Michał Kowalczyk is a Polish mathematician, full professor at the Department of Mathematical Engineering of the University of Chile, and associate researcher at the Center for Mathematical Modeling (CMM). His scientific work has mainly revolved around partial differential equations.
He received his bachelor’s degree in mathematics in 1988 from the University of Warsaw, Poland. He obtained his PhD in mathematics in 1994 at the University of Tennessee – Knoxville, USA, where he also started his professional career. He has worked at several American universities and is currently a full professor at the University of Chile.
His primary research area is in the analysis of solutions of nonlinear elliptic and parabolic singular perturbation problems. He has studied the existence of entire solutions of some elliptic equations. He has also been involved in a project on parabolic equations and systems modelling molecular level transport phenomena.
His work has been published in the Journal of Functional Analysis, Archive for Rational Mechanics and Analysis, Communications on Pure and Applied Mathematics and Duke Mathematical Journal, as well as in the world’s most prestigious mathematical journals: Annals of Mathematics and Journal of the American Mathematical Society.
Disciplines
Algebra, Number Theory, Applied Mathematics
Skills and expertise
Mathematical Analysis, Functional Analysis, Real Analysis, Real and Complex Analysis, Mathematical Modelling, Applied Analysis, Nonlinear Analysis
Acerca de Michał Kowalczyk
Se licenció en matemáticas en 1988 en la Universidad de Varsovia, Polonia. Obtuvo su doctorado en matemáticas en 1994 en la Universidad de Tennessee – Knoxville, EE. UU., donde también inició su carrera profesional. Ha trabajado en varias universidades norteamericanas y actualmente es profesor de la Universidad de Chile.
Su principal área de investigación es el análisis de soluciones de problemas no lineales elípticos y parabólicos de perturbación singular. Ha estudiado la existencia de soluciones enteras de algunas ecuaciones elípticas. También ha participado en un proyecto sobre ecuaciones parabólicas y sistemas que modelizan fenómenos de transporte a nivel molecular.
Disciplinas
Álgebra, Teoría de números, Matemáticas aplicadas
Conocimientos y experiencia
Análisis matemático, Análisis funcional, Análisis real, Análisis real y complejo, Modelización matemática, Análisis aplicado, Análisis no lineal