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Outline
• Orbital Angular Momenta (OAM) spectra obtained with spatial mode sensors [1d histograms]


• Optimal Transport and Wasserstein distance


• Selection of optimal subset of superpositions


• Classification results


• Partial conclusions


• Extension to Vector Vortex Beams (OAM + polarization) [2d histograms]


• Final conclusions
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(Anton Zeilinger is an Austrian quantum physicist  
and Nobel laureate in physics of 2022)

(A few years ago they achieved similar results 
but sending light from a satellite)

OAM modes

superpositions of OAM modes



Twisted light / optical vortices / beams with OAM 

• Beams carrying orbital angular momentum 
feature a helical wavefront 


• Number of turns around axis (in one 
wavelength) equals the OAM state ℓ


• Intensity of optical vortices is shaped as a 
ring (or multiple rings)


• Phase singularity hidden at the core


• We can construct modes that (in the absence 
of turbulence) propagate without distortions: 
Laguerre-Gauss, Bessel-Gauss,… 


• u(r,', z, t) = A(r, z, t) exp(i`')

ℓ = +2

ℓ = +1

ℓ = 0

ℓ = -1

ℓ = -2

(Wikipedia)



Wavefront sensors generate histograms out of OAM superpositions 
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Here: ℓ in {-20,-10,5,20}, C2
n = 3 × 10−14 m−2/3, L = 1000 m

hideal,s(ℓ) :=
1

|s |

ℓmax

∑
ℓ=−ℓmax

δℓ∈s
Σ = h(ℓ) ≥ 0 for ℓ ∈ {−ℓmax, …, + ℓmax} :

ℓmax

∑
ℓ=−ℓmax

h(ℓ) = 1

The set of histograms is the probability simplex :
what we expect in the absence of turbulence

what we get in the presence of atmospheric

turbulence and using a wavefront sensor



Optimal Transport

U(h, g) := P ∈ ℝN×N
+ : ∑

j

Pi,j = h(i) , ∑
i

Pi,j = g( j)

min
𝖯∈U(h,g) ∑

i,j

𝖢i,j𝖯i,j
The optimal transport plan P is 


the one that minimizes the total cost

(interior-point linear optimization)

The set of admissible transport plans

Here 1d, but can be 
generalized to histograms of 

any dimensions
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Ground cost, 

distance between bins

(illustration in 1d)



Wasserstein distance
Let’s use for the cost a power…
𝖢ℓ,ℓ′￼

= dp(ℓ, ℓ′￼)

d(ℓ, ℓ′￼) = 0 ⟺ ℓ = ℓ′￼

d(ℓ, ℓ′￼) = d(ℓ′￼, ℓ)

d(ℓ, ℓ′￼′￼) ≤ d(ℓ, ℓ′￼) + d(ℓ′￼, ℓ′￼′￼)

…of a well-defined ‘ground’ distance between bins

• For            , this definition of distance verifies the three 
requisites of a distance between histograms h, g in Σ.


• It accommodates distortions induced by weak turbulence.

• It can be computed efficiently by several algorithms.

•Can include regularization terms.

Wp(h, g) := min
𝖯∈U(h,g) ∑

ℓ,ℓ′￼

d(ℓ, ℓ′￼)p 𝖯ℓ,ℓ′￼

1/p
The p-Wasserstein distance:

…for instance
d(ℓ, ℓ′￼) := |ℓ′￼− ℓ |

p ≥ 1



Wasserstein distance
allows the definition of the barycenter of a set of histograms
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These 3 figures correspond to 
the Shack-Hartmann histograms 

from a selection of 28 duets

Here: symbol = class = superposition

The Wasserstein distance between histograms is preserved during propagation.

Discriminates between histograms corresponding to different superpositions.

Barycenters/centroids provide a simple method of assessing the similarity between 
an histogram and a group of histograms.

hbary,G := arg min
h∈Σ ∑

g∈G

λgW
p
p(h, g)



Selection of optimal subset of superpositions
A systematic method for selecting a subset of n (desirably a power of two) superpositions from a larger set of N:

where 𝖤s,t := 1/Wq
p(hs, ht), if s ≠ t, and 0 otherwise

minimum (xT𝖤x), subject to x ∈ {0,1}N and
N

∑
i=1

xi = n

We can pose an integer optimization problem where the entries of the binary vector x of length N  
indicate the presence (1) or absence (0) of a given superposition in the optimal subset:

Here      could be the ideal spectra, or the barycenter from a training set of labeled spectra associated 
to the superposition s.

hs

We have used a set composed of N=98 superpositions (28 duets and 70 quartets),

and the optimal subsets of sizes n=64, 32 and 16, always included combinations of duets and quartets.



Nearest Centroid Classification
Requires computation of distances between the new instance 
and the barycenters of the classes

A confusion matrix contains the result of a classification experiment.

Here diagonal elements are not shown because they are much larger.

Columns: detected superpositions
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accuracy :=
∑d 𝖢d,d

∑s,d 𝖢s,d

fraction of correct classifications𝖢s,d number of observations known to be in class s and classified as in class d.

accuracy CP = 0.901 accuracy MS = 0.987 accuracy SH = 0.9999

here we optimize the classification scheme

and found the best wavefront sensor



Partial conclusions
• The theory of Optimal Transport provides concepts and algorithms for 

the appropriate manipulation of empirical OAM spectra distorted by 
atmospheric turbulence.


• The definition of a Wasserstein distance, and a barycenter based on 
such a distance, can be used to select the best subsets of 
superpositions, and more robust classification schemes based on such 
limited sets of classes


• The results based on the Wasserstein distance are consistently better 
than the ones obtained with the Kullback-Leibler divergence



ℓL = − 2, ℓR = + 1 RGB Stokes
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Vector Vortex Beams

Does atmospheric turbulence destroy the 
structure?


Can we use a set/alphabet of VVB modes 
as data symbols for encoding info and 
implement a free-space optical link? 

How can we identify a spatially structured beam with 
nonuniform polarization?

RGB color image constructed from 
the 3 Stokes parameters that 
characterize polarization



Vector Vortex Beam

|VVB (pL, ℓL, pR, ℓR, θ, ϕ)⟩ = cos
θ
2

|L⟩ |LGpL,ℓL
⟩ + sin

θ
2

eiϕ |R⟩ |LGpR,ℓR
⟩

Orthogonal polarization states

Orthogonal spatial states with orbital 

angular momentum (OAM) (Laguerre-Gauss)

For given two OAM indices, the angles θ,φ define a 
higher-order Poincaré sphere:


each point represents a nonuniform polarization pattern

ℓL = 1, ℓR = − 1 (figure extracted from Giordani 2020)

ℓL, ℓR ∈ ℤ , pL, pR ∈ ℤ0,+ , θ ∈ ]0,π[ , ϕ ∈ [0,2π]



Approach for elliptical polarization
Use VVB defined with several choices of θ,φ (selection of points in Poincaré sphere) and then project the measured 
nonplanar Stokes vectors on the faces of a polyhedron (for instance a rhombicuboctahedron with 26 faces and 24 
vertices)

d(k, k′￼) := |ψ′￼− ψ |2π + ∠( ̂f′￼, ̂f )

k := (ψ, ̂f )

Figure polyhedron: Wikipedia 𝜓5 10 15
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ℓL = + 1, ℓR = − 1, θ = π/4, ϕ = 5π/4

ψ
(x, y)

⃗S(x, y)

̂f ⃗S

S0(x, y)

↻

16x26 histogram



Statistics of Wasserstein distances
Pairs of instances belonging to the same or different classes (144)
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Selection of optimal subset of VVBs
A systematic method for selecting a subset of n (desirably a power of two) superpositions from a larger set of NS:

where 𝖤s,t := (
⟨Wp(hs, ⋅ )⟩ + ⟨Wp( ⋅ , ht)⟩

Wp(hs, ht) )
q

, if s ≠ t, and 0 otherwise

minimum (xT𝖤x), subject to x ∈ {0,1}N𝒮 and
N𝒮

∑
i=1

xi = n

We can pose an integer optimization problem where the entries of the binary vector x of length NS  
indicate the presence (1) or absence (0) of a given superposition in the optimal subset:

Here      could be the barycenter of a training set of labeled spectra associated to the superposition s.hs

We have used a set composed of NS=144 classes of VVBs

(12 selections of (ψ,φ) times 12 combinations of OAM).



Nearest Centroid Classification
Requires computation of distances between the new instance 
and the barycenters of the classes

̂d(g) := arg min
d

Wp
p(g, hbary,d)

L = 1 km, C2
n = 2.9 × 10−14 m−2/3
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Columns: detected superpositionsColumns: detected superpositions
(For moderate turbulence strengths we obtained perfect classification, zero cross-talk)

Accuracy=0.827 Accuracy=0.955
ℓL, ℓR, point in sphere

n=16 n=8



Conclusions
• It is possible to construct 2-d histograms based on empirical Stokes 

parameters obtained from vector vortex beams (VVBs) distorted by 
atmospheric turbulence, for linear and elliptical polarization.


• The theory of Optimal Transport provides concepts and algorithms for 
the appropriate manipulation of the histograms: definition of a 
Wasserstein distance, and a barycenter based on such a distance.


• We can select the best subsets of superpositions,


• and more robust classification schemes based on such limited sets of 
classes.

Many thanks for your attention! All questions and inquires are welcome!


