Nonsmooth Semi-Newton Method in Difference Programming

Pedro Pérez-Aros*

Institute of Engineering Sciences, Universidad de O'Higgins, Chile.

Joint work with

Francisco J. Aragón Artacho & Boris S. Mordukhovich

This work was partially supported by Centro de Modelamiento Matemático (CMM), ACE210010 and FB210005, BASAL funds for center of excellence and ANID-Chile grant: Fondecyt Regular 1200283 and Fondecyt Regular 1190110 and Fondecyt Exploración 13220097.

Center of Mathematical Modelling, December 21, 2023

Mathematical model: Nonsmooth difference programming

We consider general optimization problems of the form

$$\min_{x\in\mathbb{R}^n}\varphi(x):=g(x)-h(x),$$

where $g: \mathbb{R}^n \to \mathbb{R}$ is of class $\mathcal{C}^{1,1}$ (i.e., \mathcal{C}^1 -smooth with locally Lipschitz derivatives), and $h: \mathbb{R}^n \to \mathbb{R}$ is a locally Lipschitzian and prox-regular function.

Definition (Poliquin-Rockafellar '96)

A function $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ is prox-regular at $\overline{x} \in \mathbb{R}^n$ for $\overline{v} \in \partial f(\overline{x})$ if it is l.s.c. around \overline{x} and there exist $\varepsilon > 0$ and $r \geq 0$ such that

$$f(x') \ge f(x) + \langle v, x' - x \rangle - \frac{r}{2} ||x' - x||^2$$

whenever $x, x' \in \mathbb{B}_{\varepsilon}(\overline{x})$ with $f(x) \leq f(\overline{x}) + \varepsilon$ and $v \in \partial f(x) \cap \mathbb{B}_{\varepsilon}(\overline{v})$. If this holds for all $\overline{v} \in \partial f(\overline{x})$, f is said to be prox-regular at \overline{x} .

Mathematical model: Nonsmooth difference programming

We consider general optimization problems of the form

$$\min_{x\in\mathbb{R}^n}\varphi(x):=g(x)-h(x),$$

where $g: \mathbb{R}^n \to \mathbb{R}$ is of class $\mathcal{C}^{1,1}$ (i.e., \mathcal{C}^1 -smooth with locally Lipschitz derivatives), and $h: \mathbb{R}^n \to \mathbb{R}$ is a locally Lipschitzian and prox-regular function.

Definition (Poliquin-Rockafellar '96)

A function $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ is prox-regular at $\overline{x} \in \mathbb{R}^n$ for $\overline{v} \in \partial f(\overline{x})$ if it is l.s.c. around \overline{x} and there exist $\varepsilon > 0$ and $r \geq 0$ such that

$$f(x') \ge f(x) + \langle v, x' - x \rangle - \frac{r}{2} ||x' - x||^2$$

whenever $x, x' \in \mathbb{B}_{\varepsilon}(\overline{x})$ with $f(x) \leq f(\overline{x}) + \varepsilon$ and $v \in \partial f(x) \cap \mathbb{B}_{\varepsilon}(\overline{v})$. If this holds for all $\overline{v} \in \partial f(\overline{x})$, f is said to be prox-regular at \overline{x} .

- Every convex function is prox-regular
- Every C^2 function is prox-regular.

• The limiting (Mordukhovich) subdifferential of f is denoted by $\partial f(\bar{x})$.

$$\partial f(\bar{x}) := \{ u \in \mathbb{R}^n \mid \exists x_k \to \bar{x}, f(x_k) \to f(x) \ u_k \to u, \ u_k \in \widehat{\partial} f(x_k) \text{ as } k \in \mathbb{N} \},$$

where

$$\widehat{\partial} f(\overline{x}) := \left\{ x^* \in \mathbb{R}^n \mid f(\overline{x}) + \langle x^*, x - \overline{x} \rangle \le f(x) + o(\|x - \overline{x}\|) \right\}.$$

- The limiting (Mordukhovich) subdifferential of f is denoted by $\partial f(\bar{x})$.
- Let $\varphi = g h$ be the cost function of our problem, where g is of class $\mathcal{C}^{1,1}$ around $\overline{x} \in \mathbb{R}^n$ and h is locally Lipschitzian around \overline{x} and prox-regular at \overline{x} . We say that \overline{x} is a stationary point if $0 \in \partial \varphi(\overline{x})$.

- The limiting (Mordukhovich) subdifferential of f is denoted by $\partial f(\bar{x})$.
- Let $\varphi = g h$ be the cost function of our problem, where g is of class $\mathcal{C}^{1,1}$ around $\overline{x} \in \mathbb{R}^n$ and h is locally Lipschitzian around \overline{x} and prox-regular at \overline{x} . We say that \overline{x} is a stationary point if $0 \in \partial \varphi(\overline{x})$. From the subdifferential sum rule, \overline{x} is a stationary point $\iff 0 \in \nabla g(\overline{x}) + \partial (-h)(\overline{x})$, so every stationary point is a critical point in the sense that $0 \in \nabla g(\overline{x}) \partial h(\overline{x})$.

- The limiting (Mordukhovich) subdifferential of f is denoted by $\partial f(\bar{x})$.
- Let $\varphi = g h$ be the cost function of our problem, where g is of class $\mathcal{C}^{1,1}$ around $\overline{x} \in \mathbb{R}^n$ and h is locally Lipschitzian around \overline{x} and prox-regular at \overline{x} . We say that \overline{x} is a stationary point if $0 \in \partial \varphi(\overline{x})$. From the subdifferential sum rule, \overline{x} is a stationary point $\iff 0 \in \nabla g(\overline{x}) + \partial (-h)(\overline{x})$, so every stationary point is a critical point in the sense that $0 \in \nabla g(\overline{x}) \partial h(\overline{x})$.
- We make use of the second-order subdifferential/generalized Hessian of the function $g: \mathbb{R}^n \to \mathbb{R}$ (of class $\mathcal{C}^{1,1}$) at $x \in \mathbb{R}^n$ defined by

$$\partial^2 g(x)(d) = \partial \langle d, \nabla g(\cdot) \rangle(x), \quad d \in \mathbb{R}^n.$$

If f is C^2 -smooth around x, then $\partial^2 f(x)(d) = \{\nabla^2 f(x)d\}$.

We introduce the following extension of the notion of positive-definiteness.

Definition

Let $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be a set-valued mapping and $\xi \in \mathbb{R}$. Then F is ξ -lower-definite if $\langle y, x \rangle \geq \xi ||x||^2$ for all $(x, y) \in \operatorname{gph} F$.

We introduce the following extension of the notion of positive-definiteness.

Definition

Let $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be a set-valued mapping and $\xi \in \mathbb{R}$. Then F is ξ -lower-definite if $\langle y, x \rangle \geq \xi ||x||^2$ for all $(x, y) \in \operatorname{gph} F$.

We can easily check the following:

• For any symmetric matrix Q with the smallest eigenvalue $\lambda_{\min}(Q)$, the function f(x) = Qx is $\lambda_{\min}(Q)$ -lower-definite.

We introduce the following extension of the notion of positive-definiteness.

Definition

Let $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be a set-valued mapping and $\xi \in \mathbb{R}$. Then F is ξ -lower-definite if $\langle y, x \rangle \geq \xi ||x||^2$ for all $(x, y) \in \operatorname{gph} F$.

We can easily check the following:

- For any symmetric matrix Q with the smallest eigenvalue $\lambda_{\min}(Q)$, the function f(x) = Qx is $\lambda_{\min}(Q)$ -lower-definite.
- If $g: \mathbb{R}^n \to \mathbb{R}$ is strongly convex with modulus $\rho > 0$, (i.e., $g \frac{\rho}{2} \| \cdot \|^2$ is convex), then $\partial^2 g(x)$ is ρ -lower-definite for all $x \in \mathbb{R}^n$.

We introduce the following extension of the notion of positive-definiteness.

Definition

Let $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be a set-valued mapping and $\xi \in \mathbb{R}$. Then F is ξ -lower-definite if $\langle y, x \rangle \geq \xi ||x||^2$ for all $(x, y) \in \operatorname{gph} F$.

We can easily check the following:

- For any symmetric matrix Q with the smallest eigenvalue $\lambda_{\min}(Q)$, the function f(x) = Qx is $\lambda_{\min}(Q)$ -lower-definite.
- If $g: \mathbb{R}^n \to \mathbb{R}$ is strongly convex with modulus $\rho > 0$, (i.e., $g \frac{\rho}{2} \| \cdot \|^2$ is convex), then $\partial^2 g(x)$ is ρ -lower-definite for all $x \in \mathbb{R}^n$.
- If $F_1, F_2 : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ are ξ_1 and ξ_2 -lower-definite, then the sum $F_1 + F_2$ is $(\xi_1 + \xi_2)$ -lower-definite.

The algorithm...

Newton-type algorithm

$$\min_{x \in \mathbb{R}^n} \varphi(x) := g(x) - h(x),$$

Newton's method

$$x_{k+1} = x_k + d_k$$
, where $\nabla^2 \varphi(x_k) d_k = -\nabla \varphi(x_k)$

Newton-type algorithm

$$\min_{x \in \mathbb{R}^n} \varphi(x) := g(x) - h(x),$$

Newton's method

$$x_{k+1} = x_k + d_k$$
, where $\nabla^2 \varphi(x_k) d_k = -\nabla \varphi(x_k)$

- $g: \mathbb{R}^n \to \mathbb{R}$ is of *class* $\mathcal{C}^{1,1}$
- $h: \mathbb{R}^n \to \mathbb{R}$ is a locally Lipschitzian and prox-regular.

$$\min_{x \in \mathbb{R}^n} \varphi(x) := g(x) - h(x)$$

```
Input: x_0 \in \mathbb{R}^n, \beta \in (0,1), \zeta > 0, t_{\min} > 0, \rho_{\max} > 0 and \sigma \in (0,1).
  1: for k = 0, 1, \dots do
            Take w_k \in \partial \varphi(x_k). If w_k = 0. STOP and return x_k.
            Choose \rho_k \in [0, \rho_{\text{max}}] and d_k \in \mathbb{R}^n \setminus \{0\} such that
  3:
                              -w_k \in \partial^2 g(x_k)(d_k) + \rho_k d_k and \langle w_k, d_k \rangle \leq -\zeta \|d_k\|^2.
            Choose any \overline{\tau}_k > t_{\min}. Set \tau_k := \overline{\tau}_k.
  4:
            while \varphi(x_k + \tau_k d_k) > \varphi(x_k) + \sigma \tau_k \langle w_k, d_k \rangle do
  5:
  6:
                  \tau_{\nu} = \beta \tau_{\nu}.
            end while
  7:
            Set x_{k+1} := x_k + \tau_k d_k.
  8:
  9: end for
```

$$\min_{x \in \mathbb{R}^n} \varphi(x) := g(x) - h(x)$$

```
Input: x_0 \in \mathbb{R}^n, \beta \in (0,1), \zeta > 0, t_{\min} > 0, \rho_{\max} > 0 and \sigma \in (0,1).
  1: for k = 0, 1, \dots do
             Take w_k \in \partial \varphi(x_k). If w_k = 0, STOP and return x_k.
             Choose \rho_k \in [0, \rho_{\text{max}}] and d_k \in \mathbb{R}^n \setminus \{0\} such that
  3:
                               -w_{\ell} \in \partial^{2} g(x_{\ell})(d_{\ell}) + \rho_{\ell} d_{\ell} and \langle w_{k}, d_{k} \rangle \leq -\zeta \|d_{k}\|^{2}.
             Choose any \overline{\tau}_k > t_{\min}. Set \tau_k := \overline{\tau}_k.
  4:
             while \varphi(x_k + \tau_k d_k) > \varphi(x_k) + \sigma \tau_k \langle w_k, d_k \rangle do
  5:
  6:
                   \tau_{\nu} = \beta \tau_{\nu}.
             end while
  7:
  8:
             Set x_{k+1} := x_k + \tau_k d_k.
  9: end for
```

$$\min_{x\in\mathbb{R}^n}\varphi(x):=g(x)-h(x)$$

```
Input: x_0 \in \mathbb{R}^n, \beta \in (0,1), \zeta > 0, t_{\min} > 0, \rho_{\max} > 0 and \sigma \in (0,1).
  1: for k = 0, 1, \dots do
            Take w_k \in \partial \varphi(x_k). If w_k = 0. STOP and return x_k.
            Choose \rho_k \in [0, \rho_{\text{max}}] and d_k \in \mathbb{R}^n \setminus \{0\} such that
  3:
                              -w_k \in \partial^2 g(x_k)(d_k) + \rho_k d_k and \langle w_k, d_k \rangle \leq -\zeta \|d_k\|^2.
            Choose any \overline{\tau}_k > t_{\min}. Set \tau_k := \overline{\tau}_k.
  4:
            while \varphi(x_k + \tau_k d_k) > \varphi(x_k) + \sigma \tau_k \langle w_k, d_k \rangle do
  5:
  6:
                  \tau_{\nu} = \beta \tau_{\nu}.
            end while
  7:
  8:
            Set x_{k+1} := x_k + \tau_k d_k.
  9: end for
```

$$\min_{x \in \mathbb{R}^n} \varphi(x) := g(x) - h(x)$$

```
Input: x_0 \in \mathbb{R}^n, \beta \in (0,1), \zeta > 0, t_{\min} > 0, \rho_{\max} > 0 and \sigma \in (0,1).
  1: for k = 0, 1, \dots do
             Take w_k \in \partial \varphi(x_k). If w_k = 0. STOP and return x_k.
             Choose \rho_k \in [0, \rho_{\text{max}}] and d_k \in \mathbb{R}^n \setminus \{0\} such that
  3:
                               -w_{\ell} \in \partial^{2} g(x_{\ell})(d_{\ell}) + \rho_{\ell} d_{\ell} and \langle w_{k}, d_{k} \rangle \leq -\zeta \|d_{k}\|^{2}.
             Choose any \overline{\tau}_k > t_{\min}. Set \tau_k := \overline{\tau}_k.
  4:
             while \varphi(x_k + \tau_k d_k) > \varphi(x_k) + \sigma \tau_k \langle w_k, d_k \rangle do
  5:
  6:
                   \tau_{\nu} = \beta \tau_{\nu}.
             end while
  7:
  8:
             Set x_{k+1} := x_k + \tau_k d_k.
  9: end for
```

$$\min_{x \in \mathbb{R}^n} \varphi(x) := g(x) - h(x)$$

```
Input: x_0 \in \mathbb{R}^n, \beta \in (0,1), \zeta > 0, t_{\min} > 0, \rho_{\max} > 0 and \sigma \in (0,1).
  1: for k = 0, 1, \dots do
            Take w_k \in \partial \varphi(x_k). If w_k = 0. STOP and return x_k.
            Choose \rho_k \in [0, \rho_{\text{max}}] and d_k \in \mathbb{R}^n \setminus \{0\} such that
  3:
                              -w_k \in \partial^2 g(x_k)(d_k) + \rho_k d_k and \langle w_k, d_k \rangle < -\zeta \|d_k\|^2.
            Choose any \overline{\tau}_k \geq t_{\min}. Set \tau_k := \overline{\tau}_k.
  4:
            while \varphi(x_k + \tau_k d_k) > \varphi(x_k) + \sigma \tau_k \langle w_k, d_k \rangle do
  5:
  6:
                  \tau_{\nu} = \beta \tau_{\nu}.
            end while
  7:
  8:
            Set x_{k+1} := x_k + \tau_k d_k.
 9: end for
```

Our algorithm uses $w_k \in \partial \varphi(x_k) = \nabla g(x_k) + \partial (-h)(x_k) \iff v_k := w_k - \nabla g(x_k) \in \partial (-h)(x_k)$. Under our assumptions, the set $\partial (-h)(x_k)$ can be considerably smaller than $\partial h(x_k)$.

Our algorithm uses $w_k \in \partial \varphi(x_k) = \nabla g(x_k) + \partial (-h)(x_k) \iff v_k := w_k - \nabla g(x_k) \in \partial (-h)(x_k)$. Under our assumptions, the set $\partial (-h)(x_k)$ can be considerably smaller than $\partial h(x_k)$. This differs from DC algorithms, which choose subgradients in $\partial h(x_k)$. The purpose is to find a stationary point instead of a (classical) critical point.

DC ALGORITHM (DCA): Let x_0 be any initial point and set k := 0.

• Choose $u_k \in \partial h(x_k)$ and find a solution y_k of

$$(\mathcal{P}_k)$$
 minimize $g(y) - \langle u_k, y \rangle$.

② If $y_k = x_k \Rightarrow$ **stop** (x_k is a critical point, since $\nabla g(x_k) = \nabla g(y_k) = u_k \in \partial h(x_k)$). Otherwise, set $x_{k+1} := y_k$, k := k+1 and **go to** Step 1.

Our algorithm uses $w_k \in \partial \varphi(x_k) = \nabla g(x_k) + \partial (-h)(x_k) \iff v_k := w_k - \nabla g(x_k) \in \partial (-h)(x_k)$. Under our assumptions, the set $\partial (-h)(x_k)$ can be considerably smaller than $\partial h(x_k)$. This differs from DC algorithms, which choose subgradients in $\partial h(x_k)$. The purpose is to find a stationary point instead of a (classical) critical point. An alternative would be to replace $w_k \in \partial \varphi(x_k)$ by $w_k := \nabla g(x_k) - v_k$ with $v_k \in \partial h(x_k)$, but the modified algorithm would find a critical point, which is not guaranteed to be stationary.

DC ALGORITHM (DCA): Let x_0 be any initial point and set k := 0.

• Choose $u_k \in \partial h(x_k)$ and find a solution y_k of

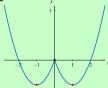
$$(\mathcal{P}_k)$$
 minimize $g(y) - \langle u_k, y \rangle$.

If $y_k = x_k \Rightarrow$ **stop** (x_k is a critical point, since $\nabla g(x_k) = \nabla g(y_k) = u_k \in \partial h(x_k)$). Otherwise, set $x_{k+1} := y_k$, k := k+1 and **go to** Step 1.

Our algorithm uses $w_k \in \partial \varphi(x_k) = \nabla g(x_k) + \partial (-h)(x_k) \iff v_k := w_k - \nabla g(x_k) \in \partial (-h)(x_k)$. Under our assumptions, the set $\partial (-h)(x_k)$ can be considerably smaller than $\partial h(x_k)$. This differs from DC algorithms, which choose subgradients in $\partial h(x_k)$. The purpose is to find a stationary point instead of a (classical) critical point. An alternative would be to replace $w_k \in \partial \varphi(x_k)$ by $w_k := \nabla g(x_k) - v_k$ with $v_k \in \partial h(x_k)$, but the modified algorithm would find a critical point, which is not guaranteed to be stationary.

Example

Consider $\varphi = g - h$ with $g(x) := \frac{1}{2}x^2$ and h(x) := |x|. If an algorithm was run by using $x_0 = 0$ as the initial point but choosing $w_0 = \nabla g(x_0) - v_0$ with $v_0 = 0 \in \partial h(0)$ (instead of $w_0 \in \partial \varphi(x_0)$), it would stop and return x = 0, which is a critical point, but not a stationary one. On the other hand, for any $w_0 \in \partial \varphi(0) = \{-1, 1\}$ we get $w_0 \neq 0$, and so our algorithm will continue iterating until it converges to one of the two stationary points -1/2 and 1/2.



Lemma (Our algorithm is well-defined)

Let $\varphi = g - h$, with $g \in \mathcal{C}^{1,1}$ and h being locally Lipschitz around \overline{x} and prox-regular at this point. Assume that $\partial^2 g(\overline{x})$ is ξ -lower-definite for some $\xi \in \mathbb{R}$ and consider a nonzero subgradient $w \in \partial \varphi(\overline{x})$. Then for any $\zeta > 0$ and any $\rho \geq \zeta - \xi$, there exists a nonzero direction $d \in \mathbb{R}^n$ satisfying the inclusion

$$-w \in \partial^2 g(\bar{x})(d) + \rho d. \tag{1}$$

Moreover, any nonzero direction from (1) obeys the conditions:

(i)
$$\varphi'(\overline{x};d) = \limsup_{t \to 0^+} \frac{\varphi(\overline{x}+td)-\varphi(\overline{x})}{t} \le \langle w,d \rangle \le -\zeta \|d\|^2.$$

(ii) Whenever $\sigma \in (0,1)$, there exists $\eta > 0$ such that

$$\varphi(\bar{x} + \tau d) < \varphi(\bar{x}) + \sigma \tau \langle w, d \rangle \le \varphi(\bar{x}) - \sigma \zeta \tau \|d\|^2$$
 when $\tau \in (0, \eta)$.

Let us consider the problem

$$\min_{x \in \mathbb{R}^2} \varphi(x) := \underbrace{\frac{1}{2} (Ax - b)^2}_{g(x)} - \underbrace{(\|x\|_2 - \|x\|_1)}_{h(x)}, \quad x \in \mathbb{R}^2, \text{ with } A := [1, 0] \text{ y } b := 1.$$

Let us consider the problem

$$\min_{x \in \mathbb{R}^2} \varphi(x) := \underbrace{\frac{1}{2} (Ax - b)^2}_{g(x)} - (\underbrace{\|x\|_2 - \|x\|_1}_{h(x)}), \quad x \in \mathbb{R}^2, \text{ with } A := [1, 0] \text{ y } b := 1.$$

• Let
$$\bar{x} := (1,0)^{\top}$$

$$\partial \varphi(\overline{x}) = \left\{ \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

Let us consider the problem

$$\min_{x \in \mathbb{R}^2} \varphi(x) := \underbrace{\frac{1}{2} (Ax - b)^2}_{g(x)} - (\underbrace{\|x\|_2 - \|x\|_1}_{h(x)}), \quad x \in \mathbb{R}^2, \text{ with } A := [1, 0] \text{ y } b := 1.$$

• Let $\bar{x} := (1,0)^{\top}$

$$\partial \varphi(\overline{x}) = \left\{ \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

• $\nabla^2 g(\overline{x}) = A^T A$ is $\lambda_{\min}(A^T A)$ -lower definite.

Let us consider the problem

$$\min_{x \in \mathbb{R}^2} \varphi(x) := \underbrace{\frac{1}{2} (Ax - b)^2}_{g(x)} - (\underbrace{\|x\|_2 - \|x\|_1}_{h(x)}), \quad x \in \mathbb{R}^2, \text{ with } A := [1, 0] \text{ y } b := 1.$$

• Let $\bar{x} := (1,0)^{\top}$

$$\partial \varphi(\overline{x}) = \left\{ \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

- $\nabla^2 g(\overline{x}) = A^T A$ is $\lambda_{\min}(A^T A)$ -lower definite.
- Take $w := (0,1)^{\top} \in \partial \varphi(\overline{x})$

Let us consider the problem

$$\min_{x \in \mathbb{R}^2} \varphi(x) := \underbrace{\frac{1}{2} (Ax - b)^2}_{g(x)} - (\underbrace{\|x\|_2 - \|x\|_1}_{h(x)}), \quad x \in \mathbb{R}^2, \text{ with } A := [1, 0] \text{ y } b := 1.$$

• Let $\bar{x} := (1,0)^{\top}$

$$\partial \varphi(\bar{x}) = \left\{ \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

- $\nabla^2 g(\overline{x}) = A^T A$ is $\lambda_{\min}(A^T A)$ -lower definite.
- Take $w := (0,1)^{\top} \in \partial \varphi(\overline{x})$
- Then for every $\rho > 0$, the system $-w = \nabla^2 g(\overline{x})(d) + \rho d$ has the solution $d = (0, -1/\rho)^{\top}$.

Let us consider the problem

$$\min_{x \in \mathbb{R}^2} \varphi(x) := \underbrace{\frac{1}{2} (Ax - b)^2}_{g(x)} - (\underbrace{\|x\|_2 - \|x\|_1}_{h(x)}), \quad x \in \mathbb{R}^2, \text{ with } A := [1, 0] \text{ y } b := 1.$$

• Let $\bar{x} := (1,0)^{\top}$

$$\partial \varphi(\overline{x}) = \left\{ \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

- $\nabla^2 g(\overline{x}) = A^T A$ is $\lambda_{\min}(A^T A)$ -lower definite.
- Take $w := (0,1)^{\top} \in \partial \varphi(\overline{x})$
- Then for every $\rho > 0$, the system $-w = \nabla^2 g(\overline{x})(d) + \rho d$ has the solution $d = (0, -1/\rho)^{\top}$.
- Nevertheless, *d* is not a descend direction for $\varphi(x) = g(x) h(x)$ at \bar{x} . Indeed,

$$\varphi(\overline{x}+\tau d)=1+\frac{\tau}{\varrho}-\sqrt{1+(\tau/\varrho)^2}>\varphi(\overline{x})=0 \ \ \text{for all} \ \ \tau>0,$$

Theorem 1

Let $\varphi: \mathbb{R}^n \to \mathbb{R}$ be given by $\varphi = g - h$ with $\inf \varphi > -\infty$. Pick an initial point $x_0 \in \mathbb{R}^n$ and suppose that the sublevel set $\Omega := \{x \in \mathbb{R}^n \mid \varphi(x) \leq \varphi(x_0)\}$ is closed, that g is $\mathcal{C}^{1,1}$ around every $x \in \Omega$ and $\partial^2 g(x)$ is ξ -lower-definite for all $x \in \Omega$ with some $\xi \in \mathbb{R}$, and h is locally Lipschitzian and prox-regular on Ω . Then our algorithm either stops at a stationary point, or produces sequences $\{x_k\} \subseteq \Omega$, $\{\varphi(x_k)\}$, $\{w_k\}$, $\{d_k\}$, and $\{\tau_k\}$ such that:

Theorem 1

Let $\varphi: \mathbb{R}^n \to \mathbb{R}$ be given by $\varphi = g - h$ with $\inf \varphi > -\infty$. Pick an initial point $x_0 \in \mathbb{R}^n$ and suppose that the sublevel set $\Omega := \{x \in \mathbb{R}^n \mid \varphi(x) \leq \varphi(x_0)\}$ is closed, that g is $\mathcal{C}^{1,1}$ around every $x \in \Omega$ and $\partial^2 g(x)$ is ξ -lower-definite for all $x \in \Omega$ with some $\xi \in \mathbb{R}$, and h is locally Lipschitzian and prox-regular on Ω . Then our algorithm either stops at a stationary point, or produces sequences $\{x_k\} \subseteq \Omega$, $\{\varphi(x_k)\}$, $\{w_k\}$, $\{d_k\}$, and $\{\tau_k\}$ such that:

(i) The sequence $\{\varphi(x_k)\}$ monotonically decreases and converges.

Theorem 1

Let $\varphi: \mathbb{R}^n \to \mathbb{R}$ be given by $\varphi = g - h$ with $\inf \varphi > -\infty$. Pick an initial point $x_0 \in \mathbb{R}^n$ and suppose that the sublevel set $\Omega := \{x \in \mathbb{R}^n \mid \varphi(x) \leq \varphi(x_0)\}$ is closed, that g is $\mathcal{C}^{1,1}$ around every $x \in \Omega$ and $\partial^2 g(x)$ is ξ -lower-definite for all $x \in \Omega$ with some $\xi \in \mathbb{R}$, and h is locally Lipschitzian and prox-regular on Ω . Then our algorithm either stops at a stationary point, or produces sequences $\{x_k\} \subseteq \Omega$, $\{\varphi(x_k)\}$, $\{w_k\}$, $\{d_k\}$, and $\{\tau_k\}$ such that:

- (i) The sequence $\{\varphi(x_k)\}$ monotonically decreases and converges.
- (ii) If $\{x_{k_j}\}$ as $j \in \mathbb{N}$ is any bounded subsequence of $\{x_k\}$, then $\inf_{j \in \mathbb{N}} \tau_{k_j} > 0$,

$$\sum_{j \in \mathbb{N}} \|d_{k_j}\|^2 < \infty, \ \sum_{j \in \mathbb{N}} \|x_{k_j+1} - x_{k_j}\|^2 < \infty, \ \text{ and } \ \sum_{j \in \mathbb{N}} \|w_{k_j}\|^2 < \infty.$$

Then, boundedness of the entire sequence $\{x_k\}$ ensures that the set of accumulation points of $\{x_k\}$ is nonempty, closed and connected.

Theorem 1

Let $\varphi: \mathbb{R}^n \to \mathbb{R}$ be given by $\varphi = g - h$ with $\inf \varphi > -\infty$. Pick an initial point $x_0 \in \mathbb{R}^n$ and suppose that the sublevel set $\Omega := \{x \in \mathbb{R}^n \mid \varphi(x) \leq \varphi(x_0)\}$ is closed, that g is $\mathcal{C}^{1,1}$ around every $x \in \Omega$ and $\partial^2 g(x)$ is ξ -lower-definite for all $x \in \Omega$ with some $\xi \in \mathbb{R}$, and h is locally Lipschitzian and prox-regular on Ω . Then our algorithm either stops at a stationary point, or produces sequences $\{x_k\} \subseteq \Omega$, $\{\varphi(x_k)\}$, $\{w_k\}$, $\{d_k\}$, and $\{\tau_k\}$ such that:

- (i) The sequence $\{\varphi(x_k)\}$ monotonically decreases and converges.
- (ii) If $\{x_{k_j}\}$ as $j \in \mathbb{N}$ is any bounded subsequence of $\{x_k\}$, then $\inf_{j \in \mathbb{N}} \tau_{k_j} > 0$,

$$\sum_{j \in \mathbb{N}} \|d_{k_j}\|^2 < \infty, \ \sum_{j \in \mathbb{N}} \|x_{k_j+1} - x_{k_j}\|^2 < \infty, \ \text{ and } \ \sum_{j \in \mathbb{N}} \|w_{k_j}\|^2 < \infty.$$

Then, boundedness of the entire sequence $\{x_k\}$ ensures that the set of accumulation points of $\{x_k\}$ is nonempty, closed and connected.

(iii) If $x_{k_j} \to \overline{x}$ as $j \to \infty$, then \overline{x} is a stationary point and $\varphi(\overline{x}) = \inf_{k \in \mathbb{N}} \varphi(x_k)$.

Theorem 1

Let $\varphi: \mathbb{R}^n \to \mathbb{R}$ be given by $\varphi = g - h$ with $\inf \varphi > -\infty$. Pick an initial point $x_0 \in \mathbb{R}^n$ and suppose that the sublevel set $\Omega := \{x \in \mathbb{R}^n \mid \varphi(x) \leq \varphi(x_0)\}$ is closed, that g is $\mathcal{C}^{1,1}$ around every $x \in \Omega$ and $\partial^2 g(x)$ is ξ -lower-definite for all $x \in \Omega$ with some $\xi \in \mathbb{R}$, and h is locally Lipschitzian and prox-regular on Ω . Then our algorithm either stops at a stationary point, or produces sequences $\{x_k\} \subseteq \Omega$, $\{\varphi(x_k)\}$, $\{w_k\}$, $\{d_k\}$, and $\{\tau_k\}$ such that:

- (i) The sequence $\{\varphi(x_k)\}$ monotonically decreases and converges.
- (ii) If $\{x_{k_j}\}$ as $j \in \mathbb{N}$ is any bounded subsequence of $\{x_k\}$, then $\inf_{j \in \mathbb{N}} \tau_{k_j} > 0$,

$$\sum_{j \in \mathbb{N}} \|d_{k_j}\|^2 < \infty, \ \sum_{j \in \mathbb{N}} \|x_{k_j+1} - x_{k_j}\|^2 < \infty, \ \text{ and } \ \sum_{j \in \mathbb{N}} \|w_{k_j}\|^2 < \infty.$$

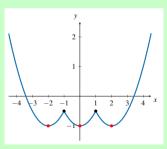
Then, boundedness of the entire sequence $\{x_k\}$ ensures that the set of accumulation points of $\{x_k\}$ is nonempty, closed and connected.

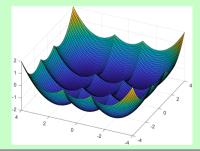
- (iii) If $x_{k_i} \to \overline{x}$ as $j \to \infty$, then \overline{x} is a stationary point and $\varphi(\overline{x}) = \inf_{k \in \mathbb{N}} \varphi(x_k)$.
- (iv) If $\{x_k\}$ has an isolated accumulation point \bar{x} , then the entire sequence $\{x_k\}$ converges to \bar{x} as $k \to \infty$, where \bar{x} is a stationary point.

Example (An illustrative example)

$$\varphi(x) := \sum_{i=1}^{n} \varphi_i(x_i), \text{ where } \varphi_i(x_i) := g_i(x_i) - h_i(x_i) \text{ with } g_i(x_i) := \frac{1}{2} x_i^2 \text{ and } h_i(x_i) := |x_i| + |1 - |x_i||$$

Then, φ satisfies the assumptions of the previous theorem with $g(x) := \sum_{i=1}^n g_i(x_i)$, $h(x) := \sum_{i=1}^n h_i(x_i)$ and $\xi = 1$. The points $\{-2, -1, 0, 1, 2\}^n$ are critical points, but the stationary points, which are also the global minima, are only the points in the set $\{-2, 0, 2\}^n$. Therefore, our algorithm will return a global minimum starting from any initial point.





Example

Consider the function $\varphi:\mathbb{R}\to\mathbb{R}$ given by

$$\varphi(x) := \int_0^x t^4 \sin\left(\frac{\pi}{t}\right) dt.$$

Example

Consider the function $\varphi:\mathbb{R}\to\mathbb{R}$ given by

$$\varphi(x) := \int_0^x t^4 \sin\left(\frac{\pi}{t}\right) dt.$$

- Observe furthermore that φ is a DC function because it is \mathcal{C}^2 .
- However, it is not possible to write its DC decomposition with $g(x) = \varphi(x) + ax^2$ and $h(x) = ax^2$ for a > 0, since there exists no scalar a > 0 such that the function $g(x) = \varphi(x) + ax^2$ is convex on the entire real line.
- Therefore, we cannot apply DCA with the decomposition $g(x) = \varphi(x) + ax^2$ and $h(x) = ax^2$ for a > 0.

Example

Consider the function $\varphi : \mathbb{R} \to \mathbb{R}$ given by

$$\varphi(x) := \int_0^x t^4 \sin\left(\frac{\pi}{t}\right) dt.$$

- φ is coercive, and satisfies the assumption of Theorem 1 over the level set $\Omega = \{x \mid \varphi(x) \leq \varphi(x_0)\}$ with $g(x) := \varphi(x)$ and h(x) := 0.
- The stationary points of φ are described by $S := \left\{ \frac{1}{n} \mid n \in \mathbb{Z} \setminus \{0\} \right\} \cup \{0\}$.
- If Algorithm 1 generates an iterative sequence $\{x_k\}$ starting from x_0 , then the accumulation points form by Theorem 1 a nonempty, closed, and connected set $A \subseteq S$
- If $A = \{0\}$, the sequence $\{x_k\}$ converges to $\bar{x} = 0$. If A contains any point of the form $\bar{x} = \frac{1}{n}$, then it is an isolated point, and Theorem 1 tells us that the entire sequence $\{x_k\}$ converges to that point, and consequently we have $A = \{\bar{x}\}$.

Regularized coderivative-based damped semi-Newton algorithm

What about the rate of convergence?

$$\min_{x \in \mathbb{R}^n} \varphi(x) := g(x) - h(x)$$

```
Input: x_0 \in \mathbb{R}^n, \beta \in (0, 1), \zeta > 0, t_{\min} > 0, \rho_{\max} > 0 and \sigma \in (0, 1).
  1: for k = 0, 1, \dots do
            Take w_k \in \partial \varphi(x_k). If w_k = 0, STOP and return x_k.
  2:
            Choose \rho_k \in [0, \rho_{\text{max}}] and d_k \in \mathbb{R}^n \setminus \{0\} such that
  3:
                              -w_k \in \partial^2 g(x_k)(d_k) + \rho_k d_k and \langle w_k, d_k \rangle < -\zeta \|d_k\|^2.
             Choose any \overline{\tau}_{\ell} > t_{\min}. Set \tau_{\ell} := \overline{\tau}_{\ell}.
  4:
            while \varphi(x_k + \tau_k d_k) > \varphi(x_k) + \sigma \tau_k \langle w_k, d_k \rangle do
  5:
                  \tau_{\nu} = \beta \tau_{\nu}.
  6:
  7:
            end while
             Set x_{k+1} := x_k + \tau_k d_k.
  8:
 9: end for
```

Definition

Let $\{x_k\}$ be a sequence in \mathbb{R}^n converging to \bar{x} as $k \to \infty$. The convergence rate is said to be:

(i) *R-linear* if there exist $\mu \in (0,1), c > 0$, and $k_0 \in \mathbb{N}$ such that

$$||x_k - \overline{x}|| \le c\mu^k$$
 for all $k \ge k_0$.

(ii) *Q-linear* if there exists $\mu \in (0,1)$ such that

$$\limsup_{k \to \infty} \frac{\|x_{k+1} - \overline{x}\|}{\|x_k - \overline{x}\|} = \mu.$$

(iii) *Q-superlinear* if it is Q-linear for all $\mu \in (0,1)$, i.e., if

$$\lim_{k\to\infty}\frac{\|x_{k+1}-\overline{x}\|}{\|x_k-\overline{x}\|}=0.$$

(iv) Q-quadratic if we have

$$\limsup_{k\to\infty} \frac{\|x_{k+1} - \overline{x}\|}{\|x_k - \overline{x}\|^2} < \infty.$$

Linear and superlinear convergence under additional assumptions

Corollary 1

In addition, suppose that $\{x_k\}$ has an accumulation point \bar{x} such that $\partial \varphi$ is strongly metrically subregular at $(\bar{x},0)$. Then the entire sequence converges to \bar{x} , with Q-linear convergence rate for $\{\varphi(x_k)\}$ and R-linear convergence rate for $\{x_k\}$ and $\{w_k\}$.

• A set-valued mapping $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is said to be strongly metrically subregular at $(\overline{x}, \overline{y}) \in \operatorname{gph} F$ if there are $\kappa > 0$ and $\varepsilon > 0$ such that $\|x - \overline{x}\| \le \kappa \|y - \overline{y}\|$, for all $(x, y) \in \mathbb{B}_{\varepsilon}(\overline{x}, \overline{y}) \cap \operatorname{gph} F$.

Linear and superlinear convergence under additional assumptions

Corollary 1

In addition, suppose that $\{x_k\}$ has an accumulation point \bar{x} such that $\partial \varphi$ is strongly metrically subregular at $(\bar{x},0)$. Then the entire sequence converges to \bar{x} , with Q-linear convergence rate for $\{\varphi(x_k)\}$ and R-linear convergence rate for $\{x_k\}$ and $\{w_k\}$. If furthermore, $\xi>0$, $0<\zeta\leq\xi,\,\rho_k\to0,\,\sigma\in(0,\frac12),\,t_{\min}=1,\,g$ is semismoothly differentiable at $\bar{x},\,h$ is of class $\mathcal{C}^{1,1}$ around \bar{x} , and $\mathrm{clm}\,\nabla h(\bar{x})=0$, then the rate of convergence is at least Q-superlinear.

• A set-valued mapping $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is said to be strongly metrically subregular at $(\bar{x}, \bar{y}) \in \operatorname{gph} F$ if there are $\kappa > 0$ and $\varepsilon > 0$ such that

$$||x - \overline{x}|| \le \kappa ||y - \overline{y}||$$
, for all $(x, y) \in \mathbb{B}_{\varepsilon}(\overline{x}, \overline{y}) \cap \operatorname{gph} F$.

• A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is calm at $\overline{x} \in \mathbb{R}^n$ with modulus $\kappa \geq 0$ if there is $\varepsilon > 0$ s.t.

$$||f(x) - f(\bar{x})|| \le \kappa ||x - \bar{x}||$$
, for all $x \in \mathbb{B}_{\varepsilon}(\bar{x})$.

• A function $g: \mathbb{R}^n \to \mathbb{R}$ is semismoothly differentiable at \overline{x} if it is $\mathcal{C}^{1,1}$ around \overline{x} , its gradient mapping ∇g is directionally differentiable at this point, and

$$\lim_{\substack{\bar{x}\neq x \to \bar{x} \\ \in \partial^2 g(x)(\bar{x} = x)}} \frac{\nabla g(x) - \nabla g(\bar{x}) + w}{\|x - \bar{x}\|} = 0.$$

Superlinear and quadratic convergence for pointwise maximum of affine functions

Corollary 2

In addition to the assumptions of Theorem 1, assume that $\xi > 0$, $0 < \zeta \le \xi$, $\sigma \in (0, \frac{1}{2})$, $t_{\min} = 1$, and $\rho_k = 0$ for all $k \in \mathbb{N}$. Suppose also that the sequence $\{x_k\}$ generated has an accumulation point \bar{x} at which g is semismoothly differentiable and h can be represented as

$$h(x) = \max_{i=1,\dots,p} \left\{ \langle x_i^*, x \rangle + \alpha_i \right\} \text{ for all } x \in \mathbb{B}_{\varepsilon}(\overline{x}),$$

for some $(x_i^*, \alpha_i)_{i=1}^p \subseteq \mathbb{R}^n \times \mathbb{R}$ and $\varepsilon > 0$. Then $x_k \to \overline{x}$, $\varphi(x_k) \to \varphi(\overline{x})$, $w_k \to 0$, and $\nabla g(x_k) \to \nabla g(\overline{x})$ as $k \to \infty$ with at least Q-superlinear rate. If in addition g is of class $C^{2,1}$ around \overline{x} , then the rate of convergence is at least quadratic.

Superlinear and quadratic convergence for pointwise maximum of affine functions

Corollary 2

In addition to the assumptions of Theorem 1, assume that $\xi > 0$, $0 < \zeta \le \xi$, $\sigma \in (0, \frac{1}{2})$, $t_{\min} = 1$, and $\rho_k = 0$ for all $k \in \mathbb{N}$. Suppose also that the sequence $\{x_k\}$ generated has an accumulation point \overline{x} at which g is semismoothly differentiable and h can be represented as

$$h(x) = \max_{i=1,...,p} \{\langle x_i^*, x \rangle + \alpha_i \} \text{ for all } x \in \mathbb{B}_{\varepsilon}(\overline{x}),$$

for some $(x_i^*, \alpha_i)_{i=1}^p \subseteq \mathbb{R}^n \times \mathbb{R}$ and $\varepsilon > 0$. Then $x_k \to \overline{x}$, $\varphi(x_k) \to \varphi(\overline{x})$, $w_k \to 0$, and $\nabla g(x_k) \to \nabla g(\overline{x})$ as $k \to \infty$ with at least Q-superlinear rate. If in addition g is of class $C^{2,1}$ around \overline{x} , then the rate of convergence is at least quadratic.

Example

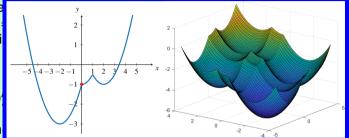
These assumptions do not imply the smoothness of φ at stationary points. For instance, consider the nonconvex function $\varphi:\mathbb{R}^n\to\mathbb{R}$ defined as in our previous example but letting now $h_i(x_i):=|x_i|+|1-x_i|$. The function φ satisfies the assumptions of Corollary 2 at any of its stationary points $\{-2,0,2\}^n$, but φ is not differentiable at $\bar{x}=0$.

Superlinear and quadratic convergence for pointwise maximum of affine functions

Corollary 2

In addition to the $t_{\min}=1$, and $\rho_k=$ accumulation poi

for some (x_i^*, α_i) $\nabla g(x_k) \to \nabla g(\bar{x})$ around \bar{x} , then th



 $\xi,\ \sigma\in(0,rac{1}{2}),$ erated has an epresented as

 $w_k o 0$, and is of class $\mathcal{C}^{2,1}$

Example

These assumptions do not imply the smoothness of φ at stationary points. For instance, consider the nonconvex function $\varphi: \mathbb{R}^n \to \mathbb{R}$ defined as in our previous example but letting now $h_i(x_i) := |x_i| + |1 - x_i|$. The function φ satisfies the assumptions of Corollary 2 at any of its stationary points $\{-2,0,2\}^n$, but φ is not differentiable at $\bar{x}=0$.

Kurdyka-Łojasiewicz property

The Kurdyka–Łojasiewicz property holds for φ at \overline{x} if there exist $\eta>0$ and a continuous concave function $\psi:[0,\eta]\to[0,\infty)$ with $\psi(0)=0$ such that ψ is \mathcal{C}^1 -smooth on $(0,\eta)$ with the strictly positive derivative ψ' and that

$$\psi'(\varphi(x) - \varphi(\overline{x})) \operatorname{dist}(0; \partial \varphi(x)) \ge 1$$

for all $x \in \mathbb{B}_{\eta}(\overline{x})$ with $\varphi(\overline{x}) < \varphi(x) < \varphi(\overline{x}) + \eta$.

Kurdyka-Łojasiewicz property

The Kurdyka–Łojasiewicz property holds for φ at \overline{x} if there exist $\eta>0$ and a continuous concave function $\psi:[0,\eta]\to[0,\infty)$ with $\psi(0)=0$ such that ψ is \mathcal{C}^1 -smooth on $(0,\eta)$ with the strictly positive derivative ψ' and that

$$\psi'(\varphi(x) - \varphi(\overline{x})) \operatorname{dist}(0; \partial \varphi(x)) \ge 1$$

for all $x \in \mathbb{B}_{\eta}(\overline{x})$ with $\varphi(\overline{x}) < \varphi(x) < \varphi(\overline{x}) + \eta$.

Remark

• Every analytic function satisfies this property. More precisely, $\psi(t) = Mt^{1-\theta}$ with M > 0 and $\theta \in [0, 1)$. [Łojasiewicz, '65].

Kurdyka-Łojasiewicz property

The Kurdyka–Łojasiewicz property holds for φ at \overline{x} if there exist $\eta>0$ and a continuous concave function $\psi:[0,\eta]\to[0,\infty)$ with $\psi(0)=0$ such that ψ is \mathcal{C}^1 -smooth on $(0,\eta)$ with the strictly positive derivative ψ' and that

$$\psi'(\varphi(x) - \varphi(\bar{x})) \operatorname{dist}(0; \partial \varphi(x)) \ge 1$$

for all $x \in \mathbb{B}_{\eta}(\overline{x})$ with $\varphi(\overline{x}) < \varphi(x) < \varphi(\overline{x}) + \eta$.

Remark

- Every analytic function satisfies this property. More precisely, $\psi(t) = Mt^{1-\theta}$ with M > 0 and $\theta \in [0, 1)$. [Łojasiewicz, '65].
- Inequality for minimal structures [Kurdyka, '98].

Kurdyka-Łojasiewicz property

The Kurdyka–Łojasiewicz property holds for φ at \overline{x} if there exist $\eta>0$ and a continuous concave function $\psi:[0,\eta]\to[0,\infty)$ with $\psi(0)=0$ such that ψ is \mathcal{C}^1 -smooth on $(0,\eta)$ with the strictly positive derivative ψ' and that

$$\psi'(\varphi(x) - \varphi(\bar{x})) \operatorname{dist}(0; \partial \varphi(x)) \ge 1$$

for all $x \in \mathbb{B}_{\eta}(\overline{x})$ with $\varphi(\overline{x}) < \varphi(x) < \varphi(\overline{x}) + \eta$.

Remark

- Every analytic function satisfies this property. More precisely, $\psi(t) = Mt^{1-\theta}$ with M > 0 and $\theta \in [0, 1)$. [Łojasiewicz, '65].
- Inequality for minimal structures [Kurdyka, '98].
- Extension to nonsmooth functions[Bolte–Daniilidis–Lewis '06].

Theorem 2

In addition to the assumptions of Theorem 1, suppose that the sequence $\{x_k\}$ has an accumulation point \bar{x} at which the Kurdyka–Łojasiewicz property is satisfied. Then $\{x_k\}$ converges \bar{x} as $k \to \infty$, which is a stationary point.

Theorem 2

In addition to the assumptions of Theorem 1, suppose that the sequence $\{x_k\}$ has an accumulation point \bar{x} at which the Kurdyka–Łojasiewicz property is satisfied. Then $\{x_k\}$ converges \bar{x} as $k \to \infty$, which is a stationary point.

Corollary 3

In addition, suppose that the Kurdyka–Łojasiewicz property holds at \bar{x} with $\psi(t) := Mt^{1-\theta}$ for some M > 0 and $\theta \in [0, 1)$. The following holds:

- (i) If $\theta = 0$, then the sequence $\{x_k\}$ converges in a finite number of steps.
- (ii) If $\theta \in (0, 1/2]$, then the sequence $\{x_k\}$ converges at least linearly.
- (iii) If $\theta \in (1/2,1)$, then there exist $\mu > 0$ and $k_0 \in \mathbb{N}$ s.t. $||x_k \overline{x}|| \le \mu k^{-\frac{1-\theta}{2\theta-1}}$ for all $k \ge k_0$.

A problem in biochemistry...

Consider a biochemical network with m molecular species and n reversible elementary reactions. Let $u \in (0, +\infty)^n$ be the vector of concentrations of molecular species, and the (deterministic) dynamic equation for the time evolution of the concentration of molecular species is given by:

$$\frac{du}{dt} = (R - F) \left[\exp(\ln(k_f) + F^{\top} \ln(u)) - \exp(\ln(k_r) + R^{\top} \ln(u)) \right]$$

where

- $F, R \in \mathbb{N}^{m \times n}$ represent the direct and inverse reaction matrices.
- k_f y k_r elementary kinetic parameters.
- $\exp(\cdot)$ y $\ln(\cdot)$ denote the component-by-component functions, i.e, $\exp(u) := (\exp(u_i))_{i=1}^n$ y $\ln(u) := (\ln(u_i))_{i=1}^n$.

The investigation of stationary states plays a crucial role in the modeling of biochemical reaction systems.

$$\frac{du}{dt} = (R - F) \left[\exp(\ln(k_f) + F^{\top} \ln(u)) - \exp(\ln(k_r) + R^{\top} \ln(u)) \right]$$

The investigation of stationary states plays a crucial role in the modeling of biochemical reaction systems.

$$\frac{du}{dt} = (R - F) \left[\exp(\ln(k_f) + F^{\top} \ln(u)) - \exp(\ln(k_r) + R^{\top} \ln(u)) \right]$$

Taking
$$x := \ln(u)$$
, $w := [\ln(k_f)^\top, \ln(k_r)^\top]^\top$, $A = [F, R]$ and $B = [F, R]$

$$f(x) = (A - B) \exp\left(w + A^{\top}x\right)$$

Mathematical Problem

Find $x \in \mathbb{R}^n$ such that

$$f(x) = 0$$

Numerical experiments: Smooth DC models in biochemistry

We are interested in finding a zero of the function

$$f(x) := ([F, R] - [R, F]) \exp (w + [F, R]^T x),$$

where $F, R \in \mathbb{Z}_{\geq 0}^{m \times n}$ denote the forward and reverse stoichiometric matrices, respectively, where $w \in \mathbb{R}^{2n}$ is the componentwise logarithm of the kinetic parameters, and $\exp(\cdot)$ is the componentwise exponential function.

Numerical experiments: Smooth DC models in biochemistry

We are interested in finding a zero of the function

$$f(x) := ([F, R] - [R, F]) \exp (w + [F, R]^T x),$$

where $F,R\in\mathbb{Z}_{\geq 0}^{m\times n}$ denote the forward and reverse stoichiometric matrices, respectively, where $w\in\mathbb{R}^{2n}$ is the componentwise logarithm of the kinetic parameters, and $\exp(\cdot)$ is the componentwise exponential function. Finding a zero of f is equivalent to minimizing the function $\varphi(x):=\|f(x)\|^2$, which can be expressed as a difference of the convex functions

$$g(x) := 2(\|p(x)\|^2 + \|c(x)\|^2)$$
 and $h(x) := \|p(x) + c(x)\|^2$,

where

$$p(x) := [F, R] \exp \left(w + [F, R]^T x \right)$$
 and $c(x) := [R, F] \exp \left(w + [F, R]^T x \right)$.

Numerical experiments: Smooth DC models in biochemistry

We are interested in finding a zero of the function

$$f(x) := ([F, R] - [R, F]) \exp (w + [F, R]^T x),$$

where $F, R \in \mathbb{Z}_{\geq 0}^{m \times n}$ denote the forward and reverse stoichiometric matrices, respectively, where $w \in \mathbb{R}^{2n}$ is the componentwise logarithm of the kinetic parameters, and $\exp(\cdot)$ is the componentwise exponential function. Finding a zero of f is equivalent to minimizing the function $\varphi(x) := \|f(x)\|^2$, which can be expressed as a difference of the convex functions

$$g(x) := 2(\|p(x)\|^2 + \|c(x)\|^2)$$
 and $h(x) := \|p(x) + c(x)\|^2$,

where

$$p(x) := [F, R] \exp (w + [F, R]^T x)$$
 and $c(x) := [R, F] \exp (w + [F, R]^T x)$.

We can also decompose $\varphi(x)$ as the difference of the functions

$$g(x) := ||p(x)||^2 + ||c(x)||^2$$
 and $h(x) = 2\langle p(x), c(x) \rangle$

with *g* being convex (thus, $\nabla^2 g(x)$ is 0-lower definite).

Regularized coderivative-based damped semi-Newton algorithm

$$\min_{x \in \mathbb{R}^n} \varphi(x) := g(x) - h(x)$$

```
Input: x_0 \in \mathbb{R}^n, \beta \in (0,1), \zeta > 0, t_{\min} > 0, \rho_{\max} > 0 and \sigma \in (0,1).
  1: for k = 0, 1, \dots do
             Take w_k \in \partial \varphi(x_k). If w_k = 0, STOP and return x_k.
             Choose \rho_k \in [0, \rho_{\text{max}}] and d_k \in \mathbb{R}^n \setminus \{0\} such that
  3:
                                -w_{\ell} \in \partial^2 g(x_{\ell})(d_{\ell}) + \rho_{\ell} d_{\ell} and \langle w_{\ell}, d_{\ell} \rangle < -\zeta \|d_{\ell}\|^2.
             Choose any \overline{\tau}_k > t_{\min}. Set \tau_k := \overline{\tau}_k.
  4:
             while \varphi(x_k + \tau_k d_k) > \varphi(x_k) + \sigma \tau_k \langle w_k, d_k \rangle do
  5:
                   \tau_{\nu} = \beta \tau_{\nu}.
  6:
  7:
             end while
             Set x_{l+1} := x_l + \tau_l d_l.
  8:
  9: end for
```

The effect of the regularization parameter ρ_k

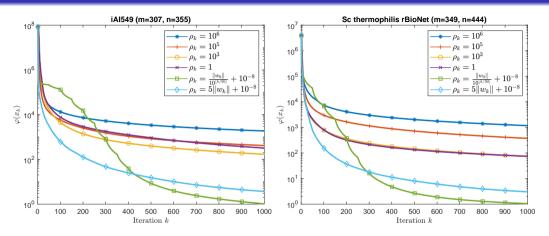


Figure: Comparison of the objective values for three strategies for setting the regularization parameter ρ_k : constant (with values 10^6 , 10^5 , 10^3 and 1), decreasing, and adaptive with respect to the value of $||w_k||$.

Regularized coderivative-based damped semi-Newton algorithm

$$\min_{x \in \mathbb{R}^n} \varphi(x) := g(x) - h(x)$$

```
Input: x_0 \in \mathbb{R}^n, \beta \in (0,1), \zeta > 0, t_{\min} > 0, \rho_{\max} > 0 and \sigma \in (0,1).
  1: for k = 0, 1, \dots do
             Take w_k \in \partial \varphi(x_k). If w_k = 0, STOP and return x_k.
             Choose \rho_k \in [0, \rho_{\text{max}}] and d_k \in \mathbb{R}^n \setminus \{0\} such that
  3:
                               -w_{\ell} \in \partial^2 g(x_{\ell})(d_{\ell}) + \rho_{\ell} d_{\ell} and \langle w_{\ell}, d_{\ell} \rangle < -\zeta \|d_{\ell}\|^2.
             Choose any \overline{\tau}_k > t_{\min}. Set \tau_k := \overline{\tau}_k.
  4:
             while \varphi(x_k + \tau_k d_k) > \varphi(x_k) + \sigma \tau_k \langle w_k, d_k \rangle do
  5:
                   \tau_{\nu} = \beta \tau_{\nu}.
  6:
  7:
             end while
             Set x_{l+1} := x_l + \tau_l d_l.
  8:
  9: end for
```

Choosing the trial stepsize $\overline{\tau}_k$

Self-adaptive trial stepsize

```
Input: \gamma > 1, \overline{\tau}_0 > 0.
 1: Obtain \tau_0 by Steps 5-7 of the algorithms.
 2: Set \overline{\tau}_1 := \max\{\tau_0, t_{\min}\} and obtain \tau_1 by Steps 5-7 of the algorithms.
 3: for k = 2, 3, \dots do
          if \tau_{k-2} = \overline{\tau}_{k-2} and \tau_{k-1} = \overline{\tau}_{k-1} then
 5:
                \overline{\tau}_{\nu} := \gamma \tau_{\nu-1}:
 6:
           else
                \overline{\tau}_k := \max\{\tau_{k-1}, t_{\min}\}.
           end if
 8:
           Obtain \tau_k by Steps 5-7 of the algorithms.
 9:
10: end for
```

Constant vs. self-adaptive trial stepsize

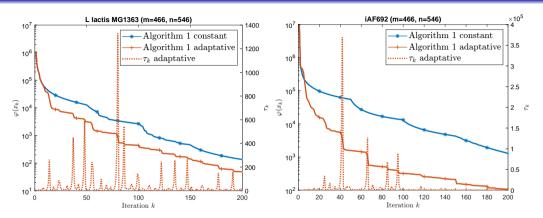


Figure: Comparison of the self-adaptive and the constant (with $\overline{\tau}_k = 50$) choices for the trial stepsizes for two biochemical models. The plots include two scales, a logarithmic one for the objective function values and a linear one for the stepsizes (which are represented with discontinuous lines).

Our algorithm vs. DCA & BDCA

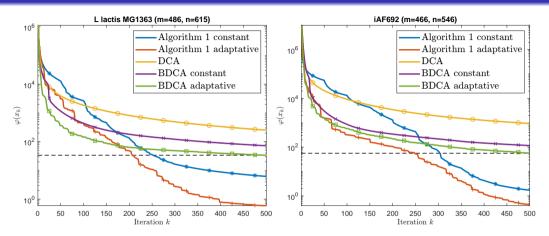
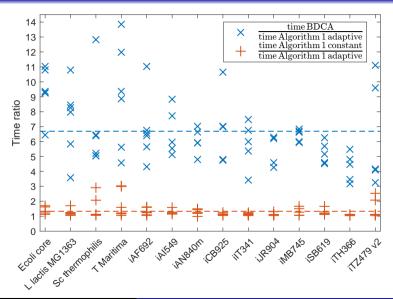
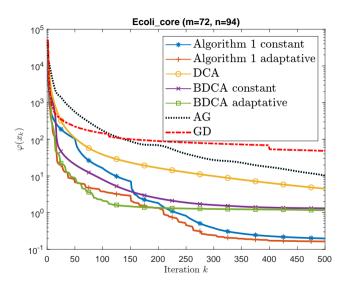


Figure: Value of the objective function (with logarithmic scale) of our algorithm, DCA and BDCA for two biochemical models. The value attained after 500 iterations of BDCA with self-adaptive stepsize is shown by a dashed line.

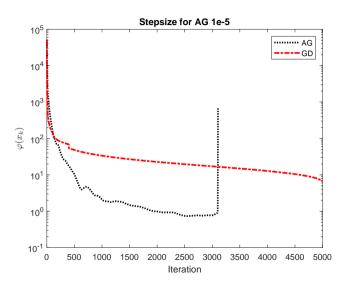
Our algorithm vs. BDCA on 14 biochemical models



Our algorithm vs. AG and GD



Our algorithm vs. AG and GD



Minimization of Piecewise Nonconvex Loss Functions

We consider the optimization problem

$$\min_{x \in \mathbb{R}^n} \varphi(x) := \frac{1}{m} \sum_{j=1}^m \nu(c_j^\top x) + \lambda ||x||^2,$$
 (2)

where ν is a $\mathcal{C}^{1,1}$ real-valued function formed by twice differentiable pieces, where $c_j \in \mathbb{R}^n$ and $\lambda > 0$. Specifically, we consider a $\mathcal{C}^{1,1}$ -smooth function $\nu : \mathbb{R} \to \mathbb{R}$ given by the expression

$$v(t) := v_i(t) \text{ if } t \in (t_{i-1}, t_i] \text{ and } i = 1, \dots, p,$$

Example: binary classification

Consider the nonconvex loss function proposed in *Zhao-Mammadov-Yearwood 2010* for binary classification that is defined by

$$v(t) := \begin{cases} 1 & t < -1, \\ \frac{1}{4}t^3 - \frac{3}{4}t + \frac{1}{2} & -1 \le t \le 1, \\ 0 & t > 1. \end{cases}$$
 (3)

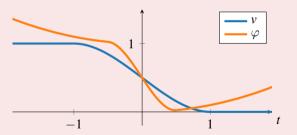


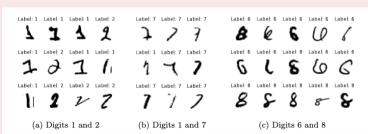
Figure: Plot of the loss function v in (3) and the objective function φ in (2) for n=m=1, c=2 and $\lambda=0.1$

Experiment

The MNIST database consists of 70 000 grayscale labeled images of handwritten digits from 0 to 9 with a resolution of 28×28 pixels. The dataset is split into a training and a test set of 60 000 and 10 000 sample images, respectively. Given a pair digits d_1 and d_2 , we consider problem (2) with the piecewise loss function (3) and vectors $c_j \in \mathbb{R}^{785}$ are taken as:

$$c_j := \begin{cases} \begin{bmatrix} -1 \\ -z_j \end{bmatrix} & \text{if the label of image } j \text{ is } d_1, \\ \begin{bmatrix} 1 \\ z_j \end{bmatrix} & \text{if the label of image } j \text{ is } d_2, \end{cases}$$

where z_i denotes grayscale values of the flattened images whose labels are d_1 or d_2 .



Results

Digits	Noise	Success training		Success test		Time (sec.)		Iterations	
		RCSN	GD	RCSN	GD	RCSN	GD	RCSN	GD
1, 2	0.01	99.72%	99.73%	99.26%	99.28%	67.7	158.2	857.9	4148.5
1, 2	0	99.71%	99.71%	99.29%	99.27%	64.3	155.2	851.9	4166.0
1, 7	0.01	99.85%	99.86%	99.36%	99.39%	51.9	149.5	673.3	3939.3
1, 7	0	99.84%	99.87%	99.40%	99.39%	46.6	162.1	591.7	4176.9
5, 6	0.01	99.27%	99.27%	98.03%	97.98%	111.8	215.4	1623.5	6404.5
5, 6	0	99.24%	99.26%	97.98%	97.99%	122.2	237.0	1732.2	6689.3
6, 8	0.01	99.70%	99.72%	99.03%	99.12%	86.9	192.1	1205.1	5452.1
6, 8	0	99.68%	99.71%	99.05%	99.04%	88.0	185.0	1243.4	5353.4

Table 1: Results of Experiment 2 for the binary classification problem on the MNIST dataset for various pairs of similar digits. We present the average values of Algorithm 1 (RCSN) and the gradient descent algorithm (GD) for 10 random starting points.

Main references I

F.J. Aragón-Artacho, R.M.T. Fleming, P.T. Vuong: Accelerating the DC algorithm for smooth functions. Math. Program. 169, 95–118 (2018)

F.J. Aragón-Artacho, B.S. Mordukhovich, P. Pérez-Aros: Coderivative-based semi-Newton method in nonsmooth difference programming. ArXiv: 2301.03491 (2023)

F.J. Aragón-Artacho, P.T. Vuong: The boosted difference of convex functions algorithm for nonsmooth functions. SIAM J. Optim. 30, 980–1006 (2020)

J. Bolte, A. Daniilidis, A. Lewis: Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17 (2007)

F. Facchinei, J.-S. Pang: Finite-Dimensional Variational Inequalities and Complementarity Problems, I, II. Springer, New York (2003)

A.F. Izmailov, M.V. Solodov: Newton-Type Methods for Optimization and Variational Problems. Springer, Cham (2014)

K. Kurdyka, K: On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier 48 (1998)

S. Łojasiewicz: Ensembles semi-analytiques. Institut des Hautes Etudes Scienti?ques, Bures-sur- Yvette (Seine-et-Oise), France (1965)

Main references II

B.S. Mordukhovich: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, Berlin (2006)

B.S. Mordukhovich: Variational Analysis and Applications. Springer, Cham (2018)

P. Patrinos, A. Bemporad: Proximal Newton methods for convex composite optimization. In: 52nd IEEE Conf. Dec. Cont., pp. 2358–2363. Florence, Italy (2013)

P.D. Tao, E.B. Souad: Algorithms for solving a class of nonconvex optimization problems. Methods of subgradients. North-Holland Math. Stud. 129, 249–271 (1986)

Thank you for listening