Approximation of stable solutions to a stationay MFG system

Jules Berry

IRMAR - INSA Rennes

Numerical methods for optimal transport problems, mean field games, and multi-agent dynamics – January 12, 2024

Joint work with by O. Ley (IRMAR - INSA Rennes) and F. Silva (XLIM - University of Limoges)

The stationary MFG system

• We consider the stationary MFG system introduced by Bensoussan-Frehse-Yam (2013)

$$\begin{cases} -\Delta u + \frac{1}{2} |Du|^2 + \lambda u = f(m) & \text{in } \mathbb{T}^d, \\ -\Delta m - \operatorname{div} (mDu) + \lambda m = \lambda m_0 & \text{in } \mathbb{T}^d, \end{cases}$$

•
$$f \in C^2(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$$
,

•
$$m_0 \in C^{0,lpha}(\mathbb{T}^d) \cap \mathcal{P}(\mathbb{T}^d)$$

Theorem

There exists a classical solution $(u, m) \in C^{2,\alpha}(\mathbb{T}^d) \times C^{2,\alpha}(\mathbb{T}^d)$ to (1). Furthermore, if $f' \geq 0$ then this solution is unique.

(1)

Stable solutions

- If the coupling *f* is not monotone the solutions to the MFG system are in general not unique.
- For potential MFG systems (in particular for local couplings) Briani and Cardaliaguet introduced Stable Solutions.

Definition (Briani-Cardaliaguet 2018)

Let (u, m) be a classical solution to

$$\begin{cases} -\Delta u + \frac{1}{2} |Du|^2 + \lambda u = f(m) & \text{in } \mathbb{T}^d, \\ -\Delta m - \operatorname{div} (mDu) + \lambda m = \lambda m_0 & \text{in } \mathbb{T}^d. \end{cases}$$

We say that (u, m) is *stable* if $(v, \rho) = (0, 0)$ is the unique classical solution to the linearized system

$$\begin{cases} -\Delta v + Du \cdot Dv + \lambda v = f'(m)\rho & \text{in } \mathbb{T}^d, \\ -\Delta \rho - \operatorname{div}(\rho Du) + \lambda \rho = \operatorname{div}(mDv) & \text{in } \mathbb{T}^d. \end{cases}$$

• When the coupling is not monotone, stable solutions are in general not unique. However they have some interesting properties.

Proposition (Briani-Cardaliaguet 2018)

Let (u, m) be a stable solution to

$$\begin{cases} -\Delta u + \frac{1}{2} |Du|^2 + \lambda u = f(m) & \text{in } \mathbb{T}^d, \\ -\Delta m - \operatorname{div} (mDu) + \lambda m = \lambda m_0 & \text{in } \mathbb{T}^d. \end{cases}$$

(2)

Then there exists R > 0 such that, if $(\tilde{u}, \tilde{m}) \neq (u, m)$ is another classical solution to (2), then

$$\|u-\tilde{u}\|_{W^{1,d}}+\|m-\tilde{m}\|_{L^2}>R.$$

• It is also proved by Briani and Cardaliaguet that the Fictitious Play method converges locally to stable solutions.

• We have the following result on the existence of stable solutions.

Theorem

Every classical solution (u, m) to

$$\begin{cases} -\Delta u + \frac{1}{2} |Du|^2 + \lambda u = f(m) & \text{in } \mathbb{T}^d, \\ -\Delta m - \operatorname{div} (mDu) + \lambda m = \lambda m_0 & \text{in } \mathbb{T}^d. \end{cases}$$
(3)

is stable if one of the following conditions holds:

- (Monotonicity of the coupling) $f' \ge 0$.
- (Large discount factor) λ > Λ, where Λ is a positive constant depending only on the data of the problem.
 - In particular, when the coupling is monotone, the unique solution to (3) is stable.

Abstract reformulation of the MFG system

• Let $T \in \mathcal{L}(C^{0,\alpha}(\mathbb{T}^d) \times C^{0,\alpha}(\mathbb{T}^d), C^{2,\alpha}(\mathbb{T}^d) \times C^{2,\alpha}(\mathbb{T}^d))$ be defined by $T(g,h) = (v,\rho)$ where (v,ρ) solves

$$\begin{cases} -\Delta v + \lambda v = g & \text{in } \mathbb{T}^d, \\ -\Delta \rho + \lambda \rho = h & \text{in } \mathbb{T}^d. \end{cases}$$
(4)

This linear operator is well defined according to the Schauder theory for elliptic equations.

- Let $G: C^{2,\alpha}(\mathbb{T}^d) \times C^{2,\alpha}(\mathbb{T}^d) \to C^{0,\alpha}(\mathbb{T}^d) \times C^{0,\alpha}(\mathbb{T}^d)$ be defined by $G(v,\rho) := \left(\frac{1}{2} |Dv|^2 - f(\rho), -\operatorname{div}(\rho Du) - \lambda m_0\right)$ (5)
- Then (u, m) ∈ C^{2,α}(T^d) × C^{2,α}(T^d) is a solution to the MFG system if and only if

$$F(u,m):=(I+T\circ G)(u,m)=0.$$

6/17

More generally we consider Banach spaces X and Z such that

• we have the continuous embeddings

 $C^{2,\alpha}(\mathbb{T}^d) \times C^{2,\alpha}(\mathbb{T}^d) \subset X \subset H^1(\mathbb{T}^d) \times L^2(\mathbb{T}^d) \text{ and } Z \subset L^2(\mathbb{T}^d) \times H^{-1}(\mathbb{T}^d).$

• for every $(v, \rho) \in X$, we have that

$$G(\mathbf{v}, \rho) := \left(\frac{1}{2} |D\mathbf{v}|^2 - f(\rho), -\operatorname{div}(\rho D\mathbf{v}) - \lambda m_0\right) \quad \text{belongs to } \mathbf{Z},$$

• for every $(g, h) \in Z$, the problem

$$\begin{cases} -\Delta v + \lambda v = g & \text{in } \mathbb{T}^d, \\ -\Delta \rho + \lambda \rho = h & \text{in } \mathbb{T}^d, \end{cases}$$

admits a unique distributional solution T(g, h) that belongs to X.

Then $(u,m) \in C^{2,\alpha}(\mathbb{T}^d) \times C^{2,\alpha}(\mathbb{T}^d)$ is a solution to the MFG system if and only if

$$F(u,m):=(I+T\circ G)(u,m)=0.$$

• Computing formally the differential of G we obtain

$$dG[u,m](v,\rho) = (Du \cdot Dv - f'(m)\rho, -\operatorname{div}(mDv) - \operatorname{div}(\rho Du)).$$

• An element $(v, \rho) \in C^{2,\alpha}(\mathbb{T}^d) \times C^{2,\alpha}(\mathbb{T}^d)$ is then a classical solution to the linearized system

$$\begin{cases} -\Delta v + Du \cdot Dv + \lambda v = f'(m)\rho & \text{in } \mathbb{T}^d, \\ -\Delta \rho - \operatorname{div}(\rho Du) + \lambda \rho = \operatorname{div}(mDv) & \text{in } \mathbb{T}^d, \end{cases}$$
(6)

if and only if

 $(I+T\circ dG[u,m])(v,\rho)=0.$

It is possible to prove that, for (u, m) ∈ C^{2,α}(T^d) × C^{2,α}(T^d), any weak solution (v, ρ) ∈ H¹(T^d) × L²(T^d) to (6), i.e. such that

$$\int Dv \cdot D\varphi + Du \cdot Dv\varphi + \lambda v\varphi \, dx = \int f'(m)\rho\varphi \, dx \quad \text{for every } \varphi \in H^1(\mathbb{T}^d),$$
$$\int (-\Delta \psi + Du \cdot D\psi + \lambda \psi)\rho \, dx = -\int mDv \cdot D\psi \, dx \quad \text{for every } \psi \in H^2(\mathbb{T}^d),$$

is a classical solution.

• Therefore (u, m) is a stable solution iff $\ker_{H^1 \times L^2} (I + T \circ dG[u, m]) = \{0\}$.

• The differentiability of *G* can be rigorously established for Banach spaces of the form

$$X=C^{2,eta}(\mathbb{T}^d) imes C^{2,\gamma}(\mathbb{T}^d) \quad Z=C^{0,eta}(\mathbb{T}^d) imes C^{0,\gamma}(\mathbb{T}^d)$$

and

$$X = W^{1,p}(\mathbb{T}^d) \times L^q(\mathbb{T}^d) \quad Z = L^{p/2}(\mathbb{T}^d) \times W^{-1,r}(\mathbb{T}^d)$$

9/17

for appropriate parameters β , γ , p, q, and r.

Theorem (Isomorphism property of stable solutions)

For Banach spaces X and Z as above, and for Y another Banach space such that

 $Y \subset X \subset H^1(\mathbb{T}^d) \times L^2(\mathbb{T}^d)$ with $Y \subset X$ compact.

Assume that the mapping $G: X \to Z$ is continuously differentiable and that $T \in \mathcal{L}(Z, Y)$. Then the mapping $F: X \to X$ is continuously differentiable with $dF = I + T \circ dG$, and, for every stable solution $(u, m) \in C^{2,\alpha}(\mathbb{T}^d) \times C^{2,\alpha}(\mathbb{T}^d)$ to the MFG system, the linear operator dF[u, m] is an isomorphism on X.

Proof.

Let (u, m) be a stable solution to the MFG system. In particular

$$\ker_X(I+T\circ dG[u,m])\subset \ker_{H^1\times L^2}(I+T\circ dG[u,m])=\{0\}.$$

Since $Y \subset X$ is compact and $T \in \mathcal{L}(Z, Y)$ we have that $T \circ dG[u, m] \in \mathcal{L}(X)$ is compact. Using the Fredholm alternative we conclude that

$$R(I+T\circ dG[u,m])=X.$$

• Assume that $d \leq 3$ and 3 < p, q < 6 are such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$. Set

$$X = W^{1,p} \times L^q, \quad Y = W^{2,p/2} \times H^1, \quad Z = L^{p/2} \times H^{-1}.$$

From standard elliptic regularity theory we have $T \in \mathcal{L}(Z, Y)$. From the Rellich-Kondrachov theorem we have $Y \subset X$ with compact embedding.

• Let $0 < \gamma < \beta < \alpha$ and set

 $X = C^{2,\beta} \times C^{2,\gamma}, \quad Y = C^{2,\alpha} \times C^{2,\beta} \text{ and } Z = C^{0,\alpha} \times C^{0,\beta}.$

From the Schauder theory for elliptic equations we have $T \in \mathcal{L}(Z, Y)$ and from properties of Hölder spaces we have $Y \subset X$ with compact embedding.

11/17

In particular we have the following results.

Corollary

Let p, q > d and such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$ and let $(u, m) \in C^{2,\alpha}(\mathbb{T}^d) \times C^{2,\alpha}(\mathbb{T}^d)$ be a stable solution to the MFG system. Then $dF[u, m] = (I + T \circ dG[u, m])$ is an isomorphism on $W^{1,p}(\mathbb{T}^d) \times L^q(\mathbb{T}^d)$.

Corollary

Let $\gamma < \beta < \alpha$ and let $(u, m) \in C^{2,\alpha}(\mathbb{T}^d) \times C^{2,\alpha}(\mathbb{T}^d)$ be a stable solution to the MFG system. Then $dF[u, m] = (I + T \circ dG[u, m])$ is an isomorphism on $C^{2,\beta}(\mathbb{T}^d) \times C^{2,\gamma}(\mathbb{T}^d)$.

Application to FEM approximations of stable solutions

Theorem (Brezzi-Rappaz-Raviart 1980)

Let X and Z be Banach spaces, let T, $T_h \in \mathcal{L}(Z, X)$ and G: $X \to Z$ be C^1 and assume that dG is locally Lipschitz continuous. Set $F = I + T \circ G$ and $F_h = I + T_h \circ G$. Assume that $\bar{x} \in X$ is such that $F(\bar{x}) = 0$ and $dF[\bar{x}]$ is an isomorphism on X. Suppose also that

$$\lim_{h\to 0} \|T-T_h\|_{\mathcal{L}(Z,X)} = 0.$$

Then there exists $h_0 > 0$ such that for every $0 < h \le h_0$ there exists a $\overline{x}_h \in X$ such that

$$F_h(\bar{x}_h)=0.$$

Moreover we have the error estimate

 $\|\bar{x}-\bar{x}_h\|_{\chi} \leq C \|(T-T_h)G(\bar{x})\|_{\chi}$

for some positive constant C and for every $0 < h \le h_0$ this solution is unique in a neighborhood of \bar{x} which is independent of h.

- Fix *d* ≤ 3. For every *h* > 0 we consider *T_h* the P¹ finite elements approximation of *T* for an appropriate mesh of size *h*.
- Let 3 < p, q < 6 and consider

 $X = W^{1,p}(\mathbb{T}^d) \times L^q(\mathbb{T}^d)$ and $Z = L^{p/2}(\mathbb{T}^d) \times H^{-1}(\mathbb{T}^d).$

• Then (u_h, m_h) is a solution to the discrete MFG system if

$$F_h(u_h, m_h) := (I + T_h \circ G)(u_h, m_h) = 0.$$

• Using standard FEM estimates and interpolation theory it is possible to prove that

$$\|T-T_h\|_{\mathcal{L}(Z,X)}\leq Ch^{(p-3)/p}.$$

Applying the previous theorem to the MFG system we obtain the following.

Theorem

Let 3 < p, q < 6 be such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$. Let also (u, m) be stable solution to the MFG system. Then there exists a neighborhood \mathcal{O} of (u, m) in $W^{1,p}(\mathbb{T}^d) \times L^q(\mathbb{T}^d)$ and $h_0 > 0$ such that for every $0 < h \le h_0$ there exists $(u_h, m_h) \in \mathcal{O}$, unique in \mathcal{O} , such that

 $F_h(u_h,m_h)=0$

and we have the error estimate

$$\|u-u_h\|_{W^{1,p}}+\|m-m_h\|_{L^q}\leq Ch^{(p-3)/p}.$$

• Finite element aproximations for this stationary MFG system with monotone coupling was considered in Osborne-Smears (2023).

Theorem (Classical Newton method in infinite dimensions)

Let X and Y be Banach spaces and $F: X \to Y$ be continuously differentiable. Let $\bar{x} \in X$ be such that $F(\bar{x}) = 0$ and $dF[\bar{x}] \in \mathcal{L}(X, Y)$ is an isomorphism. Then there exists a neighborhood \mathcal{O} of \bar{x} in X such that the sequence defined by

$$\left\{egin{array}{l} x_0\in\mathcal{O},\ F(x_k)+dF[x_k](x_{k+1}-x_k)=0, \end{array}
ight.$$

(7)

16/17

converges superlinearly to \bar{x} . Furthermore, if dF is locally Lipschitz continuous in $\mathcal{L}(X, Y)$, then the convergence is quadratic.

Theorem

Let $0 < \gamma < \beta < \alpha$ and $(u, m) \in C^{2,\alpha}(\mathbb{T}^d) \times C^{2,\alpha}(\mathbb{T}^d)$ be a stable solution to the MFG system. Then there exists a neighborhood \mathcal{O} of of (u, m) in $C^{2,\beta}(\mathbb{T}^d) \times C^{2,\gamma}(\mathbb{T}^d)$ such that if $(u_0, m_0) \in \mathcal{O}$ then the sequence (u_k, m_k) generated by Newton's method, i.e. the sequence defined by

$$(u_{k+1}, m_{k+1}) + T(G(u_k, m_k) + dG[u_k, m_k](u_{k+1} - u_k, m_{k+1} - m_k)) = 0, \quad (8)$$

converges super-linearly to (u, m) in $C^{2,\beta}(\mathbb{T}^d) \times C^{2,\gamma}(\mathbb{T}^d)$. Furthermore, if we also assume $f \in C^{2,1}_{loc}(\mathbb{R})$, then the convergence is quadratic.

• Convergence rates for parabolic MFG systems with monotone couplings were obtained in Camilli-Tang (2023).