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Introduction

Introduction
Motivations

MFGs characterize Nash equilibria of stochastic di�erentiable games
with in�nitely many players; in some cases such equilibria are given by a
system of PDEs (a forward FP equation and a backward HJB equation).

There are several methods based on the �nite di�erence scheme by
Chang and Cooper1 which require a parabolic CFL in order to be ex-
plicit and stable.

Only few works deal with high-order numerical schemes for MFG sys-
tems, that are �nite-di�erence based2 or that imply high-order space-
time �nite elements to approximate variational MFGs3.

Our purpose is to provide a new scheme which is explicit, conservative,
consistent, convergent, high-order and stable without a CFL condition
for the FP equation.

We introduce a high-order SL method for HJB equation and couple it
with our scheme for FP to solve the MFG problem.

1Chang and Cooper, �A practical di�erence scheme for Fokker-Planck equations�.
2Li, Fan, and Ying, �A simple multiscale method for mean �eld games�; Popov and

Tomov, �Central schemes for mean �eld games�.
3Fu et al., �High order computation of optimal transport, mean �eld planning, and

potential mean �eld games�.
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The equation

FP equation
The equation

We consider here the linear Fokker-Planck equation{
∂tm− σ2

2
∆m+ div (µm) = 0 in (0, T ]× Rd,

m(0, ·) = m0 in {0} × Rd.
(FP)

(H1) We assume that:

(i) m0 ∈ C0
0 (Rd) has compact support, m0 ≥ 0, and

∫
Rd m0(x)dx = 1.

(ii) µ is bounded, µ ∈ C([0, T ]× Rd), and there exists Cb > 0 such that

|µ(s, x)− µ(t, y)| ≤ Cb|x− y| for t ∈ [0, T ] and x, y ∈ Rd.
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The equation

FP equation
The equation - Existence of solution

Under the assumptions stated in (H1) the following hold4,5:

Equation (FP) admits a unique classical solution m∗ ∈ C1,2([0, T ]×Rd);

m∗ ≥ 0;∫
Rd m

∗(t, x)dx = 1 for all t ∈ [0, T ];

m∗ is the unique solution in L2([0, T ]×Rd) to (FP) in the distributional
sense.

For each ϕ ∈ C0(Rd), in [t1, t2] ⊂ [0, T ] we have∫
Rd

ϕ(x)m(t2, x)dx =

∫
Rd

E (ϕ(X(t2; t1, x))m(t1, x)) dx. (1)

4Bogachev et al., Fokker-Planck-Kolmogorov equations, Theorem 6.6.1,
Chapter 9.1.

5Figalli, �Existence and uniqueness of martingale solutions for SDEs with rough or
degenerate coe�cients�, Proposition 4.4, Theorem 4.3.
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The equation

FP equation
Discretization of the characteristics

X(s; t, x) is de�ned as the unique solution to

dX(s) = µ(s,X(s))ds+ σdW (s) for s > t

X(t) = x.

We recall that using the Crank-Nicolson approximation, yt1,x is the solution
of

yt1,x(t2) = x+
(t2 − t1)

2
(µ(t1, x) + µ(t2, yt1,x(t2))) +

√
(t2 − t1)σξ, (2)

where ξ is an Rd-valued random vector with i.i.d. components such that

P(ξi = 0) = 2/3, P(ξi = ±
√
3) = 1/6 for i = 1, . . . , d. (3)
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Derivation of the scheme

LG scheme
Derivation of the scheme

Using the Crank-Nicolson approximation for the characteristics, there exists
C > 0 such that for ϕ smooth enough∣∣E (ϕ(X(t2; t1, x)))− E (ϕ(yt1,x(t2)))

∣∣ ≤ C(t2 − t1)
3. (4)

Let {eℓ | ℓ = 1, . . . , 3d} ⊂ Rd be the set of possible realizations of ξ;

set ωℓ = P(ξ = eℓ);

denote yℓ
k(x) as the unique solution to the Crank-Nicolson �xed point

for the characteristics in (2), for ξ = eℓ, ℓ = 1, . . . , 3d.
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Derivation of the scheme

LG scheme
Derivation of the scheme

Let I = {1, . . . , 3d};
choose N∆t ∈ N;
set ∆t = T/N∆t, tk = k∆t;

the representation formula in [tk, tk+1]∫
Rd

ϕ(x)m(tk+1, x)dx =

∫
Rd

E (ϕ(X(tk+1; tk, x))m(tk, x)) dx

can be approximated as∫
Rd

ϕ(x)m(tk+1, x)dx =
∑
ℓ∈I

ωℓ

∫
Rd

ϕ(yℓ
k(x))m(tk, x)dx+O((∆t)3). (5)
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Derivation of the scheme

LG scheme
Derivation of the scheme

For �xed ∆t, the boundedness of µ implies that there exists L∆t ∼
C/

√
∆t such that for any k = 0, . . . , NT

supp(m∆(tk)) ⊂ [−L∆t, L∆t]
d =: O∆;

choose a ∆x > 0 and introduce a structured mesh G∆ := {(tk, xi)};

consider odd6 symmetric Lagrange interpolation basis functions {βi}i∈Zd

(stable), which are tensor product of the one-dimensional reference func-
tion β̂(ξ);

de�ne a projection on the space spanned by the basis {βi}i,

m∆(tk, ·) =
∑

i∈I∆x

mk,iβi(x).

6Ferretti, �On the relationship between semi-Lagrangian and Lagrange-Galerkin
schemes�; Ferretti and Mehrenberger, �Stability of semi-Lagrangian schemes of
arbitrary odd degree under constant and variable advection speed�.
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Derivation of the scheme

LG scheme
Derivation of the scheme

Recall the formula∫
Rd

ϕ(x)m(tk+1, x)dx =
∑
ℓ∈I

ωℓ

∫
Rd

ϕ(yℓ
k(x))m(tk, x)dx+O((∆t)3),

we set ϕ = βi;

we substitute m(tk, ·) with m∆(tk, ·) =
∑

j∈I∆x
mk,jβ

q
j (x);∫

Rd

ϕ(x)m(tk+1, x)dx ≈
∑

j∈I∆x

mk+1,j

∫
O∆

βi(x)βj(x)dx

∫
Rd

ϕ(yℓ
k(x))m(tk, x)dx ≈

∑
j∈I∆x

mk,j

∫
O∆

βi(y
ℓ
k(x))βj(x)dx.
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Derivation of the scheme

LG scheme
Derivation of the scheme

We de�ne the mass matrix D and the matrix Bℓ
k,

Di,j =

∫
O∆

βi(x)βj(x)dx, bℓi,j,k =

∫
O∆

βi(y
ℓ
k(x))βj(x)dx

for (i, j) ∈ I∆x × I∆x.
The scheme is the following: �nd {mk,j ∈ R, j ∈ I∆x, k ∈ I∗

∆t} such that for
all i ∈ I∆x and k ∈ I∗

∆t∑
j∈I∆x

Di,jmk+1,j =
∑

j∈I∆x

∑
ℓ∈I ωℓb

ℓ
k,i,jmk,j ,∑

j∈I∆x
Di,jm0,j =

∫
O∆

m0(x)βi(x)dx.
(6)
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Properties of the exactly integrated scheme

LG scheme
Properties of the exactly integrated scheme

For �xed ∆t > 0 and ∆x > 0 we proved the following properties:

[Well-posedness] given m0 ∈ R(N∆x)d , there exists a unique solution

mk ∈ R(N∆x)d to (6), for k = 0, . . . , N∆t − 1;

[Initial condition] ∥m0−m∆(0, ·)∥L2(Rd) = O((∆x)q+1) ifm0 ∈ Hq+1(Rd);

[Mass conservation]
∫
O∆

m∆(tk, x)dx = 1 for k ∈ I∆t;

[L2-stability] if µ is di�erentiable w.r.t. x, then maxk∈I∆t ∥m∆(tk, ·)∥L2

is uniformly bounded with respect to ∆ for ∆t small enough.
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Properties of the exactly integrated scheme

LG scheme
Properties of the exactly integrated scheme

Proposition (Consistency)

Let ϕ ∈ C∞
0 (Rd), then for any k ∈ I∗

∆t and for any (∆t,∆x) ∈ (0,+∞)2,
the scheme is consistent.

Proposition (Convergence)

Assume that m0 ∈ Hq+1(Rd), that (H1) holds, and that b is di�erentiable

w.r.t. x. Consider a sequence (∆n)n∈N = ((∆tn,∆xn))n∈N ⊆ (0,∞)2 such

that, as n → ∞, (∆tn,∆xn) → (0, 0) and (∆xn)
q+1/∆tn → 0. Setting

mn := m∆n , as n → ∞ we have that (mn)n∈N converges to m in

C([0, T ];D′(Rd)) and weakly in L2
(
[0, T ]× Rd

)
, where m is the unique

classical solution to (FP).
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Implementation of the method in dimension one

LG scheme
Implementation of the method in dimension one

In one spatial dimension, to get a method of order two we use Simpson
quadrature rule on each element [xj , xj + 2∆x], with j = 2m and m ∈ Z,
and cubic symmetric Lagrange interpolation basis functions (β3

i (x)).
Each basis β3

j (x) has support in [xj−2, xj+2], so the elements of matrices D
and Bℓ

k are approximated as follows:

Di,j ≃ 2∆x

3
δi,j , bℓk,i,j ≃ 2∆x

3
β3
i (y

ℓ
k(xj)), ∀i, j,∈ I∆x.

Simplifying 2∆x
3

in both approximations, the method results in

mk+1 =
∑
ℓ∈I

ωℓB̃
ℓ
kmk (7)

with B̃ℓ
k : Z2 → R linear operator with b̃ℓk,i,j de�ned by

b̃ℓk,i,j = β3
i (y

ℓ
k(xj)).
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Application to MFGs
The MFGs problem

Let us consider a Mean Field Game (MFG) problem of the form:

−∂tv − σ2

2
∆v + 1

2
|∇v|2 = F (x,m(t)), (t, x) ∈ [0, T )× Rd,

∂tm− σ2

2
∆m− div

(
∇vm

)
= 0 (t, x) ∈ (0, T ]× Rd,

v(t, x) = G(x,m(T )) x ∈ Rd

m(0) = m0, m0 ∈ P1(Rd),

(MFG)

where σ ∈ R, F : Rd × P1 → R, G : Rd × P1 → R.
The �rst equation in (MFG) is a Hamilton-Jacobi-Bellman (HJB) equa-
tion with cost depending on m;

the distribution m is the solution of the second equation, which is a
Fokker-Planck with drift given by ∇v.
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Application to MFGs
The MFGs problem

(H2) We assume that:

(i) m∗
0 is nonnegative, Hölder continuous, and

∫
Rd m0(x)dx = 1.

(ii) F and G are bounded and Lipschitz continuous. Moreover, for every
m ∈ P1(Rd), F (·,m) is of class C2 and

sup
x∈Rd,m∈P1(Rd)

{
∥DF (x,m)∥∞ + ∥D2F (x,m)∥∞

}
< ∞.

Under (H2) system (MFG) admits at least one classical solution7.
Moreover, if the coupling terms F and G satisfy a monotonicity condition
with respect to m, then the classical solution is unique8.

7Cardaliaguet, �Notes on Mean Field Games: from P.-L. Lions' lectures at Collège
de France�, Theorem 3.1.

8Lasry and Lions, �Mean �eld games�, Theorem 2.4.
Elisa Calzola University of Ferrara 16 / 34



FP equation LG scheme Application to MFGs Numerical results

Semi-Lagrangian scheme for the HJB equation

Application to MFGs
Semi-Lagrangian scheme for the HJB equation

We consider a Semi-Lagrangian (SL) approximation of the HJB equation9.
For a given m ∈ C([0, T ],P1), we de�ne the operator

S∆[m](f, k, i) := inf
α∈Rd

[∑
ℓ∈I

ωℓ

(
I[f ](xi +∆tα+

√
∆tσeℓ)+

∆t

2
F (xi +∆tα+

√
∆tσeℓ,m(tk))

)
+

∆t

2
|α|2

]
+

∆t

2
F (xi,m(tk+1)).

The scheme for the HJB equation is: �nd a sequence
{vk,i ∈ R, k ∈ I∆t, i ∈ I∆x} such that, for i ∈ Zd, k ∈ I∗

∆t,{
vk,i = S∆[m](vk+1, k, i),

vN∆t,i = G(xi,m(tN∆t)).
(8)

9Bonaventura et al., �Second order fully semi-Lagrangian discretizations of
advection-di�usion-reaction systems�.
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Application to MFGs

Application to MFGs
The scheme for MFG

We propose the following scheme for (MFG): �nd a �xed point
{(vk,i,mk,j) ∈ R2, k ∈ I∆t, j ∈ I∆x} of the discrete system

vk,i = S∆[m](vk+1, k, i),

vN∆t,i = G(xi,m)∑
j∈I∆x

Di,jmk+1,j =
∑

j∈I∆x

mk,j

∑
ℓ∈I

ωℓb
ℓ
i,j,k[v]∑

j∈I∆x

Di,jm0,i =

∫
O∆

m0(x)βi(x)dx,

(9)

for all i ∈ I∆x and k ∈ I∗
∆t, where bℓi,j,k[v] =

∫
O∆

βi(y
ℓ
k[v](x))βj(x)dx.
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Numerical results
Heuristic truncation error

For the exactly integrated scheme (6), the local truncation error is given by
the contributions of the Crank-Nicolson estimate∣∣E (ϕ(X(tk+1; tk, x)))− E (ϕ(ytk,x(tk+1))) = O((∆t)3)

and the interpolation error

|f(x)− I[f ](x)| = O((∆x)q+1),

which yield a global truncation error of order (∆x)q+1/∆t+ (∆t)2. Taking
∆t = O((∆x)(q+1)/3) the order of consistency is maximized10, obtaining an
order of convergence of 2(q + 1)/3.

10Ferretti, �A technique for high-order treatment of di�usion terms in
semi-Lagrangian schemes�.
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Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution

Consider the Mean Field Game expressed by the following equations:

−∂tv − σ2

2
∆v + 1

2
|∇v|2 = 1

2

(
x−

∫
O εdmt (ε)

)2
(t, x) ∈ (0, T )×O∆,

∂tm− σ2

2
∆m− div ((∇v)m) = 0 (t, x) ∈ (0, T )×O∆,

v(t, x) = vex(t, x), v(t, x) = vex(t, x) (t, x) ∈ (0, T )× ∂O∆,

v(T, x) = 0 x ∈ O∆,

m(t, x) = mex(t, x), m(t, x) = mex(t, x) (t, x) ∈ (0, T )× ∂O∆,

m(0, x) = m0 x ∈ O∆,

with T = 0.25, O∆ = (−2, 2). We approximated the gradient of the value
function using a fourth-order �nite di�erence scheme and we performed our

tests using ∆t = O
(
(∆x)4/3

)
, ∆t = O (∆x), and ∆t = O

(
(∆x)2

)
.
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Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution - Errors on the HJB

∆x
Errors for the approximation of v∗(0, ·)

E∞ E2 p∞ p2
2.00 · 10−1 1.68 · 10−4 1.70 · 10−4 - -

1.00 · 10−1 3.56 · 10−5 3.48 · 10−5 2.24 2.29

5.00 · 10−2 5.86 · 10−6 5.75 · 10−6 2.60 2.60

2.50 · 10−2 1.06 · 10−6 1.04 · 10−6 2.47 2.47

Table: Errors and convergence rates for σ2/2 = 0.005, ∆t = (∆x)4/3/4
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Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution - Errors on the FP

∆x
Errors for the approximation of m∗(T, ·)

E∞ E2 p∞ p2 positivity error

2.00 · 10−1 8.81 · 10−3 1.01 · 10−2 - - −3.51 · 10−4

1.00 · 10−1 3.06 · 10−3 2.53 · 10−3 1.53 2.00 −9.45 · 10−9

5.00 · 10−2 8.01 · 10−4 5.56 · 10−4 1.93 2.19 0

2.50 · 10−2 1.81 · 10−4 1.14 · 10−4 2.15 2.29 0

Table: Errors and convergence rates for σ2/2 = 0.005, ∆t = (∆x)4/3/4

Elisa Calzola University of Ferrara 22 / 34



FP equation LG scheme Application to MFGs Numerical results

Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution - Errors on the HJB

∆x
Errors for the approximation of v∗(0, ·)

E∞ E2 p∞ p2
2.00 · 10−1 2.72 · 10−4 2.56 · 10−4 - -

1.00 · 10−1 7.62 · 10−5 6.72 · 10−5 1.84 1.93

5.00 · 10−2 1.61 · 10−5 1.44 · 10−5 2.24 2.22

2.50 · 10−2 3.69 · 10−6 3.59 · 10−6 2.13 2.00

Table: Errors and convergence rates for σ2/2 = 0.005, ∆t = ∆x/4.
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Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution - Errors on the FP

∆x
Errors for the approximation of m∗(T, ·)

E∞ E2 p∞ p2 positivity error

2.00 · 10−1 5.93 · 10−3 7.01 · 10−3 - - −8.18 · 10−5

1.00 · 10−1 2.63 · 10−3 2.17 · 10−3 1.17 1.69 −3.58 · 10−10

5.00 · 10−2 1.23 · 10−3 4.80 · 10−4 1.10 2.18 0

2.50 · 10−2 3.39 · 10−4 9.61 · 10−5 1.86 2.32 0

Table: Errors and convergence rates for σ2/2 = 0.005, ∆t = ∆x/4.
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Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution - Errors on the HJB

∆x
Errors for the approximation of v∗(0, ·)

E∞ E2 p∞ p2
2.00 · 10−1 1.98 · 10−4 1.87 · 10−4 - -

1.00 · 10−1 2.84 · 10−5 2.86 · 10−5 2.80 2.71

5.00 · 10−2 3.41 · 10−6 3.94 · 10−5 3.06 2.86

2.50 · 10−2 4.56 · 10−7 5.08 · 10−6 2.90 2.96

Table: Errors and convergence rates for σ2/2 = 0.005, ∆t = (∆x)2.
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Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution - Errors on the FP

∆x
Errors for the approximation of m∗(T, ·)

E∞ E2 p∞ p2 positivity error

2.00 · 10−1 6.60 · 10−3 7.63 · 10−3 - - −1.01 · 10−4

1.00 · 10−1 3.11 · 10−3 2.60 · 10−3 1.09 1.55 −1.19 · 10−8

5.00 · 10−2 9.17 · 10−4 7.16 · 10−4 1.76 1.86 0

2.50 · 10−2 2.42 · 10−4 1.81 · 10−4 1.92 1.98 0

Table: Errors and convergence rates for σ2/2 = 0.005, ∆t = (∆x)2.
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Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution - Plots

Figure: Solution at time T = 0 for the HJ equation (left) and solution at time T = 0.25

for the FP equation (right), both with σ2/2 = 5 · 10−3, N = 321.
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Non local MFG with analytical solution

Numerical results
Non local MFG with analytical solution - Plots

Figure: Detail of the solution at time T = 0.25 for the FP equation, with σ2/2 = 5 ·10−3,
N = 641.
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Local MFG with reference solution

Numerical results
Local MFG with reference solution

We consider a smooth problem with the following data:

m0(x) =

{
4 sin2(2π(x)− 1

4
) x ∈

[
1
4
, 3
4

]
0 otherwise,

uT (x) = 0,

F (x,m(t, x)) = 3m0(x)−min(4,m(t, x)).

the numerical domain is [0, T ]×O∆ = (0, 0.05)× (0, 1);

the volatility is σ2/2 = 0.05.

In order to check for convergence we computed a reference solution, using
∆x = 6.67 · 10−4 and ∆t = (∆x)3/2/3.
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Local MFG with reference solution

Numerical results
Local MFG with reference solution - Errors on the HJB

∆x
Relative Errors on the HJB equation

E∞ E2 p∞ p2
5.00 · 10−2 5.38 · 10−2 3.80 · 10−2 - -

2.50 · 10−2 1.43 · 10−2 1.29 · 10−2 1.91 1.55

1.25 · 10−2 4.25 · 10−3 3.24 · 10−3 1.74 1.99

6.25 · 10−3 8.84 · 10−4 7.99 · 10−4 2.27 2.01

3.13 · 10−3 3.76 · 10−4 3.72 · 10−4 1.23 1.10

1.56 · 10−3 4.99 · 10−5 3.60 · 10−5 2.90 3.37

Table: Errors and convergence rates for the value function.
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Local MFG with reference solution

Numerical results
Local MFG with reference solution - Errors on the FP

∆x
Relative Errors on the FP equation.

E∞ E2 p∞ p2
5.00 · 10−2 9.07 · 10−2 4.82 · 10−2 - -

2.50 · 10−2 1.81 · 10−2 6.79 · 10−3 2.32 2.82

1.25 · 10−2 4.81 · 10−3 1.36 · 10−3 1.91 2.32

6.25 · 10−3 7.64 · 10−4 2.06 · 10−4 2.65 2.72

3.13 · 10−3 1.82 · 10−4 6.96 · 10−5 2.07 1.55

1.56 · 10−3 6.28 · 10−5 1.24 · 10−5 1.53 2.49

Table: Errors and convergence rates for the density.
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Numerical results
Local MFG with reference solution - Plots

Figure: Density m(t, x) at time T = 0.05 (left), the value function u(0, x) (center) and
the gradient ux(x, 0) (right) computed with N = 320.
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Conclusions and future perspectives

Our main aim is to present a new and e�cient high-order scheme to solve
MFG systems with regular solutions.

We have developed a new high-order scheme for the (FP) equation,
based on Lagrange-Galerkin methods combined with a second-order weak
approximation of the underlying stochastic characteristic curves.

We have provided a convergence analysis in the distributional sense and
with respect to the weak topology in L2.

We have then combined the new scheme for the (FP) equation with a
high-order semi-Lagrangian scheme for the HJB equation to obtain a
high-order scheme for the (MFG) system.

We have shown the performance of the scheme by numerical simulations.

Main advantages: being conservative, explicit, and do not require the
standard parabolic CFL condition ∆t = O((∆x)2) in order to be stable.
Main drawbacks: the loss of positivity for the discrete density and the
lack of a constant high-order convergence rate.
Possible future improvements: change basis functions to preserve
positivity and to improve the errors.
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Thank you for your attention!
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