An introduction to Nonsmooth Analysis

Abderrahim Jourani

Université de Bourgogne Institut de Mathématiques de Bourgogne UMR 5584 CNRS B.P. 47870, 21078 Dijon, France

CMM-Universidad de Chile, Santiago, December 2023

Outline of the course

- Motivations and Examples
- Elements of Nonsmooth Analysis
- Density theorem
- Applications
 - ▶ In classical analysis : Mean value theorem, Monotonicity theorem.
 - In Optimization: Necessary optimality conditions, Calmness as a constraint qualification condition, Value function,
 - ▶ In optimal control: Value function in optimal control, Verification function, Minimal time problem, Necessary optimality conditions of free time problems, Invariance, Hamilton-Jacobi equations

Motivations

Nonsmooth problems arise in many fields of applications, for example in

- image denoising,
- optimal control,
- neural network training,
- data mining,
- economics, and
- computational chemistry and physics.

Moreover, using certain important methodologies for solving difficult smooth problems leads directly to the need to solve nonsmooth problems. This is the case, for instance in

- decompositions,
- dual formulations, and
- exact penalty functions.

Difficulties caused by nonsmoothness

SMOOTH PROBLEM:

- Descent direction is obtained at the opposite direction gradient $\nabla f(x)$.
- The necessary optimality condition $\nabla f(x) = 0$.
- Difference approximation can be used to approximate the gradient.

NONSMOOTH PROBLEM:

- The gradient does not exist at every point, leading to difficulties in defining the descent direction.
- Gradient usually does not exist at the optimal point.
- Difference approximation is not useful and may lead to serious failures.
- The (smooth) algorithm does not converge or it converges to a non-optimal point.

Existence of critical points

We know that for a differentiable function f at \bar{x} we have:

$$\bar{x}$$
 is a local minimum of $f \Longrightarrow \nabla f(\bar{x}) = 0$.

What happens if f is not differentiable?

Which tools can be used to replace differentiability?

Example 1: The distance function

Let C be a closed subset of some Banach space $(E, \|\cdot\|)$. The distance function of the set C is the function

$$x \mapsto d_C(x) := \inf_{u \in C} \|u - x\|.$$

$E = \mathbb{R}^n$

- 1. Suppose $\nabla d_C(x)$ exists and is different from 0. Then
 - x belongs to the complement of C.
 - ▶ There exists a unique point c in C closest to x.
 - $\nabla d_C(x) = \frac{x-c}{\|x-c\|}.$
- 2. Conversely, let $x \notin C$. If x has a unique closest point c in C, then d_C is differentiable at x and $\nabla d_C(x) = \frac{x-c}{\|x-c\|}$.

Problem of differentiabilty for $x \in C$?

Example 2: The minmax problem

The second problem concerned with nonsmoothness is the *minmax* problem :

$$\min g(x)$$
, where $g(x) = \max_{u \in C} f(x, u)$ (1)

where f is a smooth function with respect to x and C is a set.

The function g will not generally smooth even if f is.

A simple setting of this problem is the case where g is the maximum of two functions f_1 and f_2 :

$$g(x) = \max(f_1(x), f_2(x)).$$

So the problem of nonsmoothness comes from the corner point \bar{x} where $f_1(\bar{x}) = f_2(\bar{x})$.

Problem of differentiabilty to get "critical point condition"!!

The value function

Let $f: \mathbb{R}^n \times \mathbb{R}^p \mapsto \mathbb{R}$ be a function and $C \subset \mathbb{R}^p$ be a closed set. Define the function $v: \mathbb{R}^n \mapsto \mathbb{R} \cup \{+\infty\}$ by

$$v(x) = \inf_{y \in C} f(x, y).$$

Differentiability

If f is of class C^1 and C is compact, then v is differentiable at \bar{x} and $\nabla v(\bar{x}) = \nabla_x f(\bar{x}, \bar{y})$, where $\bar{y} \in C$ is a point satisfying $v(\bar{x}) = f(\bar{x}, \bar{y})$, provided that C and f are convex.

Example 3: Constrained optimization

Consider the following family of optimization problems

$$(P_{\alpha}) \left\{ \begin{array}{l} \min f(x) \\ h(x) = \alpha \end{array} \right.$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}^p$ are given (smooth) functions. Let $v(\alpha)$ be the value of this problem. In general, this value function will take values in $[-\infty, +\infty]$. We have

$$f(x) \ge v(h(x)) \quad \forall x \in \mathbb{R}^n.$$

Necessary optimality

If $f(\bar{x}) = v(0)$, with $h(\bar{x}) = 0$, and v is differentiable at 0, then

$$\nabla f(\bar{x}) - Dh(\bar{x})\nabla v(0) = 0.$$

 $-\nabla v(0)$ is a Lagrange multiplier at \bar{x} for (P_0) .

Problem of differentiability of v!!

CMM-Universidad de Chile, Santiago, Dece

Example 4: Constrained optimization: Penalization by the distance function

Consider the constrained optimization problem

$$\min f(x)$$
$$x \in A$$

Clarke penalization

Let A and B be closed sets in X, with $A \subset B$, and let $\bar{x} \in A$. Suppose that f is Lipschitz on B with constant K. Then the following assertions are equivalent :

- 1. \bar{x} is a minimum of f over A,
- 2. For all K' > K, \bar{x} is a minimum of the function

$$x \mapsto f(x) + K'd_A(x)$$

over B.

Problem of differentiabilty to get "critical point condition"!!

Example 5: Constrained optimization under calmness condition

Consider the constrained optimization problem

$$(P) \ \frac{\min f(x)}{g(x) \le 0}$$

f and g are continuous convex functions. Set $A := \{x \in E : g(x) \le 0\}$.

Penalaization under Calmness

Suppose that $\alpha := \inf_{x \notin A} \frac{g(x)}{d_A(x)} > 0$ (Calmness condition). Suppose that f is

- $\mbox{K-Lipschitz}.$ Then the following assertions are equivalent :
 - 1. \bar{x} is a solution of the problem (P),
 - 2. $\forall \varepsilon \in]0, \alpha[$, \bar{x} is a minimum of the function

$$x \mapsto f(x) + \frac{K}{\alpha - \varepsilon} g^+(x).$$

Constrained optimization leads to nondifferentiability

Example 6: Flow-Invariant sets

Let S be a closed subset of \mathbb{R}^n and $\varphi: \mathbb{R}^n \mapsto \mathbb{R}^n$ be a locally Lipschitzian function. The question is whether the trajectories x(t) of the differential equation

$$\dot{x}(t) = \varphi(x(t)), \quad x(0) = x_0 \tag{2}$$

leaves S invariant. In this case we say that the system (S, φ) is flow-invariant.

Example 6: Flow-Invariant sets

Let S be a closed subset of \mathbb{R}^n and $\varphi: \mathbb{R}^n \mapsto \mathbb{R}^n$ be a locally Lipschitzian function. The question is whether the trajectories x(t) of the differential equation

$$\dot{x}(t) = \varphi(x(t)), \quad x(0) = x_0 \tag{2}$$

leaves S invariant. In this case we say that the system (S, φ) is flow-invariant.

The set S is a smooth manifold if locally it admits a representation of the form

$$S = \{x \in \mathbb{R}^n : h(x) = 0\}$$

where $h : \mathbb{R}^n \mapsto \mathbb{R}^p$ is a continuously differentiable function with "nonvanishing" derivative on S.

Characterization

Let S be a smooth manifold. The system (2) is flow-invariant iff for every $x_0 \in S$, $\varphi(x_0)$ belong to the tangent space to S at x_0 .

What happens if *S* is not smooth?

Example 7: Minimal time problem

By a trajectory of the standard control system

$$\dot{x} = f(x(t), u(t)) \text{ a.e.}, \quad u(t) \in U \text{ a.e.}$$
 (3)

we mean a state function x corresponding to some choice of admissible (measurable) control function u. Here $f: \mathbb{R}^n \times \mathbb{R}^p \mapsto \mathbb{R}^n$ is a locally Lipschitzian mapping and $U \subset \mathbb{R}^p$ is a nonempty set. The *minimal time problem* refers to finding a trajectory that reach the origin as quickly as possible from a given point. The *minimal time function* T is defined on \mathbb{R}^n by

$$T(\omega) = \inf\{T \ge 0 : \text{ some trajectory } x \text{ satisfies } x(0) = \omega, x(T) = 0\}.$$

The principe of optimality leads to: for any trajectory x,

$$s < t \implies T(x(t)) - T(x(s)) \ge s - t,$$

that is, the function $\beta: t \mapsto T(x(t)) + t$ is increasing, and when x is optimal the function β is constant. So that we expect to have

$$\langle \nabla T(x(t)), \dot{x}(t) \rangle + 1 \geq 0$$

with equality when x is an optimal trajectory. The possible values of x for a trajectory being precisely the elements of the set f(x(t), U), we arrive at

$$\min_{u \in U} \langle \nabla T(x(t)), f(x(t), u) \rangle + 1 = 0$$
 (4)

We define the (lower) Hamiltonian function h as follows:

$$h(x,p) := \min_{u \in U} \langle p, f(x(t), u) \rangle$$

In terms of h, the partial differential equation (4) above reads

$$h(x, \nabla T(x)) + 1 = 0 \tag{5}$$

a special case of the *Hamilton-Jacobi* equation. CMM-Universidad de Chile, Santiago, Dece The following questions arise :

Controllability: Is it always possible to steer ω to 0 in finite time?

Existence: do minimal-time trajectories exist?

Differentiability: How do we know that T is differentiable?

If this fails to be the case, then we shall need to replace the gradient ∇T used above by some suitably generalized derivative.

Example 8: Hamilton-Jacobi equations

These equations (of the first order type) are defined by mean of an Hamiltonian $H: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \mapsto \mathbb{R}$ as follows

$$\begin{cases}
H(x, u(x), \nabla u(x)) = 0 & x \in \Omega \\
u = \varphi & \text{on } \partial\Omega
\end{cases}$$
(6)

where $\Omega \subset \mathbb{R}^n$ is an open set and $\nabla u(x)$ denotes the gradient of u.

Example

Consider the following equation in $\mathbb R$

$$\left\{ \begin{array}{l} |u'(x)|=1 & x\in [0,1] \\ u(0)=0, & u(1)=b \end{array} \right.$$

- If b = 0: Many locally Lipschitzian solutions exist in the almost every where sense.
- If $0 \le b < 1$: Existence of nonregular solutions
- If b = 1: Existence of a regular solution
- If *b* > 1: There is no continuous solution

Definition

A continuous function u is said to be a viscosity solution of the Hamilton-Jacobi equation (6) if

- $u=\varphi$ on $\partial\Omega$
- (Viscosity subsolution) for any \mathcal{C}^{∞} -function v, if u-v has a local maximum at $x_0 \in \Omega$, then

$$H(x_0, u(x_0), \nabla v(x_0)) \leq 0.$$

• (Viscosity supersolution) for any C^{∞} -function v, if u-v has a local minimum at $x_0 \in \Omega$, then

$$H(x_0, u(x_0), \nabla v(x_0)) \geq 0.$$

Example 9:

Let $\Omega \subset \mathbb{R}^n$ be an open bounded set. Then the function $u = d(\cdot, \partial\Omega)$ is a viscosity solution of the following Hamilton-Jacobi equation

$$\left\{ \begin{array}{ll} |\nabla u| = 1 & \text{ on } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{array} \right.$$

How to characterize these test functions?

Example 10: Sweeping process

(An RCD (Residual Current Device) circuit).

Let us consider a circuit composed of a resistor R, a voltage source u(t), an ideal diode, and a capacitor C mounted in series. The current through the circuit is denoted as $x(\cdot)$, and the charge of the capacitor is denoted as

$$z(t)=\int_0^t x(s)ds.$$

The dynamical equations are:

$$\begin{cases} \dot{z}(t) = -\frac{u(t)}{R} - \frac{1}{RC}z(t) + \frac{1}{R}v(t) \\ 0 \le v(t) \perp w(t) := \frac{u(t)}{R} - \frac{1}{RC}z(t) + \frac{1}{R}v(t) \ge 0, \quad t \ge 0 \\ z(0) \in \mathbb{R}. \end{cases}$$

The last equation can be expressed in two manners :

- $v(t) = \max(0, -u(t) + \frac{1}{C}z(t)).$
- $v(t) = \operatorname{proj}_{\mathbb{R}_+}(-u(t) + \frac{1}{C}z(t))$. (To be continued CMM-Universidad de Chile, Santiago, Dece

Some differentiability aspects

Let *E* be a Banach space. A function $f: E \mapsto \mathbb{R}$ is said to be

• Gâteaux differentiable at u if its directional derivative

$$Df(u): h \mapsto f'(u,h) := \lim_{t\to 0^+} \frac{f(u+th)-f(u)}{t}$$

is linear and continuous

Some differentiability aspects

Let E be a Banach space. A function $f: E \mapsto \mathbb{R}$ is said to be

• Gâteaux differentiable at u if its directional derivative

$$Df(u): h \mapsto f'(u,h) := \lim_{t\to 0^+} \frac{f(u+th)-f(u)}{t}$$

is linear and continuous

• Fréchet differentiable at u if

$$\lim_{x \to u} \frac{f(x) - f(u) - Df(u)(x - u)}{\|x - u\|} = 0$$

Some differentiability aspects

Let E be a Banach space. A function $f: E \mapsto \mathbb{R}$ is said to be

• Gâteaux differentiable at u if its directional derivative

$$Df(u): h \mapsto f'(u,h) := \lim_{t \to 0^+} \frac{f(u+th) - f(u)}{t}$$

is linear and continuous

• Fréchet differentiable at u if

$$\lim_{x \to u} \frac{f(x) - f(u) - Df(u)(x - u)}{\|x - u\|} = 0$$

Strictly differentiable at u if

$$\lim_{x,x'\to u} \frac{f(x) - f(x') - Df(u)(x - x')}{\|x - x'\|} = 0.$$

Elements of Nonsmooth Analysis

Making the parallel between smooth and nonsmooth objects

SMOOTH:

- 1) Gâteaux differentiability
- 2) Gâteaux differentiability
- 3) Fréchet differentiability
- 4) Strictly differentiability

NONSMOOTH : $\forall h \in E$

$$\bullet \lim_{t\to 0^+} \frac{f(u+th)-f(x)}{t} \ge \langle x^*,h\rangle$$

$$\bullet \liminf_{t \to 0^+ \atop h' \to h} \frac{f(u+th') - f(u)}{t} \ge \langle x^*, h \rangle$$

$$\bullet \liminf_{x \to u} \frac{f(x) - f(u) - \langle x^*, x - u \rangle}{\|x - u\|} \ge 0$$

•
$$\limsup_{\stackrel{x\to u}{t\to 0^+}} \frac{f(x+th)-f(x)}{t} \ge \langle x^*,h\rangle$$

Note that the introduction of non-smooth analysis tools depends largely on the geometry of the space considered.

Corresponding subdifferentials: Analytic construction

Fenchel subdifferential: Put
$$f'(x, h) := \lim_{t \to 0^+} \frac{f(x + tu) - f(x)}{t}$$

$$\partial_{Fen} f(x) = \{x^* \in E^* : \langle x^*, h \rangle \le f'(x, h), \quad \forall h\}$$

Fréchet subdifferential:

$$\partial_{F}f(x) = \{x^* \in E^* : \liminf_{h \to 0} \frac{f(x+h) - f(x) - \langle x^*, h \rangle}{\parallel h \parallel} \ge 0\}$$

Dini subdifferential: Put $f^-(x,h) := \liminf_{u \to h} \frac{f(x+tu) - f(x)}{t}$

$$\partial^- f(x) = \{x^* \in E^* : \langle x^*, h \rangle \le f^-(x, h), \quad \forall h\}$$

Clarke's subdifferential: Put $f^0(x_0, h) := \limsup_{x \to x_0} \frac{f(x + th) - f(x)}{t}$

$$\partial_c f(x_0) = \{ x^* \in E^* : \langle x^*, h \rangle \le f^0(x_0, h), \quad \forall h \}$$

Limiting contrepart

Limiting subdifferential:

$$\partial_L f(x_0) = w^* - seq - \limsup_{\substack{x \to x_0}} \partial_F f(x).$$

Sequential approximate subdifferential:

$$\partial_A^{\text{seq}} f(x_0) = w^* - seq - \limsup_{x \xrightarrow{f} x_0} \partial^- f(x).$$

Relationships for locally Lipschitz functions

Asplund spaces :

$$\partial_C f(x_0) = \operatorname{cl}^* \operatorname{co} \partial_L f(x_0) = \operatorname{cl}^* \operatorname{co} \partial_A^{\operatorname{seq}} f(x_0)$$

WCG Asplund spaces :

$$\partial_L f(x_0) = \partial_A^{\text{seq}} f(x_0)$$

Outside Asplund spaces

$$\partial_C f(x_0) \supseteq \operatorname{cl}^* \operatorname{co} \partial_A^{\operatorname{seq}} f(x_0) \supsetneq \operatorname{cl}^* \operatorname{co} \partial_L f(x_0)$$

Asplund spaces: Banach spaces on which every continuous convex function is Fréchet differentiable at a dense set of points.

Chain rules

 $f,g: E \mapsto \mathbb{R} \cup \{+\infty\}$ lsc, with g locally Lipschitzian at x_0 .

$$\begin{split} \partial_{\mathit{Fen}}(f+g)(x_0) &= \partial_{\mathit{Fen}}f(x_0) + \partial_{\mathit{Fen}}g(x_0) \quad (f,g \; \mathsf{convex}) \\ \partial_{\mathit{C}}(f+g)(x_0) &\subseteq \partial_{\mathit{C}}f(x_0) + \partial_{\mathit{C}}g(x_0) \\ \partial_{\mathit{A}}(f+g)(x_0) &\subseteq \partial_{\mathit{A}}f(x_0) + \partial_{\mathit{A}}g(x_0) \\ \partial_{\mathit{L}}(f+g)(x_0) & \nsubseteq \partial_{\mathit{L}}f(x_0) + \partial_{\mathit{L}}g(x_0) \end{split}$$

where $\partial_A f(x)$ denotes the (topological)approximate subdifferential

Asplund spaces:

$$\partial_L(f+g)(x_0)\subset\partial_Lf(x_0)+\partial_Lg(x_0)$$

Example

Let $X = L^1[0,1]$ and let $f(u) = \int_0^1 |\sin u(t)| dt$ and g = -f. Then $\partial_L (f+g)(0) = \{0\}$ while $\partial_L f(0) = \{0\}$ and $\partial_L g(0) = \emptyset_{\text{CMM-Universidad de Chile, Santiago, December 1}}$

Fenchel subdifferential

The Fenchel Subdifferential

Definition.

The subdifferential of a convex function $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ at x in the effective domain $\mathsf{Dom} f$ of f is the set

$$\partial_{Fen} f(x) = \left\{ x^* \in E^* : \langle x^*, y - x \rangle + f(x) \le f(y) \quad \forall y \in E \right\}.$$

Each vector $x^* \in \partial_{Fen} f(x)$ is called a subgradient of f at x.

Characterization of critical points.

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a convex function. Then the following are equivalent:

- \bar{x} is a local minimum of f.
- \bar{x} is a global minimum of f.
- $0 \in \partial_{Fen} f(\bar{x})$.

Geometric representation.

Normal cone.

Let $C \subset E$ be a closed convex set containing \bar{x} . The normal cone to C at \bar{x} is the weak-star closed convex cone defined by

$$N_{Fen}(C, \bar{x}) = \{x^* \in E^* : \langle x^*, x - \bar{x} \rangle \le 0 \, \forall x \in C\},$$

that is, $N_{Fen}(C,\bar{x}) = \partial \Psi_C(\bar{x})$, where Ψ_C is the indicator function of C.

Geometric representation.

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a lsc convex function and let $\bar{x} \in \mathsf{Dom} f$. Then

$$\partial_{\mathit{Fen}} f(\bar{x}) = \big\{ x^* \in \mathit{E}^* : (x^*, -1) \in \mathit{N}_{\mathit{Fen}}(\mathsf{epi} f, (\bar{x}, f(\bar{x})) \big\},$$

where epif is the epigraph of f.

Weak-star compactness.

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a convex function, which is continuous and finite at \bar{x} . Then $\partial_{Fen} f(\bar{x})$ is a non empty convex and w^* -compact set.

Directional derivative.

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a convex function. Then the classical directional derivative f'(x; d) exists in every direction $d \in E$ and for all $x \in \mathsf{Dom} f$

- $\partial_{Fen} f(x) = \{x^* \in E^* : \langle x^*, d \rangle \le f'(x; d) \, \forall d \in E \}$
- when f is continuous at x,

$$f'(x; d) = \max_{x^* \in \partial_{Fen} f(x)} \langle x^*, d \rangle \, \forall d \in E.$$

Chain rules.

Let $f,g:E\mapsto\mathbb{R}\cup\{+\infty\}$ be lower semicontinuous convex functions finite at $\bar{x}\in E$. If g is continuous at \bar{x} , then

$$\partial_{Fen}(f+g)(\bar{x}) = \partial_{Fen}f(\bar{x}) + \partial_{Fen}g(\bar{x}).$$

Clarke subdifferential

Clarke subdifferential: The analytic contruction.

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a **locally Lipschiltzian** function at \bar{x} .

Clarke directional derivative.

The Clarke directional derivative of f at \bar{x} in the direction $d \in E$ is defined bγ

$$f^{\circ}(\bar{x},d) = \limsup_{\substack{x \to \bar{x} \\ t \to 0^+}} \frac{f(x+td) - f(x)}{t}.$$

Some properties.

- The function $d \mapsto f^{\circ}(\bar{x}, d)$ is positively homogeneous, convex and continuous.
- For all $d \in E$, $f^{\circ}(\bar{x}, -d) = (-f)^{\circ}(\bar{x}, d)$.

The analytic construction.

The Clarke subdifferential of f at \bar{x} is the w^* -compact convex set defined by

$$\partial_c f(\bar{x}) = \{x^* \in E^* : \langle x^*, d \rangle \le f^{\circ}(\bar{x}, d) \, \forall d \in E\}.$$

Clarke tangent and normal cones

Let $C \subset E$ be a closed set containing \bar{x} .

Clarke tangent cone.

The Clarke tangent cone of C at \bar{x} is the closed convex cone given by

$$T_c(C,\bar{x}) := \liminf_{\substack{x \subseteq \bar{x} \\ t \to 0^+}} \frac{C-x}{t} = \big\{ h \in E : d_C^\circ(\bar{x},h) = 0 \big\}.$$

Clarke normal cone.

The Clarke normal cone to C at \bar{x} is the w^* -closed convex cone given by $N_c(C,\bar{x}) = \{x^* \in E^* : \langle x^*, h \rangle \le 0 \, \forall h \in T_c(C,\bar{x}) \}.$

$$N_c(C,\bar{x}) = cl^*cone(\partial_c d_C(\bar{x})).$$

Penot (1981), Cornet (1981)

$$T_c(C,\bar{x}) = \liminf_{\substack{x \stackrel{C}{\to} \bar{x}}} K(C,x)$$

where K(C, x) denotes the contingent cone to C at x.

Penot (1981), Cornet (1981)

$$T_c(C,\bar{x}) = \liminf_{\substack{x \stackrel{C}{\to} \bar{x}}} K(C,x)$$

where K(C,x) denotes the contingent cone to C at x.

$$d_{T_c(C,\bar{x})}(h) \geq d_C^0(\bar{x},h) \quad \forall h$$

or equivalently

$$\partial_c d_C(\bar{x}) \subset \mathbb{B} \cap N_c(C,\bar{x}).$$

Penot (1981), Cornet (1981)

$$T_c(C,\bar{x}) = \liminf_{\substack{x \stackrel{C}{\to} \bar{x}}} K(C,x)$$

where K(C, x) denotes the contingent cone to C at x.

$$d_{T_c(C,\bar{x})}(h) \geq d_C^0(\bar{x},h) \quad \forall h$$

or equivalently

$$\partial_c d_C(\bar{x}) \subset \mathbb{B} \cap N_c(C,\bar{x}).$$

Watkins (1985)

For any $v \in T_c(C, \bar{x})$ and any real number $\ell > \|v\|$, there exists a Lipschitz continuous mapping $c: [0,1] \mapsto C$ with Lipschitz constant ℓ such that c is strictly right differentiable at 0 with $c(0) = \bar{x}$ and c'(0) = v.

CMM-Universidad de Chile, Santiago, Dece

Geometric construction of the Clarke subdifferential.

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a lsc function and let $\bar{x} \in \mathsf{Dom} f$. The Clarke subdifferential of f at \bar{x} is the w^* -closed and convex set defined by $\partial_c f(\bar{x}) = \{x^* \in E^* : (x^*, -1) \in N_c(\mathsf{epi} f, (\bar{x}, f(\bar{x})))\}.$

Clarke directional derivative as a support function.

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a locally Lipschitzian function at \bar{x} . Then

$$f^{\circ}(\bar{x};d) = \max_{x^* \in \partial_c f(\bar{x})} \langle x^*, d \rangle \, \forall d \in E.$$

Rademacher Theorem.

Let $S \subset \mathbb{R}^n$ be an open set. A function $f: S \mapsto \mathbb{R}$ that is locally Lipschitz on S is differentiable almost everywhere on S.

This leads to the following construction of the Clarke subdifferential.

Gradient characterization of the Clarke subdifferential.

Let $f: \mathbb{R}^n \mapsto \mathbb{R} \cup \{+\infty\}$ be a locally Lipschitzian function at \bar{x} . Then $\partial_c f(\bar{x}) = \mathsf{cl^*conv} \big\{ x^* \in \mathbb{R}^n : \nabla f(x_i) \to x^*, x_i \to \bar{x} \text{ and } f \text{ is differentiable at } x_i \big\},$

where cl^*convS denotes the w^* -closed convex hull of the set S.

Sum

Let $f_1, f_2 : E \mapsto \mathbb{R} \cup \{+\infty\}$ be lsc functions and $\bar{x} \in \mathsf{Dom} f_1 \cap \mathsf{Dom} f_2$ with f_1 locally Lipschitz at \bar{x} . Then

$$\partial_c(f_1+f_2)(\bar{x})\subset\partial_cf_1(\bar{x})+\partial_cf_2(\bar{x}).$$

CMM-Universidad de Chile, Santiago, Dece

Subdifferential of the maximum function

Let $f_1, \dots, f_n : E \mapsto \mathbb{R}$ be locally Lipschitzian function around \bar{x} , with $f_1(\bar{x}) = \dots = f_n(\bar{x})$. Then

$$\partial_c(\max_{i=1,\cdots,n}f_i)(\bar{x})\subset \operatorname{co}[\partial_cf_i(\bar{x}),i=1,\cdots,n].$$

The equality holds whenever all f_i are Clarke regular at \bar{x} .

Clarke subdifferential of the distance function.

Let *c* belong to $C \subset \mathbb{R}^n$. Then

$$\partial d_C(c) = \operatorname{co}\{0, \lim_{i \to +\infty} \frac{x_i - c_i}{\|x_i - c_i\|}\},$$

where we consider all sequences (x_i) , (c_i) such that x_i is not in C and has closest point (c_i) in C, and $\lim_{i\to +\infty} x_i = c$.

Exercise.

Compute the subdifferential of the distance function of the set

$$C = \{(x, y) \in \mathbb{R}^2 : xy = 0\} \text{ at } (0, 0).$$

When Clarke's subdifferential is a singleton?

f is Hadamard strictly differentiable (HSD) at u if there exists $D_s f(u) \in E^*$ such that

$$\lim_{\substack{x \to u \\ t \to 0^+}} \frac{f(x+th) - f(x)}{t} = \langle D_s f(u), h \rangle$$

and provided the convergence is uniform for h in compact sets.

Characterization of the HSD

Let $x^* \in E^*$. Then the following assertions are equivalent:

- f is HSD at u with $D_s f(u) = x^*$.
- \bigcirc f is Lipschitz near u and

$$\lim_{\substack{x \to u \\ t \to 0^+}} \frac{f(x+th) - f(x)}{t} = \langle x^*, h \rangle$$

When Clarke's subdifferential is a singleton?

f is Hadamard strictly differentiable (HSD) at u if there exists $D_s f(u) \in E^*$ such that

$$\lim_{\substack{x \to u \\ t \to 0^+}} \frac{f(x+th) - f(x)}{t} = \langle D_s f(u), h \rangle$$

and provided the convergence is uniform for h in compact sets.

Characterization of the HSD

Let $x^* \in E^*$. Then the following assertions are equivalent:

- f is HSD at u with $D_s f(u) = x^*$.
- \bigcirc f is Lipschitz near u and

$$\lim_{\substack{x \to u \\ t \to 0^+}} \frac{f(x+th) - f(x)}{t} = \langle x^*, h \rangle$$

Uniqueness of the Clarke's subgradient

Let f Lipschitz near u. Then f is HSD at u IFF $\partial_C f(u)$ is a singleton.

Metric projection.

Let E be a Hilbert space and $C \subset E$ be a closed nonempty set. The metric projection onto C is the set-valued mapping $P_C : E \rightrightarrows E$ defined by

$$P_C(x) = \{u \in C : d_C(x) = ||x - u||\}.$$

Some properties of the metric projection.

Let $x \in E$ and $u \in C$. Then the following assertions are equivalent:

- $u \in P_C(x)$;
- $u \in P_C(u + t(x u)) \ \forall t \in [0, 1];$
- $d_C(u + t(x u)) = t||x u|| \ \forall t \in [0, 1];$
- $\langle x u, u' u \rangle \le \frac{1}{2} ||u' u||^2 \ \forall u' \in C.$

Proximal normal cones.

Let $\bar{x} \in C$

Proximal normal cone.

The proximal normal cone to C at \bar{x} is the convex cone given by

$$N_{\rho}(C,\bar{x}) := \operatorname{cone}(P_C^{-1}(\bar{x}) - \bar{x}).$$

Variational characterization of the proximal normal cone.

$$N_p(C,\bar{x}) = \{x^* \in E : \exists \alpha > 0; \langle x^*, x - \bar{x} \rangle \le \alpha \|x - \bar{x}\|^2 \, \forall x \in C\}.$$

In fact the notion of proximal normals is essentially a local property.

Local characterization.

For any given $\delta > 0$, we have $x^* \in N_p(C, \bar{x})$ iff there exists $\alpha > 0$ such that

$$\langle x^*, x - \bar{x} \rangle \le \alpha \|x - \bar{x}\|^2 \, \forall x \in C \cap B(\bar{x}, \delta).$$

CMM-Universidad de Chile, Santiago, Dece

Proximal normal to smooth sets.

Suppose that ${\it C}$ has the following representation:

$$C = \{x \in E : h_i(x) = 0, i = 1, \dots, k\}$$
 where $h_i : E \mapsto \mathbb{R}$ is C^1 . If $\{\nabla h_i(\bar{x}), i = 1, \dots, k\}$ are linearly independent, then

- $N_p(C,\bar{x}) \subset \operatorname{span}\{\nabla h_1(\bar{x}),\cdots,\nabla h_k(\bar{x})\}.$
- If in addition each h_i is C^2 , then the equality holds.

Proximal subdifferential of the distance function.

Let $x \notin C$ and $x^* \in \partial_p d_C(x)$. Then there exists $u \in C$ so that:

- Every minimizing sequence $(u_i) \subset C$ of $\inf_{v \in C} ||x v||$ converges to u.
- $P_C(x) = \{u\}.$
- The Fréchet derivative $\nabla d_C(x)$ exists, and

$$\{x^*\} = \partial_p d_C(x) = \{\nabla d_C(x)\} = \{\frac{x - u}{\|x - u\|}\}.$$

• $x^* \in N_p(C, u)$.

Proximal subdifferential: Geometric and variational characterizations.

Geometric characterization.

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a lsc function and let $\bar{x} \in \mathsf{Dom} f$. The proximal subdifferential is defined by

$$\partial_{\rho}f(\bar{x}) = \big\{ x^* \in E : (x^*, -1) \in N_{\rho}(\operatorname{epi}f, (\bar{x}, f(\bar{x}))) \big\}.$$

Variational characterization.

The following assertions are equivalent:

- $x^* \in \partial_p f(\bar{x})$.
- $\exists \alpha > 0$ and $\delta > 0$ such that

$$f(x) - f(\bar{x}) \ge \langle x^*, x - \bar{x} \rangle - \alpha ||x - \bar{x}||^2 \, \forall x \in B(\bar{x}, \delta).$$

Link with Gâteaux derivative.

Assume that f is Gâteaux differentiable at \bar{x} . Then

- $\partial_p f(\bar{x}) \subset {\nabla f(\bar{x})}.$
- If f is of class C^2 is some neighbourhood V of \bar{x} , then $\partial_p f(x) \subset \{\nabla f(x)\} \, \forall x \in V$.

The first inclusion may be strict even if f is of class \mathcal{C}^1 . To see this, take $f(x) = -\sqrt{|x|^3}$ and $\bar{x} = 0$. But we have the following:

Density theorem

Let $\bar{x} \in \mathsf{Dom} f$, where f is lsc, and let $\varepsilon > 0$ be given. Then there exists $x \in B(\bar{x}, \varepsilon)$, with $f(\bar{x}) - \varepsilon \le f(x) \le f(\bar{x})$, such that $\partial_p f(x) \ne \emptyset$. In particular $\mathsf{Dom} \partial_p f$ is dense in $\mathsf{Dom} f$.

Optimality conditions.

- If f has a local minimum at \bar{x} , then $0 \in \partial_p f(\bar{x})$.
- Let f of class C^2 , and suppose that \bar{x} is a local minimum of f over C. Then $-\nabla f(\bar{x}) \in N_p(C, \bar{x})$.

Limiting counterpart.

Limiting proximal normal.

The limiting proximal normal cone to C at \bar{x} is the set

$$N_{\ell}(C, \bar{x}) = w - seq - \limsup_{\substack{x \stackrel{C}{\to} \bar{x}}} N_{p}(C, x).$$

Before giving a geometric and variational characterizations of the limiting proximal subdifferentials, let us point out that, unlike the proximal normal cone, the limiting one is not convex. To see this consider

$$C := \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \ge -|x_1|\}.$$
 Then $N_{\ell}(C, (0, 0)) = \{(y, y) : y \le 0\} \cup \{(y, -y) : y \ge 0\}.$

Limiting proximal subdifferential: Geometric characterization

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a lsc function and $\bar{x} \in \mathsf{Dom} f$. The limiting proximal subdifferential of f at \bar{x} is given by

$$\partial_{\ell}f(\bar{x}) = \left\{x^* \in E^* : (x^*, -1) \in N_{\ell}(\operatorname{epi}f, (\bar{x}, f(\bar{x})))\right\}.$$

Proximal subdifferential: Analytic construction. Chain rule.

Proximal subdifferential: Analytic construction.

$$\partial_{\ell} f(\bar{x}) = w - seq - \limsup_{\substack{x \stackrel{f}{\to} \bar{x}}} \partial_{p} f(x).$$

Sum.

Let $f_1, f_2 : E \mapsto \mathbb{R} \cup \{+\infty\}$ be lsc functions and $\bar{x} \in \mathsf{Dom} f_1 \cap \mathsf{Dom} f_2$ with f_1 locally Lipschitz at \bar{x} . Then

• For any $x^* \in \partial_p(f_1 + f_2)(\bar{x})$ and $\varepsilon > 0$ there exist (for i = 1, 2) points $x_i \in B(\bar{x}, \varepsilon)$, with $|f(x_i) - f(\bar{x})| < \varepsilon$, such that

$$x^* \in \partial_p f_1(x_1) + \partial_p f_2(x_2) + B(0, \varepsilon).$$

• $\partial_{\ell}(f_1+f_2)(\bar{x})\subset\partial_{\ell}f_1(\bar{x})+\partial_{\ell}f_2(\bar{x}).$

Composition.

Let F be a Hilbert space and $F: E \mapsto F$ and $g: F \mapsto \mathbb{R}$ be locally Lipschitzian mappings at \bar{x} and $F(\bar{x})$ respectively. Then

• For any $x^* \in \partial_p(g \circ F)(\bar{x})$ and $\varepsilon > 0$ there exist $x \in B(\bar{x}, \varepsilon)$, with $\|F(x) - F(\bar{x})\| < \varepsilon$, $y \in B(F(\bar{x}, \varepsilon))$ and $y^* \in \partial_p g(y)$ such that

$$x^* \in \partial_p(\langle y^*, F(\cdot)\rangle)(x) + B(0, \varepsilon).$$

• If dim $Y < \infty$, then

$$\partial_{\ell}(g \circ F)(\bar{x}) \subset \bigcup_{y^* \in \partial_{\ell}g(F(\bar{x}))} \partial_{\ell}(\langle y^*, F(\cdot) \rangle)(\bar{x}).$$

Normal cones via subdifferential of the distance function

Proximal normal cone.

Assume that E is a Hilbert space. Then

$$N_p(C,\bar{x}) = \operatorname{cone}(\partial_p d_C(\bar{x})).$$

Limiting proximal normal cone.

Assume that E is a Hilbert space. Then

$$N_{\ell}(C,\bar{x}) = \mathsf{clcone}(\partial_{\ell} d_C(\bar{x})).$$

Relationship between Clarke subdifferential and limiting proximal subdifferential

For locally Lipschitzian function.

Assume that E is a Hilbert space and f is locally Lipschitz at \bar{x} . Then

$$\partial_C f(\bar{x}) = \mathsf{cl}^* \; \mathsf{co} \partial_\ell f(\bar{x}).$$

Limiting Fréchet subdifferential.

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a lsc function and let $\bar{x} \in \mathsf{Dom} f$.

Fréchet subdifferential.

Let $\varepsilon \geq 0$. The ε -Fréchet subdifferential of F at \bar{x} is the convex and norm-closed set

$$\partial_F^{\varepsilon} f(\bar{x}) = \{ x^* : \liminf_{h \to 0} \frac{f(\bar{x} + h) - f(\bar{x}) - \langle x^*, h \rangle}{\parallel h \parallel} \ge -\varepsilon \}.$$

For $\varepsilon = 0$, we put $\partial_F f(\bar{x}) = \partial_F^0 f(\bar{x})$.

Limiting Fréchet subdifferential.

The limiting Fréchet subdifferential of f at \bar{x} is the set

$$\partial_L f(\bar{x}) = w^* - seq - \limsup_{\substack{x \to \bar{x} \\ \varepsilon \to 0^+}} \partial_F^{\varepsilon} f(x).$$

Asplund spaces are Banach spaces on which every continuous convex function is Fréchet differentiable at a dense set of points niversidad de Chile, Santiago, Dece

Characterizations of Asplund spaces.

Characterizations.

The following assertions are equivalent:

- 1. E is Asplund.
- 2. For any $\varepsilon \geq 0, \delta > 0, \gamma > 0$ and any lsc functions $f_1, f_2 : E \mapsto \mathbb{R} \cup \{+\infty\}$ and $\bar{x} \in \mathsf{Dom} f_1 \cap \mathsf{Dom} f_2$ with f_1 locally Lipschitz at \bar{x}

$$\begin{array}{ll} \partial_F^{\varepsilon}(f_1+f_2)(\bar{x}) \subset & \left\{\partial_F f_1(x_1) + \partial_F f(x_2) : x_i \in B(\bar{x},\delta), \\ & |f_i(x_i) - f_i(\bar{x})| < \delta, i = 1,2\right\} + (\varepsilon + \gamma)B_{E^*}. \end{array}$$

3. For any lsc function $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ and $\bar{x} \in \mathsf{Dom} f$

$$\partial_L f(\bar{x}) = w^* - seq - \limsup_{\substack{x \to \bar{x}}} \partial_F f(x).$$

4. For any lsc functions $f_1, f_2 : E \mapsto \mathbb{R} \cup \{+\infty\}$ and $\bar{x} \in \mathsf{Dom} f_1 \cap \mathsf{Dom} f_2$ with f_1 locally Lipschitz at \bar{x}

$$\partial_L(f_1+f_2)(\bar{x})\subset\partial_Lf_1(\bar{x})+\partial_Lf_2(\bar{x}).$$

Normal cones.

Let $C \subset E$ be a closed set containing \bar{x} .

Fréchet normal cone.

Let $\varepsilon \geq 0$. The ε -Fréchet normal cone to C at \bar{x} is the set

$$N_F^{\varepsilon}(C,\bar{x}) = \partial_F^{\varepsilon} \Psi_C(\bar{x}) = \{x^* \in E^* : \limsup_{x \stackrel{C}{\sim} \bar{x}} \frac{\langle x^*, x - \bar{x} \rangle}{\|x - \bar{x}\|} \le \varepsilon \}.$$

Limiting Fréchet normal cone.

The limiting Fréchet normal cone to C at \bar{x} is the set

$$N_L(C, \bar{x}) = w^* - seq - \limsup_{\substack{x \to \bar{x} \\ x \to 0^+ \\ \varepsilon \to 0^+}} N_F^{\varepsilon}(C, x).$$

Normal cone characterization of Asplund spaces.

A characterization of Asplund spaces.

The following assertions are equivalent:

- 1. E is Asplund.
- 2. For any closed set $C \subset E$ and any boundary point $\bar{x} \in C$

$$N_L(C,\bar{x}) = w^* - seq - \limsup_{\substack{x \subseteq \bar{x}}} N_F(C,x).$$

Remarks.

Remark.

Note that in the finite dimensional case $E = \mathbb{R}^n$, the limiting Fréchet normal cone coincides with the one in Mordukhovich [13]:

$$N_p(C,\bar{x}) == \limsup_{x \to \bar{x}} \operatorname{cone}(x - P_C(x))$$

where "cone" stands for the conic hull of a set and $P_C(x)$ means the Euclidean projection of x on the closure of C.

Remark

- The limiting Fréchet normal cone is not convex.
- There are a closed subset C of the Hilbert space ℓ^2 and a boundary point $\bar{x} \in C$ such that $N_L(C, \bar{x})$ is not norm closed.

Geometric characterization.

Geometric characterization.

Let $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a lsc function and $\bar{x} \in \mathsf{Dom} f$. The limiting Fréchet subdifferential of f at \bar{x} is given by

$$\partial_L f(\bar{x}) = \big\{ x^* \in E^* : (x^*, -1) \in N_L(\operatorname{epi} f, (\bar{x}, f(\bar{x})) \big\}.$$

Density theorem

The density theorem and the Ekeland variational principle

In this section, ∂ will denote one of the previous subdifferentials with appropriate Banach spaces.

(Density theorem).

Let $\bar{x} \in \mathsf{Dom} f$, and let $\varepsilon > 0$ be given. Then there exists $x \in B(\bar{x}, \varepsilon)$, with $f(\bar{x}) - \varepsilon \le f(x) \le f(\bar{x})$, such that $\partial f(x) \ne \emptyset$. In particular $\mathsf{Dom} \partial f$ is dense in $\mathsf{Dom} f$.

The density theorem and the Ekeland variational principle

In this section, ∂ will denote one of the previous subdifferentials with appropriate Banach spaces.

(Density theorem).

Let $\bar{x} \in \mathsf{Dom} f$, and let $\varepsilon > 0$ be given. Then there exists $x \in B(\bar{x}, \varepsilon)$, with $f(\bar{x}) - \varepsilon \le f(x) \le f(\bar{x})$, such that $\partial f(x) \ne \emptyset$. In particular $\mathsf{Dom} \partial f$ is dense in $\mathsf{Dom} f$.

Ekeland variational principle

Let E be a Banach space and $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ be a lsc function which is bounded from below on some closed set $C \subset E$. Then, given $\gamma > 0$, and $u \in C$, with $f(u) < +\infty$, there exists $v \in C$ such that

$$f(v) \le f(x) + \gamma ||x - v|| \quad \forall x \in C$$
$$f(v) + \gamma ||u - v|| \le f(u).$$

CMM-Universidad de Chile, Santiago, Dece 59 / 98

Applications

- Classical Analysis
- Optimization
- Optimal control

Classical Analysis

Nonsmooth classical analysis

Lebourg mean value theorem.

Suppose that f is locally Lipschitz on some open convex set Ω . For each $a,b\in\Omega$, with $a\neq b$ there exists $c\in[a;b)$ and $x^*\in\partial_c f(c)$ such that

$$f(b) - f(a) = \langle x^*, b - a \rangle.$$

Zagrodny mean value theorem

Given a lsc function $f: E \mapsto \mathbb{R} \cup \{+\infty\}$, for each $a, b \in \mathsf{Dom} f$, with $a \neq b$ there exists $c \in [a; b)$ and two sequences

$$\bullet (x_k) \subset E, \lim_{k \to +\infty} x_k = c;$$

•
$$(x_k^*) \subset E^*$$
, with $x_k^* \in \partial_c f(x_k)$

such that

$$\liminf_{k\to+\infty}\langle x_k^*,b-a\rangle\geq f(b)-f(a)$$

$$\liminf_{k\to+\infty}\langle x_k^*,b-x_k\rangle\geq \frac{\|b-c\|}{\|b-a\|}\big(f(b)-f(a)\big).$$

Given a lsc function $f: E \mapsto \mathbb{R} \cup \{+\infty\}$. The lower Dini derivative of f at $x \in \mathsf{Dom} f$ in the direction $d \in E$ is

$$d^-f(x,d) = \liminf_{t\to 0^+} \frac{f(x+td)-f(x)}{t}.$$

Diewert mean value theorem.

For each $a, b \in \mathsf{Dom} f$, with $a \neq b$ there exists $c \in [a; b)$ such that

$$d^-f(c,b-a) \ge f(b) - f(a).$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. One says that f is decreasing if

$$f(y) \le f(x)$$
 whenever $x \le y$.

The inequality $x \le y$ is understood in the component-wise sense: $x_i \le y_i$, $i = 1, \dots, n$.

Characterization of the monotony.

f is decreasing iff $x^* \leq 0 \ \forall x^* \in \partial_c f(x)$, $\forall x \in \mathbb{R}^n$.

Extension

Let $K \subset E$ be a closed convex cone and K^0 be the negative polar of K, that is,

$$K^0 := \{ x^* \in E^* : \langle x^*, h \rangle \le 0 \, \forall h \in K \}.$$

Characterization of the monotony.

Let $f : E \mapsto \mathbb{R}$ be a function. The following assertions are equivalent:

- f is decreasing with respect to K, that is for all $x, y \in E$, with $y x \in K$, $f(y) \le f(x)$,
- $\partial_c f(x) \subset K^0$, $\forall x \in E$.

Optimization

Necessary optimality conditions.

- E and F are Hilbert spaces
- $f: E \mapsto \mathbb{R} \cup \{+\infty\}$ and $g: E \mapsto F$ are mappings
- $C \subset E$ and $D \subset F$ are closed sets

The optimization problem:

$$(P) \quad \begin{cases} \min f(x) \\ x \in C \\ g(x) \in D \end{cases}$$

In this part of applications, we use the notation ∂ for the limiting Proximal subdifferential or for the Clarke subdifferential.

Lagrange multipliers

Fritz-John Lagrange multipliers

 (λ, z^*) is a Fritz-John Lagrange multiplier for (P) at \bar{x} if

FJ1
$$(\lambda, z^*) \neq 0$$

FJ2
$$\lambda \geq 0$$
, $z^* \in N(D, g(\bar{x}))$

L2
$$0 \in \lambda \partial f(\bar{x}) + \partial (z^* \circ g)(\bar{x}) + N(C, \bar{x})$$

Fritz-John multipliers with $Y = \mathbb{R}^m$ or D is a closed convex cone with nonempty interior

Suppose that f and g are locally Lipschitz at \bar{x} local solution for (P). Then there exists a Fritz-John Lagrange multiplier (λ, z^*) for (P) at \bar{x} .

The failure of the necessary optimality conditions

Brokate

Let $X=Y=I^2$ be the Hilbert space of square summable sequences, with (e_k) its canonical orthonormal base and let the operator $A:I^2\to I^2$ be defined by

$$A(\sum x_i e_i) = \sum 2^{1-i} x_i e_i.$$

Then A is not surjective and Im(A) is a proper dense subspace of I^2 . The adjoint A^* is injectif but not surjectif. So let $x^* \notin Im(A^*)$ and set $f = x^*$, g = A and $D = \{0\}$. Then 0 is only the feasible point and it is the optimum for this problem. Moreover there is no Fritz-John Lagrange multiplier for this problem at 0.

The failure of the necessary optimality conditions

Brokate

Let $X=Y=I^2$ be the Hilbert space of square summable sequences, with (e_k) its canonical orthonormal base and let the operator $A:I^2\to I^2$ be defined by

$$A(\sum x_i e_i) = \sum 2^{1-i} x_i e_i.$$

Then A is not surjective and Im(A) is a proper dense subspace of I^2 . The adjoint A^* is injectif but not surjectif. So let $x^* \notin Im(A^*)$ and set $f = x^*$, g = A and $D = \{0\}$. Then 0 is only the feasible point and it is the optimum for this problem. Moreover there is no Fritz-John Lagrange multiplier for this problem at 0.

What is missing here?

The failure of the necessary optimality conditions

Brokate

Let $X=Y=I^2$ be the Hilbert space of square summable sequences, with (e_k) its canonical orthonormal base and let the operator $A:I^2\to I^2$ be defined by

$$A(\sum x_i e_i) = \sum 2^{1-i} x_i e_i.$$

Then A is not surjective and Im(A) is a proper dense subspace of I^2 . The adjoint A^* is injectif but not surjectif. So let $x^* \notin Im(A^*)$ and set $f = x^*$, g = A and $D = \{0\}$. Then 0 is only the feasible point and it is the optimum for this problem. Moreover there is no Fritz-John Lagrange multiplier for this problem at 0.

What is missing here? Closedness of the rang of A

When do we get Fritz-John-Lagrange multipliers if $\dim Y = +\infty$?

Before the 90', the only well known results when $\dim Y = +\infty$ assumed that

D is a closed convex cone with $int D \neq \emptyset$.

Fritz-John multipliers

Let \bar{x} be a solution of the problem (P) at f is locally Lipschitzian and g is of class \mathcal{C}^1 . Suppose D is a closed convex cone with non empty interior. Then there exist $\lambda \geq 0$ and $y^* \in N(D, g(\bar{x}))$, with $(\lambda, y^*) \neq 0$, such that

$$0 \in \lambda \partial f(\bar{x}) + D^*g(\bar{x}(y^*) + N(C, \bar{x}).$$

How to avoid the interiority assumption?

How to include the finite-dimensional situation?

Fritz-John multipliers

Let \bar{x} be a solution of the problem (P) at f is locally Lipschitzian and g is of class \mathcal{C}^1 . Suppose D is a closed convex cone with non empty interior. Then there exist $\lambda \geq 0$ and $y^* \in \mathcal{N}(D, g(\bar{x}))$, with $(\lambda, y^*) \neq 0$, such that

$$0 \in \lambda \partial f(\bar{x}) + D^*g(\bar{x}(y^*) + N(C, \bar{x}).$$

w to include the finite dimensional cituation?

How to include the finite-dimensional situation?

How to avoid the interiority assumption?

The answers to these questions are given in J. and Thibault (1995) where the unification appears for the first time.

Existence of Karush-Kuhn-Tucker(KKT) multipliers

KKT multipliers

 z^* is a KKT Lagrange multiplier for (P) at \bar{x} if

L1
$$z^* \in N(D, g(\bar{x}))$$

L2
$$0 \in \partial f(\bar{x}) + \partial (z^* \circ g)(\bar{x}) + N(C, \bar{x})$$

Let $KKT(\bar{x})$ denotes the set of KKT Lagrange multiplier for (P) at \bar{x} .

Existence of Karush-Kuhn-Tucker(KKT) multipliers

KKT multipliers

 z^* is a KKT Lagrange multiplier for (P) at \bar{x} if

L1
$$z^* \in N(D, g(\bar{x}))$$

L2
$$0 \in \partial f(\bar{x}) + \partial(z^* \circ g)(\bar{x}) + N(C, \bar{x})$$

Let $KKT(\bar{x})$ denotes the set of KKT Lagrange multiplier for (P) at \bar{x} .

Calmness and metric regularity

Consider the system

$$x \in C, \quad g(x) \in D.$$
 (7)

The system (7) is said to be calm (resp. metrically regular) at \bar{x} if there exist a > 0 and r > 0 such that

$$d_{g^{-1}(D)\cap C}(x) \le a(d_D(g(x)) + d_C(x)) \quad \forall x \in B(\bar{x}, r)$$

(resp.

$$d_{g^{-1}(D-y)\cap C}(x) \leq a(d_D(g(x)+y)+d_C(x)) \quad \forall x \in B(\bar{x},r), \, \forall y \in B(0,r)).$$

Example 1: Calmness of linear inequality systems

Consider the linear inequality system

$$\langle x_i^*, x \rangle + b_i \leq 0 \quad i = 1, \cdots, m$$

with solution set S, $b_i \in R$ and $x_i^* \in H$, with $||x_i^*|| = 1$, where H is a Hilbert space.

A.J.

Two following properties hold and are equivalent

(i) there exists $\alpha>0$ depending only on $(x_i^*)_{i\in\Delta_m}$ such that

$$d_{S}(x) \leq \alpha f(x), \quad \forall x \in X$$

(ii) (Farkas Lemma) for all u in S, $N(S, u) = R_+ \partial f(u)$

where
$$f(x) = \sum_{i=1}^{m} \max(0, \langle x_i^*, x \rangle + b_i)$$
 and $N(S, u) = R_+ \partial d(u, S)$.

Example 2: Calmness of linear equality-inequality systems

the following linear equality-inequality systems

$$Ax = 0, \quad \langle x_i^*, x \rangle + b_i \leq 0 \quad i = 1, \cdots, m$$
 (8)

with solution set S. Here $A: X \to Y$ is a linear continuous mapping such that R(A), the rang of A, is closed, $b_i \in R$ and $x_i^* \in X^*$, with $||x_i^*|| = 1$.

loffe, A.J.

Then there exists a > 0 such that

$$d_S(x) \le af(x), \quad \forall x \in X$$

where
$$f(x) = ||Ax|| + \sum_{i=1}^{m} (\langle x_i^*, x \rangle + b_i)_+.$$

Example 3: Necessary and/or sufficient conditions for calmness of convex systems

Burke and Ferris

Suppose X is a Hilbert space and f is convex and proper. If S is closed, then the following are equivalent

(i) There exists a > 0 such that

$$d_S(x) \le af_+(x) \quad \forall x \in X$$

(ii) $\partial d(S,x) \subset a\partial f_+(x)$ for all $x \in S$.

Where $f_+(x) = \max(f(x), 0)$

Under Slater condition

Suppose f convex and $f(x_0) < 0$. Then for all $x \in X$

$$d_S(x) \leq \frac{f_+(x)}{-f(x_0)} ||x - x_0||.$$

Example 4: Calmness of eigenvalue matrix inequality systems

The eigenvalues of the symetric matrix X are $\lambda_1(X) \geq \cdots \geq \lambda_n(X)$.

J. Ye and A.J.

For any given constants α_i , c such that $\sum_{i=1}^n \alpha_i \neq 0$, the set

$$S_1 := \{X \in \mathcal{S}^n : \sum_{i=1}^n \alpha_i \lambda_i(X) \le c\}$$

is nonempty and

$$d(X,S_1) \leq \frac{\sqrt{n}}{|\sum_{i=1}^n \alpha_i|} \left(\sum_{i=1}^n \alpha_i \lambda_i(X) - c\right), \quad \forall X \notin S_1.$$
 (9)

If moreover $\alpha_1 \geq \cdots \geq \alpha_n > 0$ and c = 0 or $\alpha_1 = \alpha_2 = \cdots = \alpha_n > 0$ then $\frac{\sqrt{n}}{\sum_{i=1}^n \alpha_i}$ is the smallest constant for which inequality (9) holds.

Example 5: Calmness of eigenvalue matrix inequality systems

For an integer κ between 1 and n, consider the function

 $E_{\kappa}(X) := \text{ sum of the } \kappa \text{th largest eigenvalues of } X.$

Then it is clear that

$$E_{\kappa}(X) = \sum_{i=1}^{\kappa} \lambda_i(X) = \sum_{i=1}^{n} \alpha_i \lambda_i(X) \quad \forall X \in \S^n,$$

with $\alpha_i = 1, i = 1, \dots, \kappa$ and $\alpha_i = 0, i = \kappa + 1, \dots, n$.

D. Azé and J.-B. Hiriart-Urruty

Let $S_4 := \{X : E_{\kappa}(X) \le c\}$. Then the set S_4 is nonempty and

$$d(X, S_4) \leq \frac{\sqrt{n}}{\kappa} (E_{\kappa}(X) - c), \quad \forall X \notin S_4.$$

Moreover, if either c=0 or $\kappa=n$, then the constant $\frac{\sqrt{n}}{\kappa}$ is the smallest one satisfying the last inequality.

CMM-Universidad de Chile, Santiago, Dece 76 / 98

Example 6: Calmness of eigenvalue matrix inequality systems

For integers k, l between 1 and n, with $k \le l$, consider the function

KL(X) := sum of the k th and l th largest eigenvalues of X.

Then it is clear that

$$KL(X) = \lambda_k(X) + \lambda_l(X) = \sum_{i=1}^n \alpha_i \lambda_i(X) \quad \forall X \in \S^n,$$

with $\alpha_i = 1$, i = k, l and $\alpha_i = 0$, $i \neq k$ or $i \neq l$.

J. Ye and A. J.

Let $S_6 := \{X : KL(X) \le c\}$. Then S_6 is nonempty and

$$d(X, S_6) \leq \frac{\sqrt{n}}{s(k, l)} (KL(X) - c), \quad \forall X \notin S_6,$$

where s(k, l) = 1 if k = l and s(k, l) = 2 if $k \neq l$.

Example 7: Sufficient conditions for calmness of nonconvex inequality systems

The positive linear independence condition: C = X, $D = \mathbb{R}^m_+$

$$\sum_{i=1}^m \lambda_i \nabla g_i(\bar{x}) = 0, \quad \lambda_i \geq 0, i = 1, \cdots, m \implies \lambda_1 = \cdots = \lambda_m = 0.$$

Robinson condition : C and D are convex

$$0 \in \operatorname{int} \big(Dg(\bar{x})(C - \bar{x}) - (D - g(\bar{x})) \big)$$

or equivalently

$$Dg(\bar{x})(T(C,\bar{x})) - T(D,g(\bar{x})) = Z.$$

Rockafellar condition : $D \subset \mathbb{R}^m$

$$z^* \in N(D, g(\bar{x})), \quad 0 \in \partial(z^* \circ g)(\bar{x}) + N(C, \bar{x}) \Longrightarrow z^* = 0$$

KKT multipliers

Let \bar{x} be a solution of the problem (P) at which f and g are locally Lipschitz. Suppose that the system (7) is calm at \bar{x} . Then there exists $y^* \in N(D, g(\bar{x}))$ such that

$$0 \in \partial f(\bar{x}) + \partial (y^* \circ g)(\bar{x}) + N(C, \bar{x}).$$

The generality may exclude simple cases

Refinements of necessary optimality conditions : $D = \{0\}$

$$\begin{cases}
\min f(x) \\
s.c. \quad g(x) = 0, \quad x \in C
\end{cases}$$
(10)

- (H_f) f is Gâteaux differentiable at x_0 and locally Lipschitz around x_0 with constant $K_f>0$
- (H_g^1) g is continuous and Gâteaux differentiable around x_0 . We consider the following system

Find
$$x \in C$$
, $g(x) = 0$ (11)

Theorem

Let x_0 be a local solution of the problem (10) where the system (11) is calm. Suppose that (H_f) and (H_g^1) hold. Then there exists $y^* \in Y^*$ such that

$$-Df(x_0) - D^*g(x_0)y^* \in N(C, x_0).$$

Refinements of necessary optimality conditions : $D \subsetneq Y$ closed set

$$\begin{cases}
\min f(x) \\
s.c. \quad g(x) \in D, \quad x \in C
\end{cases}$$
(12)

 (H_f) f is Gâteaux differentiable at x_0 and locally Lipschitz around x_0 .

 (H_g^2) g is Gâteaux differentiable at x_0 and locally Lipschitzian around x_0 .

Theorem

Let x_0 be a local solution of the problem (12) where the system (7) is calm. Suppose that (H_f) and (H_g^2) hold. Then there exists $y^* \in N(D, g(x_0))$ such that

$$-Df(x_0) - D^*g(x_0)y^* \in N(C, x_0).$$

Connection with the subdifferential of the value function

To the problem (P), we associate the family of problems

$$(P(y)) \quad \begin{cases} \min f(x) \\ x \in C \\ g(x) + y \in D \end{cases}$$

Let v(y) be the value of this problem, that is, $v(y) := \inf(P(y))$ and S(y) be the solution set of (P(y)).

Estimating the subdifferential of the value function

Suppose that $\dim F < \infty$, f and g are locally Lipschitz at any $\bar{x} \in S(0)$, and there exists a compact set K such that

$$S(y) \subset K$$
 for y near 0.

Suppose also that the system (7) is metrically regular at any $\bar{x} \in S(0)$. Then ν is locally Lipschitz at 0 and

$$\partial_{\ell}v(0)\subset\bigcup_{\bar{x}\in S(0)}KKT(\bar{x}).$$

Subdifferential of the value function

Let us consider the following family of problems where the data depend on the parameter

$$(Q(y)) \quad \begin{cases} \min f(x,y) \\ x \in C \\ g(x,y) \in D \end{cases}$$

Let v(y) be the value of this problem, that is, $v(y) := \inf(Q(y))$ and S(y) be the solution set of (Q(y)).

Partial metric regularity

We say that the system

$$x \in C, \quad g(x,y) \in D$$
 (13)

is partially metrically regular at \bar{x} with respect to \bar{y} if there exist a>0 and r>0 such that

$$d_{g_v^{-1}(D)\cap C}(x) \leq a\big(d_D(g(x,y)) + d_C(x)\big) \quad \forall x \in B(\bar{x},r), \, \forall y \in B(\bar{y},r),$$

where $g_v^{-1}(D) := \{x \in E : g(x, y) \in D\}.$

CMM-Universidad de Chile, Santiago, Dece 83 / 98

Subdifferential of the value function

Suppose that $\dim F < \infty$, f and g are locally Lipschitz at any, $(\bar{x},0)$, with $\bar{x} \in S(0)$, and there exists a compact set K such that

$$S(y) \subset K$$
 for y near 0. (14)

Suppose also that the system (13) is partially metrically regular at any $\bar{x} \in S(0)$ with respect to 0. Then v is locally Lipschitz at 0 and $\partial_{\ell}v(0) \subset \bigcup_{\bar{x} \in S(0)} \{y^* \in F^* : (0, y^*) \in \partial_{\ell}f(\bar{x}, 0) + \partial_{\ell}(z^* \circ g)(\bar{x}, 0) + N_{\ell}(C, \bar{x}) \times \{0\}, z^* \in N_{\ell}(D, g(\bar{x}, 0))\}.$

Optimal Control

The value function in optimal control

Consider the following parametrized optimal control problems

$$(Q(\tau,\omega)) \begin{cases} \min f(x(T)) \\ \dot{x}(t) \in F(x(t)) \text{ a.e. } t \in [\tau, T] \\ x(\tau) = \omega \end{cases}$$
 (15)

where $f: \mathbb{R}^n \to \mathbb{R}$ is a continuous function and $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ satisfying

$$\forall x \in \mathbb{R}^n, \quad F(x) \text{ is a nonempty compact convex set}$$
 (16)

$$F$$
 is upper semicontinuous (17)

$$\exists \gamma > 0, \ \beta > 0; \ \sup_{y \in F(x)} \|y\| \le \gamma \|x\| + \beta, \ \forall x.$$
 (18)

Let $v(\tau,\omega)$ be the value of this problem, that is, $v(\tau,\omega) := \inf(Q(\tau,\omega))$ and $S(\tau,\omega)$ be the solution set of $(Q(\tau,\omega))$.

Properties of v

The lower Hamiltonian h and the upper Hamiltonian corresponding to F are defined by

$$h(x,p) := \min_{v \in F(x)} \langle p, v \rangle$$
 and $H(x,p) := \max_{v \in F(x)} \langle p, v \rangle$.

Proposition

- $S(\tau,\omega) \neq \emptyset$.
- If F is locally Lipschitz, that is, for all $x \in \mathbb{R}^n$ there exists $K_x > 0$ and $r_x > 0$ such that

$$F(u) \subset F(v) + K_x ||u - v|| \mathbb{B} \quad \forall u, v \in B(x, r_x)$$
 (19)

then v is continuous. Moreover v is locally Lipschitz provided f is.

Exercise

Compute the proximal and limiting proximal subdifferentials of v.

Verification function

The augmented Hamiltonian is the function \bar{h} defined on $\mathbb{R}^n \times [0,T] \times \mathbb{R}^n$ by

$$\bar{h}(x,\theta,p)=\theta+h(x,p).$$

Let \bar{x} be a feasible arc for $(Q(0,x_0))$.

Verification function

A continuous function $\varphi:[0,T]\times\mathbb{R}^n\mapsto\mathbb{R}$ is a verification function for \bar{x} if

- $\bar{h}(x,1,\partial_{p}\varphi(t,x)) \geq 0 \ \forall (t,x) \in [0,T] \times \mathbb{R}^{n}$,
- $\varphi(T,\cdot) = f(\cdot)$ and $\varphi(0,x_0) = f(\bar{x}(T))$.

Theorem

A feasible arc \bar{x} is optimal iff there exists a continuous verification function for \bar{x} ; the value function v is one of such verification function for any optimal arc.

The minimal time problem

The minimal time control problem consists of a given closed set S (the "target set") and a control system in which the goal is to steer an initial point ω to the target set along a trajectory of the system in minimal time. The minimal time value is denoted by $T_S(\omega)$, which could be $+\infty$ if no trajectory from ω can reach S. The system involved is governed by the differential inclusion considered in (15). So

$$T_S(\omega) = \inf\{T \ge 0 : \text{ some trajectory } x \text{ satisfies } x(0) = \omega, \, x(T) \in S\}.$$

Theorem

Suppose F satisfies (16)-(19). Then there exists a unique lower semicontinuous function $\varphi:\mathbb{R}^n\mapsto]-\infty,+\infty]$ bounded below on \mathbb{R}^n and satisfying the following:

- $\forall x \notin S$, $h(x, \partial_p \varphi(x)) = -1$;
- Each $x \in S$ satisfies $\varphi(x) = 0$ and $h(x, \partial_p \varphi(x)) \ge -1$.

The minimal time problem

The minimal time control problem consists of a given closed set S (the "target set") and a control system in which the goal is to steer an initial point ω to the target set along a trajectory of the system in minimal time. The minimal time value is denoted by $T_S(\omega)$, which could be $+\infty$ if no trajectory from ω can reach S. The system involved is governed by the differential inclusion considered in (15). So

$$T_S(\omega) = \inf\{T \ge 0 : \text{ some trajectory } x \text{ satisfies } x(0) = \omega, \, x(T) \in S\}.$$

Theorem

Suppose F satisfies (16)-(19). Then there exists a unique lower semicontinuous function $\varphi: \mathbb{R}^n \mapsto]-\infty, +\infty]$ bounded below on \mathbb{R}^n and satisfying the following:

- $\forall x \notin S$, $h(x, \partial_p \varphi(x)) = -1$;
- Each $x \in S$ satisfies $\varphi(x) = 0$ and $h(x, \partial_p \varphi(x)) \ge -1$.

The unique such function is $\varphi(\cdot) = T_S(\cdot)$.

CMM-Universidad de Chile, Santiago, Dece 89 / 98

Violation of the lower semicontinuity of T_S and the existence of optimal trajectory

The following examples show the necessity of the assumption (18). Define $F: \mathbb{R}^2 \rightrightarrows \mathbb{R}^2$ by

$$F(x,y) = \{(1,1+y^2)\}.$$

Violation of the lower semicontinuity of T_S

Consider the target set $S = \{\frac{\pi}{2}\} \times \mathbb{R}$. Then one has $T_S(0,0) = \infty$, while $\lim_{s \to 0^+} T_S(s,0) = \frac{\pi}{2}.$

Violation of the existence of optimal trajectory

Consider the target set $S = \{(x,y) \in \mathbb{R}^2 : x \geq \frac{\pi}{2}, y(x - \frac{\pi}{2}) = 1\}$. Then the reachable set $R^T(0,0)$ from (0,0) at time T, that is,

$$R^{T}(0,0) := \{x(T) \in S : x \text{ is a trajectory for } F, x(0) = (0,0)\},$$

is given by

$$R^{T}(0,0) = \left\{ \begin{array}{ll} \{T\} \times [0,\tan T] & \text{if } 0 \leq T < \frac{\pi}{2} \\ \{T\} \times [0,+\infty[& \text{if } T \geq \frac{\pi}{2}. \end{array} \right.$$

Thus as

$$T_S(0,0) = \inf\{T \ge 0 : R^T(0,0) \cap S \ne \emptyset\}$$

then one has $T_S(0,0) = \frac{\pi}{2}$ but no trajectory reaches S from (0,0) in this time.

The proximal subdifferential of the minimal time function

For $r \geq 0$, define

$$S(r) := \{ \omega \in \mathbb{R}^n : T_S(\omega) \le r \}$$

the r-level set of $T_S(\cdot)$.

Computation of the proximal subdifferential

Suppose F satisfies (16)-(19). Then

• For all $x \in S$, we have

$$\partial_p T_S(x) = N_p(S, x) \cap \{ p \in \mathbb{R}^n : h(x, p) \ge -1 \}.$$

• Whenever r > 0 and $T_S(x) = r$, then

$$\partial_p T_S(x) = N_p(S(r), x) \cap \{p \in \mathbb{R}^n : h(x, p) = -1\}.$$

Lipschitz continuity of the minimal time function

Characterization of the Lipschitz continuity

Suppose F satisfies (16)-(19). Then the following are equivalent:

- There exists $\eta > 0$ such that $T_S(\cdot)$ is Lipschitz continuous on $S + \eta B$.
- •

$$\sup_{x\in S, p\in \partial_p T_S(x)} \|p\| < \infty.$$

• There exist $\eta > 0$ and $\delta > 0$ such that

$$x \in S^c \cap (S + \eta B), \quad p \in x - P_S(x) \Longrightarrow h(x, p) \le -\delta ||p||.$$

Necessary optimality conditions of free time problems

The free time problem are optimal control problems where the minimization is given jointly in time and state:

$$(FT(\omega)) \begin{cases} \min_{(T,x)} f(T,x(T)) \\ \dot{x}(t) \in F(x(t)) \text{ a.e. } t \in [0,T] \\ x(0) = \omega \end{cases}$$
 (20)

where $f: \mathbb{R}^n \mapsto \mathbb{R}$ is a locally Lipschitzian function and $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ satisfying (16)-(19).

Let $v(\omega)$ be the value of this problem and $\bar{T} > 0$.

Necessary optimality conditions

Let (\bar{T}, \bar{x}) be a solution to the problem (20). Then there exists an arc p on $[0, \bar{T}]$ such that

- $(-\dot{p}(t),\dot{\bar{x}}(t)) \in \partial_c H(\bar{x}(t),p(t))$, a.e. $t \in [0,\bar{T}]$;
- $H(\bar{x}(t), p(t)) = a (= \text{constant}), 0 \le t \le \bar{T} \text{ and } (a, -p(\bar{T})) \in \partial_{\ell} f(\bar{T}, \bar{x}(\bar{T})).$

Invariance

Let $S \subset \mathbb{R}^n$ be a closed set.

Weak invariance

The system (S, F) is said to be weakly invariant provided that for all $x_0 \in S$, there exists a trajectory x on $[0, +\infty[$ such that

$$x(0) = x_0, \quad x(t) \in S \forall t \geq 0.$$

Theorem

Let F satisfying (16)-(18). Then the following are equivalent:

- \bullet (S, F) is weakly invariant;
- $h(x, N_p(S, x)) \leq 0 \ \forall x \in S$;
- $F(x) \cap K(S,x) \neq \emptyset \ \forall x \in S$;
- $F(x) \cap \operatorname{co}K(S, x) \neq \emptyset \ \forall x \in S$.

Here K(S,x) denotes the contingent or Bouligand cone to S at x.

Characterization of solutions of Hamilton-Jacobi equations

Theorem

A continuous function u on $\Omega \subset \mathbb{R}^n$ is

• a viscosity supersolution of (6) iff for all $x \in \Omega$

$$H(x, u(x), x^*) \ge 0 \quad \forall x^* \in \partial_F u(x)$$

• a viscosity subsolution of (6) iff for all $x \in \Omega$

$$H(x, u(x), x^*) \le 0 \quad \forall x^* \in \partial_F^+ u(x).$$

Here
$$\partial_F^+ u(x) = -\partial_F (-u)(x)$$
.

Characterization of test functions

Lemma

Let u be a continous function on Ω . Then

- (i) $x^* \in \partial_F u(x)$ if and only if there exists a function $\varphi \in \mathcal{C}^1(\Omega)$ such that $\nabla \varphi(x) = x^*$ and $u \varphi$ has a local minimum at x.
- (ii) $x^* \in \partial_F^+ u(x)$ if and only if there exists a function $\varphi \in \mathcal{C}^1(\Omega)$ such that $\nabla \varphi(x) = x^*$ and $u \varphi$ has a local maximum at x.

Example

Let $\Omega \subset \mathbb{R}^n$ be an open set and $f: \Omega \mapsto \mathbb{R}$ be a continuous function which is 1-Lipschtit on $\partial \Omega$. Then the function $\varphi: \Omega \mapsto \mathbb{R}$ defined by $\varphi(x) = \inf_{y \in \partial \Omega} \{\|y - x\| + f(y)\}$ is a viscosity subsolution of the Hamilton-Jacobi equation

$$\left\{ \begin{array}{ll} |\nabla \varphi(x)| = 1 & x \in \Omega \\ \varphi_{\partial \Omega} = f \end{array} \right.$$

- V. Bompart, Optimisation non lisse pour la commande des systèmes de l'Aéronautique, Doctorat de l'Université Paul Sabatier, Toulouse III, 2007.
- P. Bosch, R. Henrion, A. Jourani, Error bounds and applications, Applied Math. Optim., 50 (2004) 161-181.
- F.H. Clarke, Optimisation and nonsmooth analysis, Wiley, New-York (1983).
- F.H. Clarke, Necessary conditions in dynamic programming, *Memoirs AMS* **73** (2005).
- F. H. Clarke, Discontinuous Feedback and Nonlinear Systems, Proc. IFAC Conf. Nonlinear Control (NOLCOS), Bologna, 2010, p.1-29.
- F.H. Clarke, Yu. S. Ledyaev, R.J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, Springer, 1998.

- M. Fabian, Subdifferentiability and trustworthiness in the light of new variational principle of Borwein and Preiss, Acta Univ. Carolinae (1989), 51-56.
 - H. Frankowska, Local controllability and infinitesimal generators of semigroups of set-valued maps, SIAM J. Cont. Optim., 25 (1987) 412–432.
- H. Frankowska, B. Kaskosz, A Maximum principle for differential inclusion problems with state constraints, Systems Control Lett., 11 (1988) 189-194.
- A. Jourani, L. Thibault, Metric regularity and subdifferential calculus in Banach spaces, Set-valued Anal., 3 (1995), 87-100.
- A. Jourani, L. Thibault, Verifiable conditions for openness and metric regularity of multivalued mappings in Banach spaces, Transactions AMS, 347 (1995), 1255-1268.

- A. Jourani, L. Thibault, Noncoincidence of approximate and limiting subdifferentials of integral functionals, SIAM J. Cont. Optim., 49 (2011), 1435-1453
 - B.S. Mordukhovich, Variational Analysis and Generalized Differentiation, Vol.1: Basic Theory, Vol. 2: Applications, Springer, Berlin (2005).
- P. Wolenski and Y. Zhuang, Proximal analysis and the minimal time function, SIAM J. Cont. Optim.,36 (1998), 1048-1072.
- Luděk Zajíček, Strict differentiability via differentiability Acta Universitatis Carolinae. Mathematica et Physica, Vol. 28 (1987), 157-159