómez 05: σ_0 first eigenvalue of Ω : $\sigma_0 < \sigma_1 < \sigma_2$.

Juliana Fernandes (UFRJ)

< ∃⇒

Motivation II: metasolutions

- The limiting profile of u(x, t) as time $t \to \infty$ becomes infinity in the refuges.
- Metasolutions are used to describe the dynamics of classes of spatially heterogeneous semilinear parabolic problems (ecology).
- Number of technicalities involved in their study.
 - Formal concept of metasolutions: Gómez-Reñasco and López-Gómez 02.
 - Singular boundary value problems, numerical simulations: Molina-Meyer and Prieto-Medina 20
 - 1D degenerate boundary value problems, existence of nodal solutions: López-Gómez and Rabinowitz 15

물 에 가 물 에 다

Some elliptic background

$$-\Delta u = \lambda u + b(x)u^{p-1}u, \qquad x \in \Omega,$$

• b(x) changes sign

- Ouyang 92: sub and super solution
- Alama and Tarantello 93 : bifurcation theory, variational methods
- Brown and Zhang 03: Nehari manifold

Some elliptic background

$$-\Delta u = \lambda u + b(x)u^{p-1}u, \qquad x \in \Omega,$$

• b(x) changes sign

- Ouyang 92: sub and super solution
- Alama and Tarantello 93 : bifurcation theory, variational methods
- Brown and Zhang 03: Nehari manifold
- $b(x) \leq 0$
 - del Pino and Felmer 95: variational methods (linking) for analysis of multiple solutions

$$u_t - \Delta u = \lambda u + b(x)g(x, u)u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$

June 26, 2024

イロン 不同 とくほど 不良 とう

Э

$$u_t - \Delta u = \lambda u + b(x)g(x, u)u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$

- Minimal and maximal equilibria, global attractor bounds, sub and super solutions
 - López-Gómez 05, Rodriguez-Bernal and Vidal-Lopez 08, Arrieta, Pardo and Rodríguez-Bernal 15

$$u_t - \Delta u = \lambda u + b(x)g(x, u)u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$

- Minimal and maximal equilibria, global attractor bounds, sub and super solutions
 - López-Gómez 05, Rodriguez-Bernal and Vidal-Lopez 08, Arrieta, Pardo and Rodríguez-Bernal 15
- Stability of positive and negative stationary solutions
 - Kajikiya 12

$$u_t - \Delta u = \lambda u + b(x)g(x, u)u,$$
 (x, t) in $\Omega \times \mathbb{R}^+$

- Minimal and maximal equilibria, global attractor bounds, sub and super solutions
 - López-Gómez 05, Rodriguez-Bernal and Vidal-Lopez 08, Arrieta, Pardo and Rodríguez-Bernal 15

• Stability of positive and negative stationary solutions

- Kajikiya 12
- b(x) > 0 with power nonlinearity, or hyperbolic equation
 - ► Gazzola and Weth 05, Sattinger 75

Problems in saturable media

$$u_t - \Delta u = \lambda u + f(u),$$
 (x, t) in $\Omega \times \mathbb{R}^+$

Juliana	Fernandes ((011(3)	

イロン イヨン イヨン イヨン

臣

Problems in saturable media

$$u_t - \Delta u = \lambda u + f(u),$$
 (x, t) in $\Omega \times \mathbb{R}^+$

 (f_1) $f \in C^2(\mathbb{R})$, f odd and

$$\lim_{|u|\to\infty}\frac{f(u)}{u}=b,\quad 0<\lambda_1$$

$$\begin{array}{l} (f_2) \ f(s) = o(s) \ \text{as } s \to 0; \\ (f_3) \ \frac{f(s)}{s} < f'(s), \ \text{if } s > 0; \\ (f_4) \ f(s)s - 2F(s) > 0, \ \text{if } s \neq 0 \ \text{and} \ \lim_{|s| \to \infty} f(s)s - 2F(s) = +\infty, \\ & \text{where } F(s) = \int_0^s f(\xi) d\xi. \end{array}$$

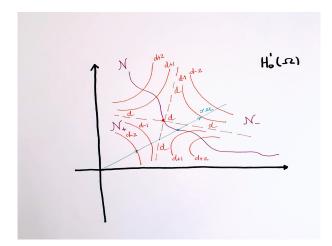
<日 → < 注 → < 注 → June 26, 2024 2

Level curves of the functional

イロト イヨト イヨト イヨト

2

Some parabolic background: asymptoticaly linear Level curves of the functional



Nehari manifold \mathcal{N} with complementary sets \mathcal{N}_{-} and \mathcal{N}_{+} . *d* is the ground state energy.

Juliana Fernandes (UFRJ)

June 26, 2024

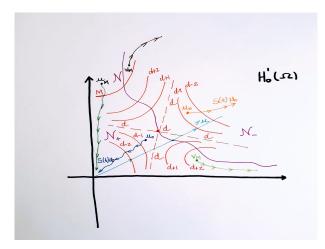
Evolutionary dynamics

Juliana Fernandes (UFRJ)

イロト イヨト イヨト イヨト

2

Some parabolic background: asymptoticaly linear Evolutionary dynamics



F. and Maia 21

			< 注 >	E Pac
Juliana Fernandes (UFRJ)	Degenerate logistic type equations	June 26,	2024	13/36

Degenerate logistic type parabolic equation

$$\partial_t u = \Delta u + \lambda u + b(x)f(u)$$
, (x, t) in $\Omega \times \mathbb{R}^+$

Assume $f \in C^1(\mathbb{R})$ is odd

2

Degenerate logistic type parabolic equation

$$\partial_t u = \Delta u + \lambda u + b(x)f(u)$$
, (x, t) in $\Omega \times \mathbb{R}^+$

Assume $f \in C^1(\mathbb{R})$ is odd

(f₁)
$$\lim_{s\to 0} \frac{f(s)}{s} = 0;$$

(f₂) Let $F(s) = \int_0^s f(t) dt$, $\lim_{s\to +\infty} \frac{F(s)}{s^2} = +\infty;$
(f₃) $\frac{f(s)}{s} < f'(s)$, if $s > 0;$

(f₄) There exists $2 < q < 2^*$, $a_1 < 0$ and an integer $k = \{0, 1\}$ such that $|f^{(k)}(s)| \le a_1(1 + |s|^{q-(k+1)}).$

Stationary problem: existence and nonexistence

 Juliana Fernandes (UFRJ)
 Degenerate logistic type equations
 June 26, 2024
 15/36

Stationary problem: existence and nonexistence

Consider the functional $I: H_0^1(\Omega) \to \mathbb{R}$ of class C^2 given by

$$I(u) = \frac{1}{2} \|u\|^2 - \frac{1}{2}\lambda \int_{\Omega} u^2 - \int_{\Omega} b(x)F(u)dx.$$
 (1)

医下子 医下口

2

Stationary problem: existence and nonexistence

Consider the functional $I: H^1_0(\Omega) \to \mathbb{R}$ of class C^2 given by

$$I(u) = \frac{1}{2} \|u\|^2 - \frac{1}{2}\lambda \int_{\Omega} u^2 - \int_{\Omega} b(x)F(u)dx.$$
 (1)

Critical points *u* of the functional are weak solutions of the stationary problem:

$$l'(u)v = \int_{\Omega} (\nabla u \cdot \nabla v - \lambda uv) dx - \int_{\Omega} b(x)f(u)v dx = 0$$
,

for $u, v \in H_0^1(\Omega)$.

ヨト イヨト

Stationary problem: existence and nonexistence Nehari manifold

The so called Nehari manifold

$$\mathcal{N} := \{ u \in H_0^1(\Omega) : u \neq 0, \quad J(u) = 0 \},$$

where the functional $J: H_0^1(\Omega) \to \mathbb{R}$ defined by

J(u):=I'(u)u.

프 위 에 프 위 이 프

Stationary problem: existence and nonexistence Nehari manifold

The so called Nehari manifold

$$\mathcal{N} := \{ u \in H_0^1(\Omega) : u \neq 0, \quad J(u) = 0 \},$$

where the functional $J: H_0^1(\Omega) \to \mathbb{R}$ defined by

$$J(u) := I'(u)u.$$

Also take the complementary sets

$$\mathcal{N}_+ := \{ u \in H^1_0(\Omega) : u \neq 0, \quad J(u) > 0 \}$$

and

$$\mathcal{N}_{-} := \{ u \in H^{1}_{0}(\Omega) : u \neq 0, J(u) < 0 \}.$$

医下子 医下口

2

Stationary problem: existence and nonexistence

Theorem

- (i) If $\Omega_0 = \emptyset$, then for every $\lambda > 0$ there exists a unique positive stationary solution.
- (ii) If $\Omega_0 \neq \emptyset$, then for every $\lambda < \lambda_1(\Omega_0)$ there exists a unique positive stationary solution.
- (iii) If $\Omega_0 \neq \emptyset$ and $\lambda \geq \lambda_1(\Omega_0)$, the problem admits no positive solution.
 - Ouyang 91
 - Alama and Tarantello 93
 - Cardoso, Furtado and Maia 24

Stationary problem: existence and nonexistence Fibrering maps

The points in the Nehari manifold $\ensuremath{\mathcal{N}}$ correspond to stationary points of the maps

$$\phi_u:t\mapsto J(tu)$$

and so it is natural to divide \mathcal{N} into three subsets corresponding to local minima, local maxima and points of inflexion: \mathcal{S}^+ , \mathcal{S}^- and \mathcal{S}^0 .

医下子 医下口

Stationary problem: existence and nonexistence Fibrering maps

Theorem (F. and Maia 24) Suppose $f(u) = u^{p-1}u$, with $1 , <math>2^* = +\infty$, if N = 2, and $2^* = 2N/N - 2$, if $N \ge 3$. Then, for $\lambda_1(\Omega) < \lambda < \lambda_1(\Omega_0)$. (i) $S^0 = \{0\}$; (ii) $S^- = \emptyset$; and (iii) S^+ is bounded,

Stationary problem: existence and nonexistence Fibrering maps

Theorem (F. and Maia 24) Suppose $f(u) = u^{p-1}u$, with $1 , <math>2^* = +\infty$, if N = 2, and $2^* = 2N/N - 2$, if $N \ge 3$. Then, for $\lambda_1(\Omega) < \lambda < \lambda_1(\Omega_0)$. (i) $S^0 = \{0\}$; (ii) $S^- = \emptyset$; and (iii) S^+ is bounded,

Remark: If $u \in \mathcal{N}$, it holds that

- $u \in S^+$ if and only if I(u) < 0;
- $u \in S^-$ if and only if I(u) > 0;
- $u \in S_0$ if and only if I(u) = 0.

Stationary problem: existence and nonexistence Ground state solution

Theorem (F. and Maia 24)

If $\lambda_1(\Omega) < \lambda < \lambda_1(\Omega_0)$, then I is bounded from below in $H_0^1(\Omega)$, and there exists a minimizer $\varphi > 0$ such that $I(\varphi) = \underline{d}$. Additionally, φ is isolated from other stationary solutions with respect to the $H_0^1(\Omega)$ topology.

医下颌 医下颌

Stationary problem: existence and nonexistence Projection on Nehari

Lemma

If $\lambda_1(\Omega) < \lambda < \lambda_1(\Omega_0)$ and $u \in \mathcal{N}_-$ then u is projectable on \mathcal{S}^+ , i.e., there exists t_u such that $t_u u \in \mathcal{S}^+$. Moreover,

• I(u) < 0

• the set \mathcal{N}_{-} is bounded in $H_0^1(\Omega)$.

ヨト イヨト ニヨ

Stationary problem: existence and nonexistence $\mathsf{Mountain}$ Pass Theorem on $\mathcal N$

Theorem (F. and Maia 24)

Let $\tilde{I}(u) := I(u) - \underline{d}$. For $\varphi > 0$ and $-\varphi < 0$ local minima on S^+ , then \tilde{I} satisfies the geometrical hypotheses of the Mountain Pass Theorem on \mathcal{N} .

Moreover \tilde{I} satisfies $(PS)_c$ condition at

$$d = \inf_{\gamma \in \Gamma} \max_{0 \le t \le 1} I(\gamma(t)),$$

where $\Gamma = \{\gamma : [0, 1] \to \mathcal{N} : \gamma(0) = \varphi, \gamma(1) = -\varphi\}$, and so there exists a solution u^* satisfying $I(u^*) = d > \underline{d}$.

물 🖌 🖉 🖻 👘 🗄 물

Stationary problem: existence and nonexistence $\mathsf{Mountain}$ Pass Theorem on $\mathcal N$

Theorem (F. and Maia 24)

Let $\tilde{I}(u) := I(u) - \underline{d}$. For $\varphi > 0$ and $-\varphi < 0$ local minima on S^+ , then \tilde{I} satisfies the geometrical hypotheses of the Mountain Pass Theorem on \mathcal{N} .

Moreover \tilde{I} satisfies $(PS)_c$ condition at

$$d = \inf_{\gamma \in \Gamma} \max_{0 \le t \le 1} I(\gamma(t)),$$

where $\Gamma = \{\gamma : [0, 1] \to \mathcal{N} : \gamma(0) = \varphi, \gamma(1) = -\varphi\}$, and so there exists a solution u^* satisfying $I(u^*) = d > \underline{d}$.

Note that the solution just found may be trivial. The next theorem gives a sufficient condition in order to obtain a **nontrivial** min-max solution u^* .

イロン 不良 とくほど 不良 とうほう

Stationary problem: existence and nonexistence Sign changing solution

Theorem (F. and Maia 24)

Let $\lambda_1(\Omega) < \lambda_2(\Omega) < \lambda < \lambda_1(\Omega_0)$. Then there exists a mountain pass solution u^* of the stationary problem , which is sign-changing with energy level $\underline{d} < l(u^*) = d < 0$. Moreover, u^* has Morse index at least 1, and, therefore, it is an unstable solution.

Cardoso, Furtado and Maia 24: general superlinear nonlinearity

- Want to show that $I(u^*) = d < 0$, which gives $u^* \neq 0$.
- Consider the positive (normalized in $L^2(\Omega)$) eigenfunctions of $-\Delta$:
 - Ω: φ₁, φ₂
 - Ω_0 : ϕ_1^0 , ϕ_2^0
- \bullet In order to construct a convenient path in Γ not passing through zero we define

$$w = t_1(\phi_1 + \varepsilon \phi_1^0) + t_2(\phi_2 + \varepsilon \phi_2^0)$$

with constants t_1 , $t_2 > 0$, and $\varepsilon > 0$ to be chosen sufficiently small. Using that $b(x) \le 0$, there is a positive constant C such that

$$I(w) \leq rac{(t_1^2+t_2^2)}{2}\max\{\lambda_1(\Omega)-\lambda,\lambda_2(\Omega)-\lambda\}+O(arepsilon(t_1^2+t_2^2))\leq -\delta_1<0,$$

for some constant $\delta_1 > 0$. Note that

- $||w|| \le \sqrt{t_1^2 + t_2^2 + C\varepsilon^2}$, taking $t_1, t_2 > 0$ and ε sufficiently small
- $\nu + 1 > 2$, and
- $\lambda_1(\Omega) < \lambda_2(\Omega) < \lambda$.

ヨト イヨト ニヨ

Define $w_1 := t_1(\phi_1 + \varepsilon \phi_1^0)$ and $w_2 := t_2(\phi_2 + \varepsilon \phi_2^0)$, and $w_{\theta} := \cos(\theta)w_1 + \sin(\theta)w_2$,

 $I(w_{\theta}) < 0; \quad \forall \theta \in [0, \pi]$

Define the path:

$$\gamma(s) := \begin{cases} [(1-3s)\varphi + 3s(w_1)], & s \in [0, 1/3] \\ w_{\theta(s)}, & s \in [1/3, 2/3] \text{ and } \theta(s) = 3(s-1/3)\pi, \\ [3(1-s)(-w_1) + 3(s-2/3)(-\varphi)], & s \in [2/3, 1], \end{cases}$$
(2)

which can be projected on $\mathcal N$ by the multiplication $au(s)\gamma(s)$, with

$$\tau(s) = \left[\frac{\int_{\Omega} |\nabla \gamma(s)|^2 - \lambda(\gamma(s))^2}{\int_{\Omega} b(x) |\gamma(s)|^{\nu+1}}\right]$$

.

 $\bullet\,$ There is a negative upper bound in \mathcal{S}^+

$$I(\tau(s)\gamma(s)) \leq \max_{0 \leq t \leq 1} I(\tau(s)\gamma(s)) < 0$$

for all $s \in [0, 1]$.

- By the definition of the min-max level d, it follows that $I(u^*) = d < 0$.
- Hopf Lemma and uniqueness of positive solutions assure u^* is a sign changing solution.

27/36

• Global existence in time: the equation has a corresponding semigroup S(t) acting in L^2 and defined by

$$S(t)u_0(\cdot) = u(\cdot, t), \quad t \geq 0.$$

2

• Global existence in time: the equation has a corresponding semigroup S(t) acting in L^2 and defined by

$$S(t)u_0(\cdot) = u(\cdot, t), \quad t \geq 0.$$

- In particular, the set of (finite-time) blow-up solutions is empty.
- If we differentiate the map $t \mapsto I(u(t))$ with respect to t, we get

$$\frac{d}{dt}I(u(t)) = -\int_{\Omega} u_t^2(t) \quad \text{for all } t > 0, \tag{3}$$

which implies that *I* is decreasing along non-stationary solutions (Lyapunov gradient structure).

No blow-up and no grow-up

Theorem (F. and Maia 22)

Let $\lambda_1(\Omega) < \lambda < \lambda_1(\Omega_0)$. Then the solutions u(x, t) exist for all forward time. Additionally, no solution may blow-up in infinite-time, i.e., no grow-up.

2

Main parabolic results: $f(u) = |u|^{p-1}u$ Positive solutions

Given a nonnegative u_0 , then

 $u(t, u_0) \rightarrow \varphi$,

as $t \to \infty$, for φ the unique positive stationary solution.

Remark: The trivial solution is an isolated equilibrium point and is known to be unstable in the subset of nonnegative initial data, if $\lambda_1(\Omega) < \lambda$.

Stability of Mountain Pass solution

Theorem (F. and Maia 22)

There exist initial data $u_0, v_0 \in H_0^1(\Omega)$ with $u_0 \in \mathcal{N}_+$ and $v_0 \in \mathcal{N}_-$, satisfying

$$u(t, u_0) \rightarrow u^*$$
, $u(t, v_0) \rightarrow u^*$,

as $t \to \infty$ $(u_0, v_0 \in W^s_{loc}(u^*))$.

• The linearized operator at u^*

$$\mathcal{L}u = -\Delta u - f'(u^*)u \tag{4}$$

is self-adjoint in $L^2(\Omega)$ with domain $H^1_0(\Omega) \cap H^2(\Omega)$ and spectrum entirely composed of eigenvalues.

医下颌 医下颌

• The linearized operator at u^*

$$\mathcal{L}u = -\Delta u - f'(u^*)u \tag{4}$$

is self-adjoint in $L^2(\Omega)$ with domain $H^1_0(\Omega) \cap H^2(\Omega)$ and spectrum entirely composed of eigenvalues.

• $\{\mu_i\}_{i=1}^{\infty}$ the nondecreasing sequence of eigenvalues of \mathcal{L} , repeated according to their (finite) multiplicities, and $\{\psi_i\}_{i=1}^{\infty}$ the eigenfunctions.

• The linearized operator at u^*

$$\mathcal{L}u = -\Delta u - f'(u^*)u \tag{4}$$

is self-adjoint in $L^2(\Omega)$ with domain $H^1_0(\Omega) \cap H^2(\Omega)$ and spectrum entirely composed of eigenvalues.

• $\{\mu_i\}_{i=1}^{\infty}$ the nondecreasing sequence of eigenvalues of \mathcal{L} , repeated according to their (finite) multiplicities, and $\{\psi_i\}_{i=1}^{\infty}$ the eigenfunctions.

• We have
$$\mu_i \to +\infty$$
 as $i \to \infty$ and $\mu_1 < 0$.

Stability of Mountain Pass solution

Lemma

For u^* there exists i > q, such that

$$a_i := \int_\Omega \phi \psi_i
eq 0.$$

where $q := \max\{i \in \mathbb{N} : \mu_i \leq 0\}$.

We may decompose any u^* by

$$u^* = \sum_{i=1}^q a_i \psi_i + \sum_{i=q+1}^\infty a_i \psi_i.$$

(5)

 X₁ the finite dimensional subspace of H¹₀(Ω) spanned by {ψ_i : 1 ≤ i ≤ q} and X₂ spanned by {ψ_i : i > q}

- X_1 the finite dimensional subspace of $H_0^1(\Omega)$ spanned by $\{\psi_i : 1 \le i \le q\}$ and X_2 spanned by $\{\psi_i : i > q\}$
- The local stable manifold of u^* is tangent to X_2 at u^* . In addition, there exists a neighborhood V of 0 in X_2 and a C^1 map $h: V \to X_1$ such that

$$W_{loc}^{s}(u^{*}) = \{u^{*} + \eta + h(\eta) : \eta \in V\}.$$

→ ★ 문 ► ★ 문 ► _ E

- X_1 the finite dimensional subspace of $H_0^1(\Omega)$ spanned by $\{\psi_i : 1 \le i \le q\}$ and X_2 spanned by $\{\psi_i : i > q\}$
- The local stable manifold of u^* is tangent to X_2 at u^* . In addition, there exists a neighborhood V of 0 in X_2 and a C^1 map $h: V \to X_1$ such that

$$W^{s}_{loc}(u^{*}) = \{u^{*} + \eta + h(\eta) : \eta \in V\}.$$

• There exists at least one i > q such that $a_i \neq 0$; therefore

$$u_0 := u^* + \epsilon \psi_i + h(\epsilon \psi_i) \in W^s_{loc}(u^*)$$

프 위 에 프 위 이 프

- X₁ the finite dimensional subspace of H¹₀(Ω) spanned by {ψ_i : 1 ≤ i ≤ q} and X₂ spanned by {ψ_i : i > q}
- The local stable manifold of u^* is tangent to X_2 at u^* . In addition, there exists a neighborhood V of 0 in X_2 and a C^1 map $h: V \to X_1$ such that

$$W_{loc}^{s}(u^{*}) = \{u^{*} + \eta + h(\eta) : \eta \in V\}.$$

• There exists at least one i > q such that $a_i \neq 0$; therefore

$$u_0 := u^* + \epsilon \psi_i + h(\epsilon \psi_i) \in W^s_{loc}(u^*)$$

• By Taylor's expansion at u^* , since $J(u^*) = 0$ then $J(u_0) = J(u^*) + J'(u^*)(\epsilon \psi_i) + R_{\epsilon} = \epsilon \mu_i a_i + R_{\epsilon} \quad (a_i > 0).$

Summarizing

- Apply variational methods and comparison principle in order to analyze the behavior of solutions.
- The Nehari manifold is used to locate the stationary solutions, and identify convergence regions of evolutionary trajectories.
- To our knowledge, this is the first time the Nehari approach is applied to address the asymptotic analysis of solutions to the logistic problem.
- Exploit further the geometric features of the associated Nehari manifold. Since stationary solutions play a crucial role in the description of the evolution, several elliptic tools turn out to be quite useful for our purposes.

医下颌 医下颌

3

Thank you!

Juliana	Fernand	es (UFRJ)
---------	---------	------	-------

<ロ> <同> <同> < 回> < 回>

æ,