A high-order scheme for mean field

games

Elisa Calzola

QORE F““

University of Ferrara, [taly

joint work with E. Carlini (La Sapienza) and F. J. Silva (University of
Limoges)

1*" January 2024, Numerical methods for optimal transport problems,
mean field games, and multi-agent dynamics - Valparaiso (Chile)

University of Ferrara



Overview

FP equation
m Introduction
m The equation

LG scheme
m Derivation of the scheme
m Properties of the exactly integrated scheme
m Implementation of the method in dimension one

Application to MFGs
m Semi-Lagrangian scheme for the HIB equation
m Application to MFGs

Numerical results
m Non local MFG with analytical solution
m Local MFG with reference solution

University of Ferrara



Introduction

Introduction

Motivations

m MFGs characterize Nash equilibria of stochastic differentiable games
with infinitely many players; in some cases such equilibria are given by a
system of PDEs (a forward FP equation and a backward HJB equation).

m There are several methods based on the finite difference scheme by
Chang and Cooper! which require a parabolic CFL in order to be ex-
plicit and stable.

® Ounly few works deal with high-order numerical schemes for MFG sys-
tems, that are finite-difference based? or that imply high-order space-
time finite elements to approximate variational MFGs®.

= Our purpose is to provide a new scheme which is explicit, conservative,
consistent, convergent, high-order and stable without a CFL condition
for the FP equation.

= We introduce a high-order SL method for HJB equation and couple it
with our scheme for FP to solve the MFG problem.

1Chang and Cooper, “A practical difference scheme for Fokker-Planck equations”.

2Li, Fan, and Ying, “A simple multiscale method for mean field games”; Popov and

Tomov, “Central schemes for mean field games”.

3Fu et al., “High order computation of optimal transport, mean field planning, and
potential mean field games”.
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FP equation

The equation

We consider here the linear Fokker-Planck equation

(FP)

oym — %2Am +div(pm) =0 in (0,T] x R?,
m(0,-) = T in {0} x R%.

(H1) We assume that:
(i) Mo € CY(R?) has compact support, o > 0, and [, Mo(z)dz = 1.
(ii) p is bounded, p € C([0,7] x R?), and there exists Cj, > 0 such that

(s, 2) = u(t,y)| < Colw —y| for t € 0,7] and , y € R™,
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FP equation

The equation - Existence of solution

Under the assumptions stated in (H1) the following hold*:®:
» Equation (FP) admits a unique classical solution m* € C*2([0, T] x R%);
= m* >0
m [oam*(t,z)de =1 for all ¢t € [0, T];
= m* is the unique solution in L*([0, T] x R?) to (FP) in the distributional
sense.
For each ¢ € Co(R?), in [t1,t2] C [0,7] we have

» o(x)m(te, z)dx = E (¢(X (to; t1, z))m(t1,x)) dz. (1)

R4

4Bogachev et al., Fokker-Planck-Kolmogorov equations, Theorem 6.6.1,
Chapter 9.1.

5Figalli7 “Existence and uniqueness of martingale solutions for SDEs with rough or
degenerate coefficients”, Proposition 4.4, Theorem 4.3.
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FP equation

Discretization of the characteristics

X (s;t,x) is defined as the unique solution to
dX(s) = pu(s,X(s))ds+ odW(s) fors>t
X)) = =

We recall that using the Crank-Nicolson approximation, v, is the solution
of

yoraltz) = o+ 0 () 4,y (020)) + V106 (@)

where ¢ is an R%valued random vector with i.i.d. components such that

P& =0)=2/3, P =+V3)=1/6 for i=1,...,d (3)
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LG scheme

Derivation of the scheme

Using the Crank-Nicolson approximation for the characteristics, there exists
C > 0 such that for ¢ smooth enough

|E ((X (t2; tr,2))) = E($(yer.(t2))) | < Ct2 — t2)*. (4)

m Let {e;|£=1,...,3%} C R? be the set of possible realizations of ¢;
m set we =P(€ = er);

m denote yﬁ (z) as the unique solution to the Crank-Nicolson fixed point
for the characteristics in (2), for £ = es, £=1,...,3%
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LG scheme

Derivation of the scheme

m Let ZT={1,...,3%;
m choose Na: € N;
m set At = T/Nas, ti = kAL

the representation formula in [tg, tkt1]

$(@)m(tisr, v)de = / E (¢(X (tis1; te, ©))m(te, ) da
Rd RrRd

can be approximated as

[ otemtn,)de = S [ dlut@)mlon o)z + 00", 6)

LeT
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LG scheme

Derivation of the scheme

m For fixed At, the boundedness of p implies that there exists La: ~
C/+/At such that for any k= 0,..., Ny

supp(ma (tr)) C [~Lat, Lae)® =: Oa;
m choose a Az > 0 and introduce a structured mesh Ga := {(tx, z:)};

m consider odd® symmetric Lagrange interpolation basis functions {Bi}ticza
(stable), which are tensor product of the one-dimensional reference func-

tion B(8);
m define a projection on the space spanned by the basis {£;}:,

ma(te,) = Y miibi(x).

SH N

SFerretti, “On the relationship between semi-Lagrangian and Lagrange-Galerkin
schemes”; Ferretti and Mehrenberger, “Stability of semi-Lagrangian schemes of
arbitrary odd degree under constant and variable advection speed”.
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LG scheme

Derivation of the scheme

Recall the formula

@)mlter, 2)de = 3 we / oy (@))m(te, x)dz + O((AL)?),
R¢ teT
= we set ¢ = f;;
= we substitute m(tx, ) with ma(te, ") =3 2;c7, . M6 (2);

/ (;5 tk+1, dZCN Z ME+1,;5 Bl(x)ﬂj(x)dm

RIS N Oa

[ ek@mtadem 3 m [ a0kE)8 @

SN Oa
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LG scheme

Derivation of the scheme

We define the mass matrix D and the matrix By,

Dij= | Bi@pi(@)de, bix= [ Bily(z))bi(x)de
OAa Oa
for (i,7) € Taz X Zas.
The scheme is the following: find {my ; € R,j € Zaz, k € ZA,} such that for
all i € Za, and k € ZX,

Z Di’jmk+1’j = ZjEIAm ZEEI webi,i,jmkvﬁ
(Sras (6)
ZjeIM Di jmo,; f@A mo(z)Bi(x)dz.
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LG scheme

Properties of the exactly integrated scheme

For fixed At > 0 and Az > 0 we proved the following properties:

n [Well- posedness] given mo € RWVa)" , there exists a unique solution
mi € RNa2)" to (6), for k=0, ... NAt—l;
= [Initial condition] |[o—ma (0, -)|| p2(ray = O((Az)?*) if mo € HITHRY);

= [Mass conservation]| fOA ma (te, z)dx = 1 for k € Zay;

m [L2-stability] if p is differentiable w.r.t. , then maxyez,, ||ma (tx, )| L2
is uniformly bounded with respect to A for At small enough.

University of Ferrara
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LG scheme

Properties of the exactly integrated scheme

Proposition (Consistency)

Let ¢ € C§°(RY), then for any k € Tx, and for any (At, Az) € (0,400)2,
the scheme is consistent.

Assume that g € HT T (R?), that (H1) holds, and that b is differentiable
w.r.t. x. Consider a sequence (An), oy = ((Atn, Azy)), o C (0,00)% such
that, as n — 00, (Aty, Az,) — (0,0) and (Az,)9T /At, — 0. Setting
m" = ma,,, as n — co we have that (m")neN converges to m in
C([0,T); D' (R)) and weakly in L* ([0,T] x R?), where m is the unique
classical solution to (FP).
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LG scheme

Implementation of the method in dimens

In one spatial dimension, to get a method of order two we use Simpson
quadrature rule on each element [z;,z; + 2Az], with j = 2m and m € Z,
and cubic symmetric Lagrange interpolation basis functions (85 (z)).

Each basis 37 (z) has support in [z;_2, ;42], so the elements of matrices D
and Bf; are approximated as follows:

2Ax 2Ax

D;;~ 6i,j7 bk,z,] — 751( ( j))7 VL]',E AN

J*?

T

Simplifying QA in both approximations, the method results in

Miy1 = Zwlgﬁmk (7)

Lex

with Bf : Z® — R linear operator with bf, ; ; defined by

Ei,i,j = Bj(yﬁ(%))
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Application to MFGs
The MFGs problem

Let us consider a Mean Field Game (MFG) problem of the form:

—00 — % Av+ 5|V = F(z,m(t), (t,z)€[0,T) x R?,

_a —di = d
om — Z-Am — div (Vom) =0 (t,xz) € (0,7] x R?, (MFG)
v(t,z) = G(z,m(T)) r € R?
m(0) = mo, mo € P1(RY),

where 0 € R, F:R* x P - R, G:R* x P; - R.
= The first equation in (MFGQG) is a Hamilton-Jacobi-Bellman (HJB) equa-
tion with cost depending on m;

= the distribution m is the solution of the second equation, which is a
Fokker-Planck with drift given by V.

Elisa Calzola University of Ferrara



Application to MFGs
The MFGs problem

(H2) We assume that:
(i) mg is nonnegative, Holder continuous, and [, o (z)dz = 1.

(ii) F and G are bounded and Lipschitz continuous. Moreover, for every
m € Pi(RY), F(-,m) is of class C? and

sup {IDF(z,m)|lc + | D*F(z,m)||l } < o0.
z€RI mePy (RD)

Under (H2) system (MFG) admits at least one classical solution”.
Moreover, if the coupling terms F' and G satisfy a monotonicity condition
with respect to m, then the classical solution is unique®.

"Cardaliaguet, “Notes on Mean Field Games: from P.-L. Lions’ lectures at Collége
de France”, Theorem 3.1.
8Lasry and Lions, “Mean field games”, Theorem 2.4.
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Application to MFGs

Semi-Lagrangian scheme for the HJB equation

We consider a Semi-Lagrangian (SL) approximation of the HJB equation®.
For a given m € C([0,T],P:1), we define the operator

Sa[m](f, k,i) := aigﬂgd |:Z we (I[f](xl + Ata + VAtoe,)+

LeT

At At At
7F(ml + Ata + \/Ataebm(tk))) + 7|a|2] + 7F(mi,m(tk+1)).

The scheme for the HJB equation is: find a sequence

{vr: €R, k € Tat,i € Ia,} such that, for i € 2%k € Th,,

UNppi = G, m(tny,))-

{wk,i = Sa[m)(vki1, ki),

9Bonaventura et al., “Second order fully semi-Lagrangian discretizations of
advection-diffusion-reaction systems”.
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Application to MFGs
The scheme for MFG

We propose the following scheme for (MFG): find a fixed point
{(vk,i,;m;) € Rk € Tar, j € Taz} of the discrete system

Vg, = Sa[m](viyr, k1),

UNag,i = G(CE’“ m)

Z Di jmpq1,; = Z M,j Zwebf,j,k[v] ©)

J€TA J€TAL eI
Z D jmo,i :/ mo(z)Bi(z)dz,
J€lna Oa

for all i € Za, and k € T, where b} ; ,[v] = fOA Bi (v [v](2))B; (z)da.
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Numerical results

Heuristic truncation error

For the exactly integrated scheme (6), the local truncation error is given by
the contributions of the Crank-Nicolson estimate

|E (§(X (tht15th, 7)) = E ($(ye.a(tirn))) = O((AL)?)
and the interpolation error
|f(z) = I[f](x)| = O((Az)*™"),

which yield a global truncation error of order (Axz)? /At + (At)?. Taking
At = O((Az)9T/3) the order of consistency is maximized'®, obtaining an
order of convergence of 2(¢ + 1)/3.

'0Ferretti, “A technique for high-order treatment of diffusion terms in
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Numerical results
Non local MFG with analytical solution

Consider the Mean Field Game expressed by the following equations:

0w — T A+ L Vol? = L (2 — [, edme () (t,2) € (0,T) x Oa,
dm — % Am — div ((Vv)m) = 0 (t,z) € (0,T) x Oa,
v(t, T) = Ve (t,x), v(t, ) = ver(t, ) (t,z) € (0,T) x 00a,
v(T,z) =0 x € Oa,

m(t,x) = mez(t,z), m(t,x) = mea(t, x) (t,z) € (0,T) x 90a,
m(0,z) = mgo z € Oa,

with T'= 0.25, Oa = (—2,2). We approximated the gradient of the value
function using a fourth-order finite difference scheme and we performed our

tests using At = O ((Am)4/3), At = O (Az), and At = O ((Az)?).
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Numerical results

Non local MFG with analytical solution - Errors on the HIB

Az Errors for the approximation of v*(0, -)
Foo Es Poo D2
2.00-10"1 [ 1.68-10~% | 1.70- 1077 - -
1.00-107F [ 3.56-107° | 3.48-107° | 2.24 | 2.29
5.00-1072 ] 5.86-107° | 5.75-107° | 2.60 | 2.60
250-1072 | 1.06-107°% | 1.04-107° | 2.47 | 2.47

Table: Errors and convergence rates for o2/2 = 0.005, At = (Az)*/3/4

Elisa Calzola
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Non local MFG with analytical solution

Numerical results

Non local MFG with analytical solution - Errors on the FP

Az Errors for the approximation of m* (T, -)
Feo Fo Poo P2 positivity error
2.00-10" 1 [ 881-10"% | 1.01-1072 - - —351-1071
1.00-107T [ 3.06-107% | 2.563-10° | 1.53 | 2.00 —9.45-107°
5.00-1072 ] 801-107% | 5.56-10"% | 1.93 | 2.19 0
250-1072 | 1.81-107%F | 1.14-107% | 2.15 | 2.29 0

Table: Errors and convergence rates for o2/2 = 0.005, At = (Az)*/3/4

Elisa Calzola
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Non local MFG with analytical solution

Numerical results

Non local MFG with analytical solution - Errors on the HIB

Az Errors for the approximation of v*(0, -)
E Es Poo D2
2.00-1071 | 2.72-107* | 2.56- 1071 - -
1.00-107F [ 7.62-107° | 6.72-107° | 1.84 | 1.93
5.00-1072 [ 1.61-107° | 1.44-107° | 2.24 | 2.22
250-1072 ] 3.69-107° [ 3.59-107° | 2.13 | 2.00

Table: Errors and convergence rates for o2/2 = 0.005, At = Ax/4.

Elisa Calzola
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Numerical results

Non local MFG with analytical solution - Errors on the FP

N erical results
[e]e]e]e] Jelele]e]

Errors for the approximation of m* (7, )

Az Fso FEo Poo P2 positivity error
2.00-10"' [ 5.93-1073 | 7.01-1073 - - —8.18-107°
1.00-107F [ 2.63-107° [ 2.17-107° | 1.17 | 1.69 | —3.58-10"1°
5.00-1072 [ 1.23-107° | 4.80-10"% | 1.10 | 2.18 0
250-107213.39-107% [ 9.61-107° | 1.86 | 2.32 0

Table: Errors and convergence rates for o2/2 = 0.005, At = Ax/4.

Elisa Calzola
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Non local MFG with analytical solution

Numerical results

Non local MFG with analytical solution - Errors on the HIB

Az Errors for the approximation of v*(0, -)
E Es Poo D2
2.00-10"7 [ 1.98-107% | 1.87-107 7 - -
1.00-107F [ 2.84-107° | 2.86-107° | 2.80 | 2.71
5.00-1072 [ 3.41-107% [ 3.94-107° | 3.06 | 2.86
250-1072 ] 456-1077 | 5.08-107° | 2.90 | 2.96

Table: Errors and convergence rates for o2/2 = 0.005, At = (Az)?.

Elisa Calzola
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Numerical results

Non local MFG with analytical solution - Errors on the FP

Az Errors for the approximation of m*(7T,-)
Fso FEo Poo P2 positivity error
2.00-10"' [ 6.60-1073 | 7.63-10~° - - —1.01-1077
1.00-107F [ 3.11-107° | 2.60-1072 | 1.09 | 1.55 —1.19-1078
5.00-1072 [ 9.17-107% | 7.16-10"% | 1.76 | 1.86 0
250-1072 [ 242-100% [ 1.81-107% [ 1.92 | 1.98 0

Table: Errors and convergence rates for o2/2 = 0.005, At = (Az)?.

Elisa Calzola
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Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution - Plots
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Figure: Solution at time 7" = 0 for the HJ equation (left) and solution at time 7" = 0.25
for the FP equation (right), both with 02/2 =5-10"2, N = 321.
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Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution - Plots
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Figure: Detail of the solution at time T' = 0.25 for the FP equation, with 02/2 = 5.10732,
N = 641.
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Local MFG with reference solution

Numerical results

Local MFG with reference solution

We consider a smooth problem with the following data:

710 () 4sin®(2m(z) — 1) w € [1,3]
mo(x) =
0 0 otherwise,
ur(z) =0,

F(xz,m(t,z)) = 3mo(z) — min(4, m(t, x)).

m the numerical domain is [0,7] x Oa = (0,0.05) x (0,1);
®m the volatility is o2/2 = 0.05.

In order to check for convergence we computed a reference solution, using
Az =6.67-10"% and At = (Az)*/?/3.

University of Ferrara
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Local MFG with reference solution

Numerical results
Local MFG with reference solution - Errors on the HJB

Relative Errors on the HJB equation

Aw F Eo Poo P2
5.00-10"2 | 5.38-10"2 | 3.80- 102 - -
250-1072 [ 1.43-1072 [ 1.29-1072 [ 1.91 | 1.55
1.25-1072 [ 4.25-107° [ 3.24-10°% | 1.74 | 1.99
6.25-107° | 8.84-107* | 7.99-107% | 2.27 | 2.01
313-107° | 3.76-107%F | 3.72-107* | 1.23 | 1.10
1.56-1073 | 4.99-10° | 3.60-10~° | 2.90 | 3.37

Elisa Calzola

Table: Errors and convergence rates for the value function.
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Local MFG with reference solution

Numerical results

Local MFG with reference solution - Errors on the FP

Relative Errors on the FP equation.

Aw F B Poo D2
5.00-10"2 [ 9.07-1072 | 4.82-107? - -
250-1072 [ 1.81-1072 [ 6.79-1072 | 2.32 | 2.82
1.25-1072 [ 4.81-107% [ 1.36-10"° | 1.91 | 2.32
6.25-107° | 7.64-107% | 2.06-10~% | 2.65 | 2.72
3.13-107° [ 1.82-1077 | 6.96-10~° | 2.07 | 1.55
1.56-1073 [ 6.28-107° | 1.24-107° | 1.53 | 2.49

Elisa Calzola

Table: Errors and convergence rates for the density.
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Local MFG with reference solution

Numerical results
Local MFG with reference solution - Plots

Figure: Density m(¢,z) at time T = 0.05 (left), the value function u(0,z) (center) and
the gradient u, (z,0) (right) computed with N = 320.
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Local MFG with reference solution

Conclusions and future perspectives

Our main aim is to present a new and efficient high-order scheme to solve
MFG systems with regular solutions.
m We have developed a new high-order scheme for the (FP) equation,
based on Lagrange-Galerkin methods combined with a second-order weak
approximation of the underlying stochastic characteristic curves.

= We have provided a convergence analysis in the distributional sense and
with respect to the weak topology in LZ.

= We have then combined the new scheme for the (FP) equation with a
high-order semi-Lagrangian scheme for the HJB equation to obtain a
high-order scheme for the (MFG) system.

m We have shown the performance of the scheme by numerical simulations.

Main advantages: being conservative, explicit, and do not require the
standard parabolic CFL condition At = O((Ax)?) in order to be stable.
Main drawbacks: the loss of positivity for the discrete density and the
lack of a constant high-order convergence rate.

Possible future improvements: change basis functions to preserve
positivity and to improve the errors.
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Thank you for your attention!
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