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Introduction

We consider general uniformly elliptic equations in divergence form,
under the weakest assumptions on the leading coefficients and

on the boundary of the domain.

We obtain a global extension of the classical Weak Harnack Inequality,
which extends and quantifies the Hopf Boundary Point Lemma.

Our main tool are the global C1-estimates and suitable barrier
functions, which are solutions of auxiliaries problems.

We provide an application showing how to use these results to deduce
a priori bounds and multiplicity of solutions for a

class of quasilinear elliptic problems.



Motivation

▶ We consider nonnegative weak supersolutions of the problem
Lu = f(x), x ∈ Ω, (P)

Lu := −div(A(x)Du+ βu) + b(x) ·Du+ c(x)u, x ∈ Ω, (L)

where Ω ⊂ Rn, for n ≥ 2, is a bounded domain, under certain regularity
assumptions.

▶ The De Giorgi-Moser “Weak Harnack Inequality” (WHI) is an inte-
rior result stated for any nonnegative supersolution of (P) as(∫

BR

uε

) 1
ε

≤ C0

(
inf
BR

u+ ||f ||Lp(B2R)

)
for ε <

n

(n− 2)+ , (WHI)

where B2R = B2R(x0) ⊂ Ω and C0 = C0(n,ϑ, p, q,R, ε,β, b, c).
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Motivation

▶ In [1] Sirakov proved a global extension to the (WHI) in terms of the
distance up to the boundary d = d(x, ∂Ω), for non-divergence form
operators.

[1] Sirakov, B. Boundary Harnack Estimates and Quantitative
Strong Maximum Principles for Uniformly Elliptic PDE, Int. Math.
Res. Notices, no 24, 7457-7482, 2018.

▶ It was called Boundary Weak Harnack Inequality - (bWHI).

▶ Inspired by [1], we obtained a version of the (bWHI) for divergence-
type equations considering optimal regularity assumptions.
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Regularity Assumptions
▶ We say that σ : [0, 1] → R+ is a Dini function and write σ ∈ D if

(i) σ(0) = 0 < σ(t)/2 ≤ σ(s) ≤ σ(t) for 0 < t/2 ≤ s ≤ t;
(ii) σ(τ )/τ is non-increasing and

∫ s
0

σ(τ )
τ dτ < +∞.

▶ We say ψ : Ω → R is Dini continuous function in Ω and write
ψ ∈ C0,Dini(Ω) if there exists some σ ∈ D such that

|ψ(x) −ψ(y)| ≤ σ(|x− y|) for all x, y ∈ Ω.

▶ We say Ω is a C1,Dini domain if, locally, ∂Ω can be seen as the
graph of a C1-function, whose derivatives are of class C0,Dini.

▶ Setting B+
R = BR ∩Ω, we say a function ψ has Dini mean oscillation

on Ω and write ψ ∈ C0,mDini(Ω) if there exists σm ∈ D such that

−
∫

B+
R
(x)

|ψ(y) − −
∫

B+
R
(x)

ψ(z)dz|dy ≤ σm(R) for every R > 0, x ∈ Ω.
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A Weaker Condition

▶ For all α ∈ (0, 1), ψ ∈ C0,α(Ω) =⇒ ψ ∈ C0,Dini(Ω).

▶ Choose σ(τ ) = C|τ |α for a suitable constant C > 0.

Then, Hölder continuity =⇒ Dini continuity.

▶ Note that for every R > 0, x ∈ Ω, it follows that

−
∫

B+
R
(x)

|ψ(y) − −
∫

B+
R
(x)

ψ(z)dz|dy ≤ sup
y,z∈B+

R
(x)

|ψ(y) −ψ(z)|.

Then, Dini continuity =⇒ Dini mean oscillation.

▶ A standard example of non-Dini continuous function which has Dini
mean oscillation is ψ(x) = | log |x||−γ , γ ∈ (0, 1].

Then, Dini mean oscillation ≠⇒ Dini continuity.
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Mayra Soares (mayra.soares@unb.br) 5 / 23



A Weaker Condition

▶ For all α ∈ (0, 1), ψ ∈ C0,α(Ω) =⇒ ψ ∈ C0,Dini(Ω).

▶ Choose σ(τ ) = C|τ |α for a suitable constant C > 0.

Then, Hölder continuity =⇒ Dini continuity.

▶ Note that for every R > 0, x ∈ Ω, it follows that

−
∫

B+
R
(x)

|ψ(y) − −
∫

B+
R
(x)

ψ(z)dz|dy ≤ sup
y,z∈B+

R
(x)

|ψ(y) −ψ(z)|.

Then, Dini continuity =⇒ Dini mean oscillation.

▶ A standard example of non-Dini continuous function which has Dini
mean oscillation is ψ(x) = | log |x||−γ , γ ∈ (0, 1].

Then, Dini mean oscillation ≠⇒ Dini continuity.
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Our Setting
▶ We consider nonnegative weak supersolutions of the problem

Lu = f(x), x ∈ Ω, (P)

Lu := −div(A(x)Du+ βu) + b(x) ·Du+ c(x)u, x ∈ Ω, (L)

where Ω ⊂ Rn, for n ≥ 2, is a bounded C1,Dini domain.

▶ Operator L is uniformly elliptic and A(x) = (ai,j(x)) is a symmetric
matrix, satisfying ai,j ∈ C0,mDini(Ω), i. e. having a Dini mean oscil-
lation in Ωd0 = {x ∈ Ω : d(x, ∂Ω) < d0}, for all i, j = 1, ...,n and

ϑIn ≤ A(x) ≤ ϑ−1In in Ω, (0.1)

for some ϑ > 0, d0 > 0, where In : Rn → Rn is the identity operator.

▶ For some q > n and some p > n/2, we also require that

β, |b| ∈ Lq(Ω), c ≥ 0 in Ω, and c, f ∈ Lp(Ω). (0.2)
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Main Result
Under our setting, we obtain the following

Boundary Weak Harnack Inequality - (bWHI)

(∫
B+

R

(u
d

)ε
) 1

ε

≤ C

(
inf
B+

u

d
+ ||f ||Lp(B+

2R
)

)
for some ε > 0, (bWHI)

for nonnegative weak supersolutions u of problem (P) and for every
x0 ∈ ∂Ω,R ≤ d0/2 and B+

R = BR(x0) ∩ Ω.



A Previous Result

▶ In [2], Sirakov developed global estimates for the following uniformly
elliptic PDEs in divergence-form,

−div(A(x)Du) + b(x) ·Du ≥ −f

in a C1,1-domain Ω and for a matrix A(x) ∈ W1,q(Ω) and functions
b, f ∈ Lq(Ω), para q > n.

[2] Sirakov, B. Global integrability and weak Harnack estimates for
elliptic PDE in divergence form, Anal. PDE 15 (1) 2849–2868, 2022.

▶ His main result was the Boundary Weak Harnack Inequality,

inf
Ω

u

d
≥ C

(∫
Ω

(u
d

)ε
) 1

ε

−C||f ||Lq(Ω),

and the guarantee of the best constant of integrability: ε < 1.
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Optimal Integrability

▶ The optimal exponent ε < 1, provided in [2], was specified for operators
which can be written in divergence and non-divergence form.

▶ This is not our case, due to the low regularity.

▶ Sirakov adopted a clever approach that allowed to produce a Moser-
type iterative argument.

▶ The regularity of the coefficients A(x) ∈ W1,q(Ω) was essential for
applying the Divergence Theorem and make his arguments work.

▶ Unluckily, this method cannot be adapted under our assumptions.

▶ Therefore, it is still an OPEN QUESTION the optimal exponent ε > 0
for the global integrability of u under our sharp hypotheses.

Mayra Soares (mayra.soares@unb.br) 9 / 23



Optimal Integrability

▶ The optimal exponent ε < 1, provided in [2], was specified for operators
which can be written in divergence and non-divergence form.

▶ This is not our case, due to the low regularity.

▶ Sirakov adopted a clever approach that allowed to produce a Moser-
type iterative argument.

▶ The regularity of the coefficients A(x) ∈ W1,q(Ω) was essential for
applying the Divergence Theorem and make his arguments work.

▶ Unluckily, this method cannot be adapted under our assumptions.

▶ Therefore, it is still an OPEN QUESTION the optimal exponent ε > 0
for the global integrability of u under our sharp hypotheses.

Mayra Soares (mayra.soares@unb.br) 9 / 23



Optimal Integrability

▶ The optimal exponent ε < 1, provided in [2], was specified for operators
which can be written in divergence and non-divergence form.

▶ This is not our case, due to the low regularity.

▶ Sirakov adopted a clever approach that allowed to produce a Moser-
type iterative argument.

▶ The regularity of the coefficients A(x) ∈ W1,q(Ω) was essential for
applying the Divergence Theorem and make his arguments work.

▶ Unluckily, this method cannot be adapted under our assumptions.

▶ Therefore, it is still an OPEN QUESTION the optimal exponent ε > 0
for the global integrability of u under our sharp hypotheses.

Mayra Soares (mayra.soares@unb.br) 9 / 23



Optimal Integrability

▶ The optimal exponent ε < 1, provided in [2], was specified for operators
which can be written in divergence and non-divergence form.

▶ This is not our case, due to the low regularity.

▶ Sirakov adopted a clever approach that allowed to produce a Moser-
type iterative argument.

▶ The regularity of the coefficients A(x) ∈ W1,q(Ω) was essential for
applying the Divergence Theorem and make his arguments work.

▶ Unluckily, this method cannot be adapted under our assumptions.

▶ Therefore, it is still an OPEN QUESTION the optimal exponent ε > 0
for the global integrability of u under our sharp hypotheses.

Mayra Soares (mayra.soares@unb.br) 9 / 23



Optimal Integrability

▶ The optimal exponent ε < 1, provided in [2], was specified for operators
which can be written in divergence and non-divergence form.

▶ This is not our case, due to the low regularity.

▶ Sirakov adopted a clever approach that allowed to produce a Moser-
type iterative argument.

▶ The regularity of the coefficients A(x) ∈ W1,q(Ω) was essential for
applying the Divergence Theorem and make his arguments work.

▶ Unluckily, this method cannot be adapted under our assumptions.

▶ Therefore, it is still an OPEN QUESTION the optimal exponent ε > 0
for the global integrability of u under our sharp hypotheses.

Mayra Soares (mayra.soares@unb.br) 9 / 23



Optimal Integrability

▶ The optimal exponent ε < 1, provided in [2], was specified for operators
which can be written in divergence and non-divergence form.

▶ This is not our case, due to the low regularity.

▶ Sirakov adopted a clever approach that allowed to produce a Moser-
type iterative argument.

▶ The regularity of the coefficients A(x) ∈ W1,q(Ω) was essential for
applying the Divergence Theorem and make his arguments work.

▶ Unluckily, this method cannot be adapted under our assumptions.

▶ Therefore, it is still an OPEN QUESTION the optimal exponent ε > 0
for the global integrability of u under our sharp hypotheses.

Mayra Soares (mayra.soares@unb.br) 9 / 23



Conclusions Extracted from the (bWHI)

▶ The (bWHI) quantifies the positivity of the supersolution u close
to ∂Ω, as well as, the (WHI) quantifies the positivity of u in the interior.

▶ The (bWHI) also quantifies the Boundary Point Principle (BPP).

▶ For the homogeneous equation, the Boundary Weak Harnack Inequa-
lity gives

u

d
≥ inf

B+
R

u

d
≥ C

(∫
B+

R

(u
d

)ε
) 1

ε

, in B+
R = B+

R (x0),

which, passing to the limit with x → x0, implies the (BPP).

▶ If Lu ≥ 0 in B+
2R and u ≥ c0d in some ω ⊂ B+

R with |ω| > 0, the
(bWHI) implies that u ≥ κc0d, in the whole B+

R ,
for some κ > 0 depending only on |ω| and the data, quantifying the
positivity of u close to ∂Ω.
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▶ For the homogeneous equation, the Boundary Weak Harnack Inequa-
lity gives

u
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≥ inf

B+
R

u

d
≥ C

(∫
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R

(u
d

)ε
) 1

ε

, in B+
R = B+

R (x0),

which, passing to the limit with x → x0, implies the (BPP).

▶ If Lu ≥ 0 in B+
2R and u ≥ c0d in some ω ⊂ B+

R with |ω| > 0, the
(bWHI) implies that u ≥ κc0d, in the whole B+

R ,
for some κ > 0 depending only on |ω| and the data, quantifying the
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Quantifying the Boundary Point Principle - (BPP)

▶ For the nonhomogeneous case, the quantification given by the (bWHI)
preserves the integrability of u/d and rectifies the (BPP) with the
Lp-norm of f .

▶ A lot of effort has been dedicated to getting optimal conditions for
the validity of the (BPP).

▶ The conditions vary in terms of the regularity/geometry of the do-
main and the regularity/nature of the coefficients.

▶ However, only recently the importance of such a quantification of
the (BPP) has been recognized.

▶ There are no previous results quantifying the (BPP) in such a way
for divergence form equations, not related to non-divergence ones.
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The General Statement of our (bWHI)
[3, Theorem 1.1] (Rendón-Sirakov-S.)

Assume Li are uniformly elliptic operators under our assumptions, Ω
is a C1,Dini domain and fi ∈ Lp(Ω) for p > n

2 , and i = 1, 2. Then,

(1) if L1u ≥ f1 and u ≥ 0 in Ω, there exist ε,C > 0, depending on
the data, such that(∫

Ω

(u
d

)ε
) 1

ε

≤ C

(
inf
Ω

u

d
+ ||f1||Lp(Ω)

)
.

(2) if L1u ≥ f1, L2u ≤ f2, u ≥ 0 in Ω and u ≡ 0 on ∂Ω, there exist
C > 0, depending on the data, such that

sup
Ω

u

d
≤ C

(
inf
Ω

u

d
+ ||f1||Lp(Ω) + ||f2||Lp(Ω)

)
.

[3] Rendón, F., Sirakov, B. and S., M. Boundary weak Harnack estimates
and regularity for elliptic PDE in divergence form. Nonlinear Anal. 235,
Paper No. 113331, 2023.
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Our Method for Proving [3, Theorem 1.1]

▶ The statement of our (bWHI) is similar to that for the non-divergence
case [1, Theorem 1.2].

▶ However, the key point of our arguments (the boundary growth
lemma) requires a different approach.

▶ We use the classical idea of [4] to compare u with a solution of a
“frozen coefficients” equation in a sufficiently small annulus, which
touches the boundary.

[4] Finn, R. and Gilbarg, D. Asymptotic behavior and uniquenes of
plane subsonic flows, Comm. Pure Appl. Math. 10 23–63, 1957.

▶ We combine this comparison with the direct use of the
Maximum Principle (✓) and the global C1-estimates.
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C1-estimates up to the Boundary

[3, Theorem 3.1] (Dong–Escauriaza–Kim, [5])

Let Ω be a domain satisfying diam(Ω) ≤ 1. If u ∈ H1
0(Ω) solves

Lu = f in Ω, under our assumptions, then u ∈ C1(Ω).

In addition, ∥u∥C1(Ω) ≤ C(∥u∥L2(Ω)
+ ∥f∥Lp(Ω)),

where the constant C > 0 depends on the data.
Furthermore, there exists a modulus of continuity ω, depending on the
Dini mean oscilation, such that |Du(x) −Du(y)| ≤ ω(|x− y|).

[5] Dong, H., L. Escauriaza, L. and Kim, S. On C1, C2 and weak
type−(1, 1) estimates for linear elliptic operators: part II, Math. Ann.
370 447–489, 2018.
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C1-estimates up to the Boundary

▶ It was crucial that the following global C1-estimates were available for
the standard Dirichlet problem associated to our operator.

▶ Such a result, under the Dini mean oscillation condition, has also just
been stated by us in [3].

▶ It was inferred due to [5, Theorem 1.3, Lemma 2.11, Lemma 2.12] and
by the standard Sobolev bounds for weak solutions,

∥Du∥L1(Ω)
≤ C̃∥u∥H1(Ω) ≤ C(∥u∥L2(Ω)

+ ∥f∥Lp(Ω)).

▶ The mere continuity on the leading coefficients is NOT SUFFICIENT
to guarantee a C1-estimate up to the boundary.
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More Contributions of the (bWHI)

▶ Our (bWHI) is new even for −div(A(x)Du) ≥ 0 with Hölder con-
tinuous C0,α leading coefficients.

▶ In [6] the authors proved the (BPP) for −div(A(x)Du) ≥ 0, with
Dini continuity of A. It was the best available regularity, up to now.

[6] Apushkinskaya, D. E. and Nazarov, A. I. The normal deriva-
tive lemma and surrounding issues, Russian Math. Surveys 77 (2)
189–249, 2022.

▶ Then, our (BPP) is also new for non-Dini continuous leading coeffi-
cients.

▶ Another consequence of the (bWHI) is the Boundary Regularity obtained
under the assumptions of [3, Theorem 1.1 (2)].
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Boundary Regularity Theory

[3, Theorem 1.2] (Rendón-Sirakov-S.)

Consider the elliptic operators L1 and L2, whose solutions of the Dirich-
let problem in Ω have uniformly continuous gradient in Ω.

If u ∈ H1(Ω) is such that L1u ≥ f1, L2u ≤ f2, for f1, f2 ∈ Lq(Ω),
then u may not even be differentiable in Ω, but it has a uniformly
continuous gradient on ∂Ω.
More precisely, under our setting with σ = | · |α, there exist the “gra-
dient” of u on ∂Ω, G ∈ C0,α(∂Ω, Rn), and C > 0 such that

∥G∥C0,α(∂Ω) ≤ C
(

∥u∥L∞(Ω) + ∥u∥C1,α(∂Ω) +
∑

∥fi∥Lq(Ω)

)
=: CW .

Furthermore, for each fixed x̂0 ∈ ∂Ω, for every x ∈ B+
1/2(x̂0) and

every x0 ∈ B1/2(x̂0) ∩ ∂Ω we have

|u(x) − u(x0) −G(x0) · (x− x0)| ≤ CW |x− x0|1+α.
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Boundary Regularity Theory
▶ [3, Theorem 1.2] is a consequence of our (bWHI), that guarantees the

boundary regularity of a function u for the divergence framework.

▶ For the non-divergence case, such a result is well known as Krylov’s
property.

▶ It is a consequence of his approach, introduced in [7], to prove the
solvability and the regularity of the Dirichlet problem.

[7] Krylov, N.V. Boundedly inhomogeneous elliptic and parabolic
equations in a domain, (Russian) Izv. Akad. Nauk SSSR Ser. Mat.
47 (1), 75–108, 1983.

▶ This is a fundamental result in the non-divergence theory, which has
been extended and applied over the years by many authors.

▶ However, this fact has never been proven for pure divergence-form
equations, even in the simplest cases.
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been extended and applied over the years by many authors.
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Applications
▶ The results in [1,2] have been instrumental in a new method for produc-

ing a priori bounds for positive solutions of nonlinear elliptic equations.

▶ Following this method, [3, Theorem 1.1] has been applied
▶ In [8], to provide a priori bounds and multiplicity of solutions of equations

having quadratic dependence on the gradient.
▶ The generalization of many papers that apply the BPP, under stronger

assumptions.

[8] F. Rendón and S., M. Multiplicity results for a class of quasilin-
ear elliptic problems with quadratic growth on the gradient, preprint,
arXiv:2207.10831.
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More About the Application in [8]

▶ We consider the following class of boundary value problems{
−div(A(x)Du) = cλ(x)u+ (M (x)Du,Du) + h(x)

u ∈ H1
0(Ω) ∩ L∞(Ω)

(Pλ)

where Ω ⊂ Rn, for n ≥ 3, is a C1,Dini bounded domain.

▶ c,h ∈ Lp(Ω) for some p > n, with functions c+, c− ≥ 0 such that
cλ(x) := λc+(x) − c−(x) for a parameter λ ∈ R.

▶ A(x) ∈ C0,Dini is a uniformly positive bounded measurable matrix.

▶ M(x) is a positive matrix such that

0 < µ1In ≤ M (x) ≤ µ2In in Ω, (0.3)

for some constants µ1 > 0 and µ2 > 0.
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Coercive and Noncoercive Cases

▶ The class of problems (Pλ) is delicate to study, since the gradient
term has the same order as the Laplacian, with respect to dilations.

▶ The coercive case, i.e. c ≤ 0, was introduced by Boccardo, Murat
and Puel in the 80’s, but the uniqueness of solution was proved in
[10], many years latter.

[10] Arcoya, D., De Coster, C., Jeanjean, L. and Tanaka, K. Remarks
on the uniqueness for quasilinear elliptic equations with quadratic
growth conditions, J. Math. Anal. Appl., 420, 772-780, 2014.

▶ We consider the noncoercive case, c ̸≤ 0, assuming that{
Ωc+ := supp(c+), |Ωc+ | > 0 and there exists

ε > 0 such that c− = 0 in {x ∈ Ω : d(x, Ωc+) < ε}, (A+
c )

and hence, the uniqueness of solution is expected to fail.
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Our Strategy

▶ To prove our results, we have used our Boundary Weak Harnack In-
equality to generalize the results in [12], under our setting.

[12] Sirakov, Boyan: A new method of proving a priori bounds for
superlinear elliptic PDE, J. Math. Pures Appl. 141, 184-194, 2020.

▶ We have showed that it is sufficient to control the solutions on Ωc+ .

▶ Then, we have obtained a uniform a priori upper bound for the solu-
tions of (Pλ) in a neighborhood of any fixed point x ∈ Ωc+ .

▶ For each x̄ ∈ Ωc+ , we have done a local analysis in a ball, if x̄ ∈
Ωc+ ∩ Ω, or in a semiball, if x̄ ∈ Ωc+ ∩ ∂Ω.

▶ Similar analyses, based on the use of Harnack type inequalities, had not
been previously performed for the case x̄ ∈ ∂Ω.
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Optimal Assumptions and Possible Generalizations

Remarks

▶ If global C1-estimates are proved in the future under more general
assumptions, our method could be adapted to these situations.

▶ Considering the lower-order coefficients of L in Lq(Ω) with q > n,
is the optimal Lebesgue integrability for [3, Theorem 1.1].

▶ Even the (BPP) fails, for instance, for |b| ∈ Ln(Ω).

▶ Our results should be true for quasi-linear operators, if global
C1-estimates were avaliable for the associated Dirichlet problem.

▶ [3, Theorem 1.2] should be generalized for divergence form oper-
ators with quadratic growth on the gradient.
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Thank You For Your Attention!



Characterizing the Set of Solutions

▶ Depending on the parameter λ ∈ R, we study the existence and mul-
tiplicity of solutions to (Pλ) and obtain a description of the set

Σ :=
{
(λ,u) ∈ R × C(Ω) : u solves (Pλ)

}
.

▶ As we do not have global sign conditions, the previously approaches
used in the literature to obtain a priori bounds cannot be applied.

▶ In fact, the noncoercive case has remained unexplored until very recently.

▶ We follow the method introduced in [11], which allows to obtain more
information about the qualitative behavior of the solutions.

[11] De Coster, C., Fernández, A. J. and Jeanjean, L. A priori bounds
and multiplicity of solutions for an indefinite elliptic problem with
critical growth, J. Math. Pures Appl. (9), 132, 308-333, 2019.
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Describing Continuums of Solutions

▶ At first, we show the existence of a continuum of solutions to problem
(Pλ), assuming that problem (P0), when λ = 0, has a solution.

▶ We consider the cases c+(x)u0 ≩ 0 and c+(x)u0 ≨ 0 separately, in
[8, Theorem 1.1] and [8, Theorem 1.2], respectively.

▶ In [8, Theorem 1.3], we consider that (P0) does not have a solution,
but there exists a supersolution β0 ≤ 0 to (Pλ0), for some λ0 > 0.
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Describing Continuums of Solutions
▶ In [8, Theorem 1.5], we also consider the particular case h(x) ≡ 0,

denoting by γ1 > 0 is the first eigenvalue of (Pλ1).

▶ Applying the SMP and the Hopf Lemma, we also obtain special cases of
[8, Theorems 1.1 and 1.2], considering the sign of u0, when h(x) ≩ 0
and h(x) ≨ 0, respectively.

▶ For obtaining our results in Theorems 1.1-1.5, it is fundamental to study
an auxiliary fixed point problem via degree theory.
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