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Introduction

We consider general uniformly elliptic equations in divergence form,
under the weakest assumptions on the leading coefficients and
on the boundary of the domain.

We obtain a global extension of the classical Weak Harnack Inequality,
which extends and quantifies the Hopf Boundary Point Lemma.

Our main tool are the global C'-estimates and suitable barrier
functions, which are solutions of auxiliaries problems.

We provide an application showing how to use these results to deduce
a priori bounds and multiplicity of solutions for a
class of quasilinear elliptic problems.




Motivation

» We consider nonnegative weak supersolutions of the problem
Lu= f(z), z€Q, (P)

Lu = —div(A(z)Du+ pu) + b(x) - Du+ c(z)u, z € Q, (L)

where O C R™, for n > 2, is a bounded domain, under certain regularity
assumptions.
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Lu = —div(A(z)Du+ pu) + b(x) - Du+ c(z)u, z € Q, (L)

where O C R™, for n > 2, is a bounded domain, under certain regularity
assumptions.

» The De Giorgi-Moser “Weak Harnack Inequality” (WHI) is an inte-

rior result stated for any nonnegative supersolution of (P) as
1

2\ ¢ n
© < f fore < ——— WHI
(/BRU) Co<1n 11+|f|LpBZR) or <(n72)+’ ( )

where Bop = Bag(wg) € Q) and Cy = Cy(n, 9, p,q, R, ¢, 3,b,¢).

Mayra Soares (mayra.soares@unb.br) 2/23



Motivation

> In [1] Sirakov proved a global extension to the (WHI) in terms of the
distance up to the boundary d = d(z, 9Q)), for non-divergence form
operators.

A [1] Sirakov, B. Boundary Harnack Estimates and Quantitative
Strong Maximum Principles for Uniformly Elliptic PDE, Int. Math.
Res. Notices, no 24, 7457-7482, 2018.
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Motivation

» In [1] Sirakov proved a global extension to the (WHI) in terms of the
distance up to the boundary d = d(z, 9Q)), for non-divergence form
operators.

A [1] Sirakov, B. Boundary Harnack Estimates and Quantitative
Strong Maximum Principles for Uniformly Elliptic PDE, Int. Math.
Res. Notices, no 24, 7457-7482, 2018.

» It was called Boundary Weak Harnack Inequality - (bWHI).

» Inspired by [1], we obtained a version of the (bWHI) for divergence-
type equations considering optimal regularity assumptions.
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Regularity Assumptions
» We say that o : [0,1] — Ry is a Dini function and write o € D if

(1) 0(0) =0<o0(t)/2<0(s) <o(t) for0<t/2<s<t;

(ii) o(r)/7 is non-increasing and [ OTT)dT < 400.
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Regularity Assumptions
» We say that o : [0,1] — R4 is a Dini function and write o € D if

(i) o(0) =0<o(t)/2<0o(s) <o(t) for 0 <t/2< s <t

(ii) o(r)/7 is non-increasing and [ UTT)dT < 400.

> We say ¢ : (3 — R is Dini continuous function in () and write
Y € COPini(Q)) if there exists some o € D such that

() =d(y)| < o(lz—yl) for all z,yeQ.

> We say Q is a 1P domain if, locally, 90) can be seen as the
graph of a C'-function, whose derivatives are of class C"7"",

» Setting B}, = Br N Q, we say a function ) has Dini mean oscillation
on O and write ¢/ € CYP(Q)) if there exists o, € D such that

s

. [ (y) —][ Y(2)dz|dy < o (R) for every R >0, x € Q.
r() JBp(z)
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A Weaker Condition

» Forallae (0,1), ¢ € CO(Q) = o e COPmi(Q).
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o

R

)wwf W(2)deldy < sup  [o(y) — ().

BR T ?/-,ZGBE(I)
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Our Setting

» We consider nonnegative weak supersolutions of the problem
Lu= f(x), x€Q,

Lu = —div(A(z)Du+ Bu) + b(z) - Du+ c(z)u, z € Q,

where Q) ¢ R, for n > 2, is a bounded C1"P domain.
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where Q) ¢ R, for n > 2, is a bounded C1"P domain.

» Operator £ is uniformly elliptic and A(z) = (a;;(z)) is a symmetric
matrix, satisfying a; ; € C""P7(Q)), i. e. having a Dini mean oscil-
lation in Oy, = {z € O : d(z,00) < dp}, forall i,j =1,...,n and

I, < A(z) <97, in Q, (0.1)

for some ¥ > 0,dgp > 0, where I, : R” — R" is the identity operator.

» For some ¢ > n and some p > n/2, we also require that

B,Ibl € L9(Q), ¢>0in Q, and ¢, f € LP(Q). (0.2)
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Main Result

Under our setting, we obtain the following

Boundary Weak Harnack Inequality - (bWHI)

+
R

1
) <o (i f 0, (bWHI
(E) < %1+g+||f||Lp(B§R) or somee >0, ( )

(1

for nonnegative weak supersolutions v of problem (P) and for every
x9 € 00, R < dy/2 and B = BR(.I()) NnQ.




A Previous Result

> In [2], Sirakov developed global estimates for the following uniformly
elliptic PDEs in divergence-form,

—div(A(x)Du) + b(z) - Du > —f

in a C''-domain () and for a matrix A(z) € W9(Q)) and functions
b, f € L1(Q), para ¢ > n.

N [2] Sirakov, B. Global integrability and weak Harnack estimates for
elliptic PDE in divergence form, Anal. PDE 15 (1) 2849-2868, 2022.
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—div(A(x)Du) + b(z) - Du > —f

in a C''-domain () and for a matrix A(z) € W9(Q)) and functions
b, f € L1(Q), para ¢ > n.

N [2] Sirakov, B. Global integrability and weak Harnack estimates for
elliptic PDE in divergence form, Anal. PDE 15 (1) 2849-2868, 2022.

» His main result was the Boundary Weak Harnack Inequality,

1
o UNE\ €
lgdeC'(/Q (d)) = Cllfllzagqy,

and the guarantee of the best constant of integrability: ¢ < 1.
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Optimal Integrability

> The optimal exponent € < 1, provided in [2], was specified for operators
which can be written in divergence and non-divergence form.
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Optimal Integrability

The optimal exponent € < 1, provided in [2], was specified for operators
which can be written in divergence and non-divergence form.

This is not our case, due to the low regularity.

Sirakov adopted a clever approach that allowed to produce a Moser-
type iterative argument.

The regularity of the coefficients A(x) € W!"9(Q)) was essential for
applying the Divergence Theorem and make his arguments work.

Unluckily, this method cannot be adapted under our assumptions.

Therefore, it is still an OPEN QUESTION the optimal exponent ¢ > 0
for the global integrability of v under our sharp hypotheses.
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Conclusions Extracted from the (bWHI)

» The (bWHI) quantifies the positivity of the supersolution u close
to 0Q), as well as, the (WHI) quantifies the positivity of u in the interior.
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The (bWHI) quantifies the positivity of the supersolution u close
to 0Q), as well as, the (WHI) quantifies the positivity of u in the interior.

» The (bWHI) also quantifies the Boundary Point Principle (BPP).

» For the homogeneous equation, the Boundary Weak Harnack Inequa-

lity gives

o=

Y, BGANE EE
T ——
which, passing to the limit with 2 — z¢, implies the (BPP).

If Lu > 0in B;’H and u > cod in some w C B; with |w| > 0, the

(bWHI) implies that u> keod, in the whole BE7

for some k > 0 depending only on |w| and the data, quantifying the
positivity of u close to 9Q).
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Quantifying the Boundary Point Principle - (BPP)

» For the nonhomogeneous case, the quantification given by the (bWHI)
preserves the integrability of u/d and rectifies the (BPP) with the
LP-norm of f.
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preserves the integrability of u/d and rectifies the (BPP) with the
LP-norm of f.

A lot of effort has been dedicated to getting optimal conditions for
the validity of the (BPP).

The conditions vary in terms of the regularity/geometry of the do-
main and the regularity /nature of the coefficients.

However, only recently the importance of such a quantification of
the (BPP) has been recognized.

There are no previous results quantifying the (BPP) in such a way
for divergence form equations, not related to non-divergence ones.
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[3, Theorem 1.1] (Rendén-Sirakov-S.)

Assume L; are uniformly elliptic operators under our assumptions, ()
is a C1P domain and f; € LP(Q) for p> 2, and i = 1,2. Then,
(1) if Lyu > f1 and w > 0 in Q), there exist ,C > 0, depending on

the data, such that 1
N o (it
() =o(mg+inloo).

(2) if Lyu> f1, Louw < fo, w>01in O and u = 0 on 9Q), there exist

C > 0, depending on the data, such that

u . u
sup 5 < c (lgf 7 TlAllzr )+ |f2|Lp(Q)> -
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Our Method for Proving [3, Theorem 1.1]

» The statement of our (bWHI) is similar to that for the non-divergence
case [1, Theorem 1.2].
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“frozen coefficients” equation in a sufficiently small annulus, which
touches the boundary.

N [4] Finn, R. and Gilbarg, D. Asymptotic behavior and uniquenes of
plane subsonic flows, Comm. Pure Appl. Math. 10 23-63, 1957.

We combine this comparison with the direct wuse of the
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C'-estimates up to the Boundary

[3, Theorem 3.1] (Dong—Escauriaza—Kim, [5])

Let Q) be a domain satisfying diam(Q2) < 1. If u € H{(Q) solves
Lu = f in Q, under our assumptions, then u € C'(())
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C'-estimates up to the Boundary

[3, Theorem 3.1] (Dong—Escauriaza—Kim, [5])

Let Q) be a domain satisfying diam(Q2) < 1. If u € H{(Q) solves
Lu = f in Q, under our assumptions, then u € C'(Q))

In addition,

lller g < CClull 20y + 1122,

where the constant C' > 0 depends on the data.

Furthermore, there exists a modulus of continuity w, depending on the
Dini mean oscilation, such that |Du(z) — Du(y)| < w(|z —y|).
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C'-estimates up to the Boundary
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It was crucial that the following global C'-estimates were available for
the standard Dirichlet problem associated to our operator.

Such a result, under the Dini mean oscillation condition, has also just
been stated by us in [3].

It was inferred due to [5, Theorem 1.3, Lemma 2.11, Lemma 2.12] and
by the standard Sobolev bounds for weak solutions,

1Dull 216y < Cllullzas ) < Cllul g2y + 171 o))

The mere continuity on the leading coefficients is NOT SUFFICIENT
to guarantee a C'-estimate up to the boundary.
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More Contributions of the (bWHI)

» Our (bWHI) is new even for —div(A(z)Du) > 0 with Holder con-
tinuous C"“ leading coefficients.
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Dini continuity of A. It was the best available regularity, up to now.

N [6] Apushkinskaya, D. E. and Nazarov, A. |I. The normal deriva-
tive lemma and surrounding issues, Russian Math. Surveys 77 (2)
189-249, 2022.

Then, our (BPP) is also new for non-Dini continuous leading coeffi-
cients.

Another consequence of the (bWHI) is the Boundary Regularity obtained
under the assumptions of [3, Theorem 1.1 (2)].
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Consider the elliptic operators £1 and L2, whose solutions of the Dirich-
let problem in Q) have uniformly continuous gradient in Q.

If uc H'(Q) is such that Liu > f1, Lou < fo, for f1, fa € LI(Q),
then w may not even be differentiable in ), but it has a uniformly
continuous gradient on 0Q).

More precisely, under our setting with 0 = |- |, there exist the “gra-
dient” of u on 9Q), G € C"*(9Q),R™), and C > 0 such that

1Gllco.aan) < C (H“HLX’(Q) +lullera@o) + Y ”fiHLq(Q)) = CW.
Furthermore, for each fixed £y € 9Q), for every = € B;r/z(fco) and
every g € By/2(20) N OO we have

lu(z) — u(zo) — G(zo) - (z — z0)| < CW|z — 0| T

Mayra Soares (mayra.soares@unb.br) 17 /23



Boundary Regularity Theory

> [3, Theorem 1.2] is a consequence of our (bWHI), that guarantees the
boundary regularity of a function u for the divergence framework.

Mayra Soares (mayra.soares@unb.br) 18 /23



Boundary Regularity Theory

> [3, Theorem 1.2] is a consequence of our (bWHI), that guarantees the
boundary regularity of a function u for the divergence framework.

» For the non-divergence case, such a result is well known as Krylov’s
property.

Mayra Soares (mayra.soares@unb.br) 18 /23



Boundary Regularity Theory

> [3, Theorem 1.2] is a consequence of our (bWHI), that guarantees the
boundary regularity of a function u for the divergence framework.

» For the non-divergence case, such a result is well known as Krylov’s
property.

> It is a consequence of his approach, introduced in [7], to prove the
solvability and the regularity of the Dirichlet problem.

N [7] Krylov, N.V. Boundedly inhomogeneous elliptic and parabolic
equations in a domain, (Russian) lzv. Akad. Nauk SSSR Ser. Mat.
47 (1), 75-108, 1983.

Mayra Soares (mayra.soares@unb.br) 18 /23



Boundary Regularity Theory

> [3, Theorem 1.2] is a consequence of our (bWHI), that guarantees the
boundary regularity of a function u for the divergence framework.

» For the non-divergence case, such a result is well known as Krylov’s
property.

> It is a consequence of his approach, introduced in [7], to prove the
solvability and the regularity of the Dirichlet problem.

N [7] Krylov, N.V. Boundedly inhomogeneous elliptic and parabolic
equations in a domain, (Russian) lzv. Akad. Nauk SSSR Ser. Mat.
47 (1), 75-108, 1983.

» This is a fundamental result in the non-divergence theory, which has
been extended and applied over the years by many authors.

Mayra Soares (mayra.soares@unb.br) 18 /23



Boundary Regularity Theory

[3, Theorem 1.2] is a consequence of our (bWHI), that guarantees the
boundary regularity of a function u for the divergence framework.

For the non-divergence case, such a result is well known as Krylov's
property.

It is a consequence of his approach, introduced in [7], to prove the
solvability and the regularity of the Dirichlet problem.

N [7] Krylov, N.V. Boundedly inhomogeneous elliptic and parabolic
equations in a domain, (Russian) lzv. Akad. Nauk SSSR Ser. Mat.
47 (1), 75-108, 1983.

This is a fundamental result in the non-divergence theory, which has
been extended and applied over the years by many authors.

However, this fact has never been proven for pure divergence-form
equations, even in the simplest cases.
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Applications

» The results in [1,2] have been instrumental in a new method for produc-
ing a priori bounds for positive solutions of nonlinear elliptic equations.

» Following this method, [3, Theorem 1.1] has been applied
» In [8], to provide a priori bounds and multiplicity of solutions of equations
having quadratic dependence on the gradient.

» The generalization of many papers that apply the BPP, under stronger
assumptions.

N [8] F. Rendén and S., M. Multiplicity results for a class of quasilin-
ear elliptic problems with quadratic growth on the gradient, preprint,
arXiv:2207.10831.




More About the Application in [8]
» We consider the following class of boundary value problems

{ —div(A(z)Du) = cx(z)u+ (M (x)Du, Du) + h(x) (Py)
u € HHQ)NLX(Q) A

where QO C R, for n > 3, is a C-P" pounded domain.
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More About the Application in [8]
We consider the following class of boundary value problems

{ —div(A(z)Du) = cx(z)u+ (M (x)Du, Du) + h(x) (Py)
u € HHQ)NLX(Q) A

where QO C R, for n > 3, is a C-P" pounded domain.

¢, h € LP(Q) for some p > n, with functions ¢, ¢~ > 0 such that
ex(x) == Aet(x) — ¢ (x) for a parameter X € R.

A(x) € ¢%P" is a uniformly positive bounded measurable matrix.

M () is a positive matrix such that
0< MlIn < M(LL') < MZIn in 07 (03)

for some constants p; > 0 and pg > 0.
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term has the same order as the Laplacian, with respect to dilations.
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> The class of problems (P,) is delicate to study, since the gradient
term has the same order as the Laplacian, with respect to dilations.

» The coercive case, i.e. ¢ < 0, was introduced by Boccardo, Murat
and Puel in the 80's, but the uniqueness of solution was proved in
[10], many years latter.

A [10] Arcoya, D., De Coster, C., Jeanjean, L. and Tanaka, K. Remarks
on the uniqueness for quasilinear elliptic equations with quadratic
growth conditions, J. Math. Anal. Appl., 420, 772-780, 2014.
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Coercive and Noncoercive Cases

> The class of problems (P,) is delicate to study, since the gradient
term has the same order as the Laplacian, with respect to dilations.

» The coercive case, i.e. ¢ < 0, was introduced by Boccardo, Murat
and Puel in the 80's, but the uniqueness of solution was proved in
[10], many years latter.

A [10] Arcoya, D., De Coster, C., Jeanjean, L. and Tanaka, K. Remarks
on the uniqueness for quasilinear elliptic equations with quadratic
growth conditions, J. Math. Anal. Appl., 420, 772-780, 2014.

» We consider the noncoercive case, ¢ £ 0, assuming that

Q.+ :=supp(ct), |Q.+| > 0 and there exists i
(AD)

e>0suchthat¢c™ =0 in{zeQ:d(x,Qu) < e},

and hence, the uniqueness of solution is expected to fail.
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Our Strategy

» To prove our results, we have used our Boundary Weak Harnack In-
equality to generalize the results in [12], under our setting.

N [12] Sirakov, Boyan: A new method of proving a priori bounds for
superlinear elliptic PDE, J. Math. Pures Appl. 141, 184-194, 2020.
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Our Strategy

To prove our results, we have used our Boundary Weak Harnack In-
equality to generalize the results in [12], under our setting.

N [12] Sirakov, Boyan: A new method of proving a priori bounds for
superlinear elliptic PDE, J. Math. Pures Appl. 141, 184-194, 2020.

We have showed that it is sufficient to control the solutions on () .

Then, we have obtained a uniform a priori upper bound for the solu-
tions of (Py) in a neighborhood of any fixed point 7 € Q).+

Eor each T € ﬁc+, we have donej local analysis in a ball, if = €
Q.+ NQ, or in a semiball, if £ € Q.+ NOO.

Similar analyses, based on the use of Harnack type inequalities, had not
been previously performed for the case & € 0Q).
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Optimal Assumptions and Possible Generalizations

Remarks

> If global C!-estimates are proved in the future under more general
assumptions, our method could be adapted to these situations.

Considering the lower-order coefficients of £ in L(Q)) with ¢ > n,
is the optimal Lebesgue integrability for [3, Theorem 1.1].

Even the (BPP) fails, for instance, for |b| € L"((Q)).

Our results should be true for quasi-linear operators, if global
Cl-estimates were avaliable for the associated Dirichlet problem.

[3, Theorem 1.2] should be generalized for divergence form oper-
ators with quadratic growth on the gradient.
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Characterizing the Set of Solutions

» Depending on the parameter A € R, we study the existence and mul-
tiplicity of solutions to (P)) and obtain a description of the set
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Characterizing the Set of Solutions

Depending on the parameter A € R, we study the existence and mul-
tiplicity of solutions to (P)) and obtain a description of the set

2= {(\u) e RxC(Q) : usolves (P))}.

As we do not have global sign conditions, the previously approaches
used in the literature to obtain a priori bounds cannot be applied.

In fact, the noncoercive case has remained unexplored until very recently.

We follow the method introduced in [11], which allows to obtain more
information about the qualitative behavior of the solutions.

N [11] De Coster, C., Fernandez, A. J. and Jeanjean, L. A priori bounds
and multiplicity of solutions for an indefinite elliptic problem with
critical growth, J. Math. Pures Appl. (9), 132, 308-333, 2019.
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» At first, we show the existence of a continuum of solutions to problem
(Py), assuming that problem (Py), when \ = 0, has a solution.
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(Py), assuming that problem (Py), when \ = 0, has a solution.

» We consider the cases ¢ (2)ug = 0 and ¢'(z)ug = 0 separately, in
[8, Theorem 1.1] and [8, Theorem 1.2], respectively.

» In [8, Theorem 1.3], we consider that (Py) does not have a solution,
but there exists a supersolution [y < 0 to (Py,), for some Ag > 0.

Theorem 1.1

Theorem 1.2
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Describing Continuums of Solutions

In [8, Theorem 1.5], we also consider the particular case h(z) = 0,
denoting by 1 > 0 is the first eigenvalue of (Py,).

Applying the SMP and the Hopf Lemma, we also obtain special cases of
[8, Theorems 1.1 and 1.2], considering the sign of ug, when h(z) = 0
and h(z) < 0, respectively.

For obtaining our results in Theorems 1.1-1.5, it is fundamental to study
an auxiliary fixed point problem via degree theory.

Theorem 1.3
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