A high-order scheme for mean field games

Elisa Calzola

University of Ferrara, Italy

joint work with E. Carlini (La Sapienza) and F. J. Silva (University of Limoges)

 11^{th} January 2024, Numerical methods for optimal transport problems, mean field games, and multi-agent dynamics - Valparaíso (Chile)

- Introduction
- The equation

2 LG scheme

- Derivation of the scheme
- Properties of the exactly integrated scheme
- Implementation of the method in dimension one

3 Application to MFGs

- Semi-Lagrangian scheme for the HJB equation
- Application to MFGs

4 Numerical results

- Non local MFG with analytical solution
- Local MFG with reference solution

Introduction

Motivations

- MFGs characterize Nash equilibria of stochastic differentiable games with infinitely many players; in some cases such equilibria are given by a system of PDEs (a forward FP equation and a backward HJB equation).
- There are several methods based on the finite difference scheme by Chang and Cooper¹ which require a parabolic CFL in order to be explicit and stable.
- Only few works deal with high-order numerical schemes for MFG systems, that are finite-difference based² or that imply high-order spacetime finite elements to approximate variational MFGs³.
- Our purpose is to provide a new scheme which is explicit, conservative, consistent, convergent, high-order and stable without a CFL condition for the FP equation.
- We introduce a high-order SL method for HJB equation and couple it with our scheme for FP to solve the MFG problem.

¹Chang and Cooper, "A practical difference scheme for Fokker-Planck equations".

²Li, Fan, and Ying, "A simple multiscale method for mean field games"; Popov and Tomov, "Central schemes for mean field games".

³Fu et al., "High order computation of optimal transport, mean field planning, and potential mean field games".

We consider here the linear Fokker-Planck equation

$$\begin{cases} \partial_t m - \frac{\sigma^2}{2} \Delta m + \operatorname{div}(\mu m) = 0 & \text{in } (0, T] \times \mathbb{R}^d, \\ m(0, \cdot) = \overline{m}_0 & \text{in } \{0\} \times \mathbb{R}^d. \end{cases}$$
 (**FP**)

(H1) We assume that:

- (i) $\overline{m}_0 \in C_0^0(\mathbb{R}^d)$ has compact support, $\overline{m}_0 \ge 0$, and $\int_{\mathbb{R}^d} \overline{m}_0(x) dx = 1$.
- (ii) μ is bounded, $\mu \in C([0,T] \times \mathbb{R}^d)$, and there exists $C_b > 0$ such that

$$|\mu(s,x) - \mu(t,y)| \le C_b|x-y|$$
 for $t \in [0,T]$ and $x, y \in \mathbb{R}^d$.

The equation - Existence of solution

Under the assumptions stated in (H1) the following hold^{4,5}:

- Equation (**FP**) admits a unique classical solution $m^* \in C^{1,2}([0,T] \times \mathbb{R}^d)$;
- $m^* \ge 0;$
- m^* is the unique solution in $L^2([0,T] \times \mathbb{R}^d)$ to (\mathbf{FP}) in the distributional sense.

For each $\phi \in C_0(\mathbb{R}^d)$, in $[t_1, t_2] \subset [0, T]$ we have

$$\int_{\mathbb{R}^d} \phi(x) m(t_2, x) dx = \int_{\mathbb{R}^d} \mathbb{E} \left(\phi(X(t_2; t_1, x)) m(t_1, x) \right) dx. \tag{1}$$

⁵Figalli, "Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients", Proposition 4.4, Theorem 4.3.

⁴Bogachev et al., Fokker-Planck-Kolmogorov equations, Theorem 6.6.1, Chapter 9.1.

Discretization of the characteristics

X(s;t,x) is defined as the unique solution to

$$dX(s) = \mu(s, X(s))ds + \sigma dW(s) \text{ for } s > t$$

$$X(t) = x.$$

We recall that using the Crank-Nicolson approximation, $y_{t_1,x}$ is the solution of

$$y_{t_1,x}(t_2) = x + \frac{(t_2 - t_1)}{2} \left(\mu(t_1, x) + \mu(t_2, y_{t_1,x}(t_2)) \right) + \sqrt{(t_2 - t_1)} \sigma \xi, \quad (2)$$

where ξ is an \mathbb{R}^d -valued random vector with i.i.d. components such that

$$\mathbb{P}(\xi_i = 0) = 2/3, \quad \mathbb{P}(\xi_i = \pm \sqrt{3}) = 1/6 \quad \text{for} \quad i = 1, \dots, d.$$
 (3)

Derivation of the scheme

Using the Crank-Nicolson approximation for the characteristics, there exists C>0 such that for ϕ smooth enough

$$\left| \mathbb{E} \left(\phi(X(t_2; t_1, x)) \right) - \mathbb{E} \left(\phi(y_{t_1, x}(t_2)) \right) \right| \le C(t_2 - t_1)^3.$$
 (4)

- Let $\{e_{\ell} | \ell = 1, ..., 3^d\} \subset \mathbb{R}^d$ be the set of possible realizations of ξ ;
- set $\omega_{\ell} = \mathbb{P}(\xi = e_{\ell});$
- denote $y_k^{\ell}(x)$ as the unique solution to the Crank-Nicolson fixed point for the characteristics in (2), for $\xi = e_{\ell}$, $\ell = 1, \ldots, 3^d$.

Derivation of the scheme

- Let $\mathcal{I} = \{1, \dots, 3^d\};$
- choose $N_{\Delta t} \in \mathbb{N}$;
- \blacksquare set $\Delta t = T/N_{\Delta t}$, $t_k = k\Delta t$;

the representation formula in $[t_k, t_{k+1}]$

$$\int_{\mathbb{R}^d} \phi(x) m(t_{k+1}, x) dx = \int_{\mathbb{R}^d} \mathbb{E} \left(\phi(X(t_{k+1}; t_k, x)) m(t_k, x) \right) dx$$

can be approximated as

$$\int_{\mathbb{R}^d} \phi(x) m(t_{k+1}, x) dx = \sum_{\ell \in \mathcal{I}} \omega_\ell \int_{\mathbb{R}^d} \phi(y_k^\ell(x)) m(t_k, x) dx + O((\Delta t)^3).$$
 (5)

Derivation of the scheme

■ For fixed Δt , the boundedness of μ implies that there exists $L_{\Delta t}$ ~ $C/\sqrt{\Delta t}$ such that for any $k=0,\ldots,N_T$

$$\operatorname{supp}(m_{\Delta}(t_k)) \subset \left[-L_{\Delta t}, L_{\Delta t}\right]^d =: \mathcal{O}_{\Delta};$$

- choose a $\Delta x > 0$ and introduce a structured mesh $\mathcal{G}_{\Delta} := \{(t_k, x_i)\};$
- consider odd⁶ symmetric Lagrange interpolation basis functions $\{\beta_i\}_{i\in\mathbb{Z}^d}$ (stable), which are tensor product of the one-dimensional reference function $\hat{\beta}(\xi)$;
- define a projection on the space spanned by the basis $\{\beta_i\}_i$,

$$m_{\Delta}(t_k, \cdot) = \sum_{i \in \mathcal{I}_{\Delta x}} m_{k,i} \beta_i(x).$$

⁶Ferretti, "On the relationship between semi-Lagrangian and Lagrange-Galerkin schemes": Ferretti and Mehrenberger, "Stability of semi-Lagrangian schemes of arbitrary odd degree under constant and variable advection speed".

Derivation of the scheme

Recall the formula

$$\int_{\mathbb{R}^d} \phi(x) m(t_{k+1}, x) dx = \sum_{\ell \in \mathcal{I}} \omega_{\ell} \int_{\mathbb{R}^d} \phi(y_k^{\ell}(x)) m(t_k, x) dx + O((\Delta t)^3),$$

- we set $\phi = \beta_i$;
- we substitute $m(t_k,\cdot)$ with $m_{\Delta}(t_k,\cdot) = \sum_{i \in \mathcal{I}_{\Delta,n}} m_{k,i} \beta_i^q(x)$;

$$\int_{\mathbb{R}^d} \phi(x) m(t_{k+1}, x) dx \approx \sum_{j \in \mathcal{I}_{\Delta x}} m_{k+1, j} \int_{\mathcal{O}_{\Delta}} \beta_i(x) \beta_j(x) dx$$

$$\int_{\mathbb{R}^d} \phi(y_k^{\ell}(x)) m(t_k, x) dx \approx \sum_{j \in \mathcal{I}_{\Delta, x}} m_{k, j} \int_{\mathcal{O}_{\Delta}} \beta_i(y_k^{\ell}(x)) \beta_j(x) dx.$$

LG scheme Derivation of the scheme

We define the mass matrix D and the matrix B_k^{ℓ} ,

$$D_{i,j} = \int_{\mathcal{O}_{\Delta}} \beta_i(x)\beta_j(x) dx, \quad b_{i,j,k}^{\ell} = \int_{\mathcal{O}_{\Delta}} \beta_i(y_k^{\ell}(x))\beta_j(x) dx$$

for $(i,j) \in \mathcal{I}_{\Delta x} \times \mathcal{I}_{\Delta x}$.

The scheme is the following: find $\{m_{k,j} \in \mathbb{R}, j \in \mathcal{I}_{\Delta x}, k \in \mathcal{I}_{\Delta t}^*\}$ such that for all $i \in \mathcal{I}_{\Delta x}$ and $k \in \mathcal{I}_{\Delta t}^*$

$$\sum_{j \in \mathcal{I}_{\Delta x}} D_{i,j} m_{k+1,j} = \sum_{j \in \mathcal{I}_{\Delta x}} \sum_{\ell \in \mathcal{I}} \omega_{\ell} b_{k,i,j}^{\ell} m_{k,j},
\sum_{j \in \mathcal{I}_{\Delta x}} D_{i,j} m_{0,j} = \int_{\mathcal{O}_{\Delta}} m_{0}(x) \beta_{i}(x) dx.$$
(6)

Properties of the exactly integrated scheme

For fixed $\Delta t > 0$ and $\Delta x > 0$ we proved the following properties:

- [Well-posedness] given $m_0 \in \mathbb{R}^{(N_{\Delta x})^d}$, there exists a unique solution $m_k \in \mathbb{R}^{(N_{\Delta x})^d}$ to (6), for $k = 0, \ldots, N_{\Delta t} 1$;
- $[Initial condition] \|\overline{m}_0 m_{\Delta}(0, \cdot)\|_{L^2(\mathbb{R}^d)} = O((\Delta x)^{q+1}) \text{ if } \overline{m}_0 \in H^{q+1}(\mathbb{R}^d);$
- [Mass conservation] $\int_{\mathcal{O}_{\Lambda}} m_{\Delta}(t_k, x) dx = 1$ for $k \in \mathcal{I}_{\Delta t}$;
- [L^2 -stability] if μ is differentiable w.r.t. x, then $\max_{k \in \mathcal{I}_{\Delta t}} \|m_{\Delta}(t_k, \cdot)\|_{L^2}$ is uniformly bounded with respect to Δ for Δt small enough.

Properties of the exactly integrated scheme

Proposition (Consistency)

Let $\phi \in C_0^{\infty}(\mathbb{R}^d)$, then for any $k \in \mathcal{I}_{\Delta t}^*$ and for any $(\Delta t, \Delta x) \in (0, +\infty)^2$, the scheme is consistent.

Proposition (Convergence)

Assume that $\overline{m}_0 \in H^{q+1}(\mathbb{R}^d)$, that **(H1)** holds, and that b is differentiable w.r.t. x. Consider a sequence $(\Delta_n)_{n \in \mathbb{N}} = ((\Delta t_n, \Delta x_n))_{n \in \mathbb{N}} \subseteq (0, \infty)^2$ such that, as $n \to \infty$, $(\Delta t_n, \Delta x_n) \to (0, 0)$ and $(\Delta x_n)^{q+1}/\Delta t_n \to 0$. Setting $m^n := m_{\Delta_n}$, as $n \to \infty$ we have that $(m^n)_{n \in \mathbb{N}}$ converges to m in $C([0,T]; \mathcal{D}'(\mathbb{R}^d))$ and weakly in $L^2([0,T] \times \mathbb{R}^d)$, where m is the unique classical solution to **(FP)**.

Implementation of the method in dimension one

In one spatial dimension, to get a method of order two we use Simpson quadrature rule on each element $[x_j, x_j + 2\Delta x]$, with j = 2m and $m \in \mathbb{Z}$, and cubic symmetric Lagrange interpolation basis functions $(\beta_i^3(x))$. Each basis $\beta_j^3(x)$ has support in $[x_{j-2}, x_{j+2}]$, so the elements of matrices D and B_k^{ℓ} are approximated as follows:

$$D_{i,j} \simeq \frac{2\Delta x}{3} \delta_{i,j}, \quad b_{k,i,j}^{\ell} \simeq \frac{2\Delta x}{3} \beta_i^3(y_k^{\ell}(x_j)), \quad \forall i, j, \in \mathcal{I}_{\Delta x}.$$

Simplifying $\frac{2\Delta x}{3}$ in both approximations, the method results in

$$m_{k+1} = \sum_{\ell \in \mathcal{T}} \omega_{\ell} \widetilde{B}_{k}^{\ell} m_{k} \tag{7}$$

with $\widetilde{B}_k^\ell:\mathbb{Z}^2 \to \mathbb{R}$ linear operator with $\widetilde{b}_{k,i,j}^\ell$ defined by

$$\widetilde{b}_{k,i,j}^{\ell} = \beta_i^3(y_k^{\ell}(x_j)).$$

Application to MFGs The MFGs problem

Let us consider a Mean Field Game (MFG) problem of the form:

$$\begin{cases}
-\partial_t v - \frac{\sigma^2}{2} \Delta v + \frac{1}{2} |\nabla v|^2 = F(x, m(t)), & (t, x) \in [0, T) \times \mathbb{R}^d, \\
\partial_t m - \frac{\sigma^2}{2} \Delta m - \operatorname{div} (\nabla v m) = 0 & (t, x) \in (0, T] \times \mathbb{R}^d, \\
v(t, x) = G(x, m(T)) & x \in \mathbb{R}^d \\
m(0) = m_0, & m_0 \in \mathcal{P}_1(\mathbb{R}^d),
\end{cases}$$
(MFG)

where $\sigma \in \mathbb{R}$, $F : \mathbb{R}^d \times \mathcal{P}_1 \to \mathbb{R}$, $G : \mathbb{R}^d \times \mathcal{P}_1 \to \mathbb{R}$.

- The first equation in (**MFG**) is a Hamilton-Jacobi-Bellman (HJB) equation with cost depending on m;
- the distribution m is the solution of the second equation, which is a Fokker-Planck with drift given by ∇v .

Application to MFGs The MFGs problem

(H2) We assume that:

- (i) m_0^* is nonnegative, Hölder continuous, and $\int_{\mathcal{D}^d} \overline{m}_0(x) dx = 1$.
- (ii) F and G are bounded and Lipschitz continuous. Moreover, for every $m \in \mathcal{P}_1(\mathbb{R}^d)$, $F(\cdot, m)$ is of class C^2 and

$$\sup_{x \in \mathbb{R}^d, m \in \mathcal{P}_1(\mathbb{R}^d)} \left\{ \|DF(x, m)\|_{\infty} + \|D^2 F(x, m)\|_{\infty} \right\} < \infty.$$

Under (**H2**) system (**MFG**) admits at least one classical solution⁷. Moreover, if the coupling terms F and G satisfy a monotonicity condition with respect to m, then the classical solution is unique⁸.

⁷Cardaliaguet, "Notes on Mean Field Games: from P.-L. Lions' lectures at Collège de France". Theorem 3.1.

⁸Lasry and Lions, "Mean field games", Theorem 2.4.

Semi-Lagrangian scheme for the HJB equation

We consider a Semi-Lagrangian (SL) approximation of the HJB equation⁹. For a given $m \in C([0,T], \mathcal{P}_1)$, we define the operator

$$S_{\Delta}[m](f, k, i) := \inf_{\alpha \in \mathbb{R}^d} \left[\sum_{\ell \in \mathcal{I}} \omega_{\ell} \left(I[f](x_i + \Delta t \alpha + \sqrt{\Delta t} \sigma e_{\ell}) + \frac{\Delta t}{2} F(x_i + \Delta t \alpha + \sqrt{\Delta t} \sigma e_{\ell}, m(t_k)) \right) + \frac{\Delta t}{2} |\alpha|^2 \right] + \frac{\Delta t}{2} F(x_i, m(t_{k+1})).$$

The scheme for the HJB equation is: find a sequence $\{v_{k,i} \in \mathbb{R}, k \in \mathcal{I}_{\Delta t}, i \in \mathcal{I}_{\Delta x}\}$ such that, for $i \in \mathbb{Z}^d, k \in \mathcal{I}_{\Delta t}^*$,

$$\begin{cases} v_{k,i} = S_{\Delta}[m](v_{k+1}, k, i), \\ v_{N_{\Delta t}, i} = G(x_i, m(t_{N_{\Delta t}})). \end{cases}$$
(8)

Elisa Calzola University of Ferrara

⁹Bonaventura et al., "Second order fully semi-Lagrangian discretizations of advection-diffusion-reaction systems".

Application to MFGs The scheme for MFG

We propose the following scheme for (MFG): find a fixed point $\{(v_k, m_{k,i}) \in \mathbb{R}^2, k \in \mathcal{I}_{\Delta t}, j \in \mathcal{I}_{\Delta x}\}$ of the discrete system

$$\begin{cases} v_{k,i} = S_{\Delta}[m](v_{k+1}, k, i), \\ v_{N_{\Delta t}, i} = G(x_i, m) \\ \sum_{j \in \mathcal{I}_{\Delta x}} D_{i,j} m_{k+1, j} = \sum_{j \in \mathcal{I}_{\Delta x}} m_{k,j} \sum_{\ell \in \mathcal{I}} \omega_{\ell} b_{i,j,k}^{\ell}[v] \\ \sum_{j \in \mathcal{I}_{\Delta x}} D_{i,j} m_{0,i} = \int_{\mathcal{O}_{\Delta}} m_{0}(x) \beta_{i}(x) dx, \end{cases}$$

$$(9)$$

for all $i \in \mathcal{I}_{\Delta x}$ and $k \in \mathcal{I}_{\Delta t}^*$, where $b_{i,j,k}^{\ell}[v] = \int_{\mathcal{O}_{\Delta}} \beta_i(y_k^{\ell}[v](x))\beta_j(x) dx$.

For the exactly integrated scheme (6), the local truncation error is given by the contributions of the Crank-Nicolson estimate

$$\left| \mathbb{E} \left(\phi(X(t_{k+1}; t_k, x)) \right) - \mathbb{E} \left(\phi(y_{t_k, x}(t_{k+1})) \right) = O((\Delta t)^3) \right|$$

and the interpolation error

$$|f(x) - I[f](x)| = O((\Delta x)^{q+1}),$$

which yield a global truncation error of order $(\Delta x)^{q+1}/\Delta t + (\Delta t)^2$. Taking $\Delta t = O((\Delta x)^{(q+1)/3})$ the order of consistency is maximized¹⁰, obtaining an order of convergence of 2(q+1)/3.

¹⁰ Ferretti, "A technique for high-order treatment of diffusion terms in semi-Lagrangian schemes".

Non local MFG with analytical solution

Consider the Mean Field Game expressed by the following equations:

$$\begin{cases} -\partial_t v - \frac{\sigma^2}{2} \Delta v + \frac{1}{2} |\nabla v|^2 = \frac{1}{2} \left(x - \int_{\mathcal{O}} \varepsilon \mathrm{d} m_t \left(\varepsilon \right) \right)^2 & (t, x) \in (0, T) \times \mathcal{O}_{\Delta}, \\ \partial_t m - \frac{\sigma^2}{2} \Delta m - \mathrm{div} \left((\nabla v) m \right) = 0 & (t, x) \in (0, T) \times \mathcal{O}_{\Delta}, \\ v(t, x) = v_{ex}(t, x), \quad v(t, x) = v_{ex}(t, x) & (t, x) \in (0, T) \times \partial \mathcal{O}_{\Delta}, \\ v(T, x) = 0 & x \in \mathcal{O}_{\Delta}, \\ m(t, x) = m_{ex}(t, x), \quad m(t, x) = m_{ex}(t, x) & (t, x) \in (0, T) \times \partial \mathcal{O}_{\Delta}, \\ m(0, x) = m_0 & x \in \mathcal{O}_{\Delta}, \end{cases}$$

with T=0.25, $\mathcal{O}_{\Delta}=(-2,2)$. We approximated the gradient of the value function using a fourth-order finite difference scheme and we performed our tests using $\Delta t = O\left((\Delta x)^{4/3}\right)$, $\Delta t = O\left(\Delta x\right)$, and $\Delta t = O\left((\Delta x)^2\right)$.

Non local MFG with analytical solution - Errors on the HJB

П	Δx	Errors for the approximation		ion of	$v^*(0,\cdot)$	
	Δx	E_{∞}	E_2	p_{∞}	p_2	
	$2.00 \cdot 10^{-1}$	$1.68 \cdot 10^{-4}$	$1.70 \cdot 10^{-4}$	-	-	
	$1.00 \cdot 10^{-1}$	$3.56 \cdot 10^{-5}$	$3.48 \cdot 10^{-5}$	2.24	2.29	
Ī	$5.00 \cdot 10^{-2}$	$5.86 \cdot 10^{-6}$	$5.75 \cdot 10^{-6}$	2.60	2.60	
	$2.50 \cdot 10^{-2}$	$1.06 \cdot 10^{-6}$	$1.04 \cdot 10^{-6}$	2.47	2.47	

Table: Errors and convergence rates for $\sigma^2/2 = 0.005$, $\Delta t = (\Delta x)^{4/3}/4$

Non local MFG with analytical solution - Errors on the FP

Δx	Err	Errors for the approximation of $m^*(T,\cdot)$				
	E_{∞}	E_2	p_{∞}	p_2	positivity error	
$2.00 \cdot 10^{-1}$	$8.81 \cdot 10^{-3}$	$1.01 \cdot 10^{-2}$	-	-	$-3.51 \cdot 10^{-4}$	
$1.00 \cdot 10^{-1}$	$3.06 \cdot 10^{-3}$	$2.53 \cdot 10^{-3}$	1.53	2.00	$-9.45 \cdot 10^{-9}$	
$5.00 \cdot 10^{-2}$		$5.56 \cdot 10^{-4}$	1.93	2.19	0	
$2.50 \cdot 10^{-2}$	$1.81 \cdot 10^{-4}$	$1.14 \cdot 10^{-4}$	2.15	2.29	0	

Table: Errors and convergence rates for $\sigma^2/2 = 0.005$, $\Delta t = (\Delta x)^{4/3}/4$

Non local MFG with analytical solution - Errors on the HJB

	Δx	Errors for th	Errors for the approximation			
	4 .	E_{∞}	E_2	p_{∞}	p_2	
	$2.00 \cdot 10^{-1}$	$2.72 \cdot 10^{-4}$	$2.56 \cdot 10^{-4}$	-	-	
Ī	$1.00 \cdot 10^{-1}$	$7.62 \cdot 10^{-5}$	$6.72 \cdot 10^{-5}$	1.84	1.93	
Ī	$5.00 \cdot 10^{-2}$	$1.61 \cdot 10^{-5}$	$1.44 \cdot 10^{-5}$	2.24	2.22	
	$2.50 \cdot 10^{-2}$	$3.69 \cdot 10^{-6}$	$3.59 \cdot 10^{-6}$	2.13	2.00	

Table: Errors and convergence rates for $\sigma^2/2 = 0.005$, $\Delta t = \Delta x/4$.

Non local MFG with analytical solution - Errors on the FP

Δx	Errors for the approximation of $m^*(T,\cdot)$				
	E_{∞}	E_2	p_{∞}	p_2	positivity error
$2.00 \cdot 10^{-1}$	$5.93 \cdot 10^{-3}$	$7.01 \cdot 10^{-3}$	-	-	$-8.18 \cdot 10^{-5}$
$1.00 \cdot 10^{-1}$	$2.63 \cdot 10^{-3}$	$2.17 \cdot 10^{-3}$	1.17	1.69	$-3.58 \cdot 10^{-10}$
$5.00 \cdot 10^{-2}$		$4.80 \cdot 10^{-4}$	1.10	2.18	0
$2.50 \cdot 10^{-2}$	$3.39 \cdot 10^{-4}$	$9.61 \cdot 10^{-5}$	1.86	2.32	0

Table: Errors and convergence rates for $\sigma^2/2 = 0.005$, $\Delta t = \Delta x/4$.

Non local MFG with analytical solution - Errors on the HJB

	Δx	Errors for tl	rors for the approximation		
	4 .	E_{∞}	E_2	p_{∞}	p_2
	$2.00 \cdot 10^{-1}$	$1.98 \cdot 10^{-4}$	$1.87 \cdot 10^{-4}$	-	-
Ī	$1.00 \cdot 10^{-1}$	$2.84 \cdot 10^{-5}$	$2.86 \cdot 10^{-5}$	2.80	2.71
Ī	$5.00 \cdot 10^{-2}$	$3.41 \cdot 10^{-6}$	$3.94 \cdot 10^{-5}$	3.06	2.86
	$2.50 \cdot 10^{-2}$	$4.56 \cdot 10^{-7}$	$5.08 \cdot 10^{-6}$	2.90	2.96

Table: Errors and convergence rates for $\sigma^2/2 = 0.005$, $\Delta t = (\Delta x)^2$.

Numerical results Non local MFG with analytical solution - Errors on the FP

	Δx	Errors for the approximation of $m^*(T,\cdot)$				
	Δx	E_{∞}	E_2	p_{∞}	p_2	positivity error
ſ	$2.00 \cdot 10^{-1}$	$6.60 \cdot 10^{-3}$	$7.63 \cdot 10^{-3}$	-	-	$-1.01 \cdot 10^{-4}$
Ī	$1.00 \cdot 10^{-1}$	$3.11 \cdot 10^{-3}$	$2.60 \cdot 10^{-3}$	1.09	1.55	$-1.19 \cdot 10^{-8}$
Ī	$5.00 \cdot 10^{-2}$	$9.17 \cdot 10^{-4}$	$7.16 \cdot 10^{-4}$	1.76	1.86	0
	$2.50 \cdot 10^{-2}$	$2.42 \cdot 10^{-4}$	$1.81 \cdot 10^{-4}$	1.92	1.98	0

Table: Errors and convergence rates for $\sigma^2/2 = 0.005$, $\Delta t = (\Delta x)^2$.

Non local MFG with analytical solution - Plots

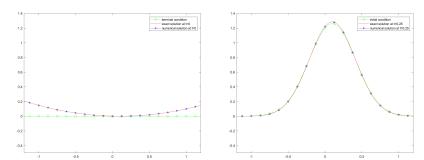


Figure: Solution at time T=0 for the HJ equation (left) and solution at time T=0.25 for the FP equation (right), both with $\sigma^2/2=5\cdot 10^{-3}$, N=321.

Non local MFG with analytical solution - Plots

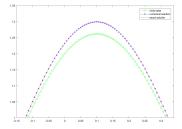


Figure: Detail of the solution at time T=0.25 for the FP equation, with $\sigma^2/2=5\cdot 10^{-3}$, N=641.

Local MFG with reference solution

We consider a smooth problem with the following data:

$$\overline{m}_0(x) = \begin{cases} 4\sin^2(2\pi(x) - \frac{1}{4}) & x \in \left[\frac{1}{4}, \frac{3}{4}\right] \\ 0 & \text{otherwise,} \end{cases}$$

$$u_T(x) = 0,$$

$$F(x, m(t, x)) = 3\overline{m}_0(x) - \min(4, m(t, x)).$$

- the numerical domain is $[0,T] \times \mathcal{O}_{\Delta} = (0,0.05) \times (0,1)$;
- the volatility is $\sigma^2/2 = 0.05$.

In order to check for convergence we computed a reference solution, using $\Delta x = 6.67 \cdot 10^{-4}$ and $\Delta t = (\Delta x)^{3/2}/3$.

Local MFG with reference solution - Errors on the HJB

Δx	Relative Er	e Errors on the H.		JB equation		
	E_{∞}	E_2	p_{∞}	p_2		
$5.00 \cdot 10^{-2}$	$5.38 \cdot 10^{-2}$	$3.80 \cdot 10^{-2}$	-	-		
$2.50 \cdot 10^{-2}$	$1.43 \cdot 10^{-2}$	$1.29 \cdot 10^{-2}$	1.91	1.55		
$1.25 \cdot 10^{-2}$	$4.25 \cdot 10^{-3}$	$3.24 \cdot 10^{-3}$	1.74	1.99		
$6.25 \cdot 10^{-3}$	$8.84 \cdot 10^{-4}$	$7.99 \cdot 10^{-4}$	2.27	2.01		
$3.13 \cdot 10^{-3}$	$3.76 \cdot 10^{-4}$	$3.72 \cdot 10^{-4}$	1.23	1.10		
$1.56 \cdot 10^{-3}$	$4.99 \cdot 10^{-5}$	$3.60 \cdot 10^{-5}$	2.90	3.37		

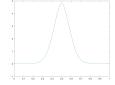
Table: Errors and convergence rates for the value function.

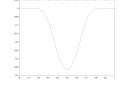
Local MFG with reference solution - Errors on the FP

Δx	Relative Errors on the FP equation.				
	E_{∞}	E_2	p_{∞}	p_2	
$5.00 \cdot 10^{-2}$	$9.07 \cdot 10^{-2}$	$4.82 \cdot 10^{-2}$	-	-	
$2.50 \cdot 10^{-2}$	$1.81 \cdot 10^{-2}$	$6.79 \cdot 10^{-3}$	2.32	2.82	
$1.25 \cdot 10^{-2}$	$4.81 \cdot 10^{-3}$	$1.36 \cdot 10^{-3}$	1.91	2.32	
$6.25 \cdot 10^{-3}$	$7.64 \cdot 10^{-4}$	$2.06 \cdot 10^{-4}$	2.65	2.72	
$3.13 \cdot 10^{-3}$	$1.82 \cdot 10^{-4}$	$6.96 \cdot 10^{-5}$	2.07	1.55	
$1.56 \cdot 10^{-3}$	$6.28 \cdot 10^{-5}$	$1.24 \cdot 10^{-5}$	1.53	2.49	

Table: Errors and convergence rates for the density.

Local MFG with reference solution - Plots





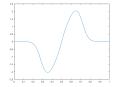


Figure: Density m(t,x) at time T=0.05 (left), the value function u(0,x) (center) and the gradient $u_x(x,0)$ (right) computed with N=320.

Conclusions and future perspectives

Our main aim is to present a new and efficient high-order scheme to solve MFG systems with regular solutions.

- We have developed a new high-order scheme for the (**FP**) equation, based on Lagrange-Galerkin methods combined with a second-order weak approximation of the underlying stochastic characteristic curves.
- We have provided a convergence analysis in the distributional sense and with respect to the weak topology in L^2 .
- We have then combined the new scheme for the (**FP**) equation with a high-order semi-Lagrangian scheme for the HJB equation to obtain a high-order scheme for the (**MFG**) system.
- We have shown the performance of the scheme by numerical simulations.

Main advantages: being conservative, explicit, and do not require the standard parabolic CFL condition $\Delta t = O((\Delta x)^2)$ in order to be stable. Main drawbacks: the loss of positivity for the discrete density and the lack of a constant high-order convergence rate.

Possible future improvements: change basis functions to preserve positivity and to improve the errors.

Thank you for your attention!