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Motivation: Non local Lotka-Volterra cross-diffusion models

� PDE model of dispersive spatial interaction between 2 species + competition{
∂tu−∆(d1u+ a11uu+ a12uv) = (r1 − s11u− s12v)u,

∂tv −∆(d2v + a21uv + a22vv) = (r2 − s22v − s21u)v.
(SKT)

? [Shigesada, Kawasaki, Teramoto 1979]

� Global (weak) solutions: ? [Galiano, Garzón, Jüngel 2003],
? [Chen, Jüngel 2004-2006], ? [Chen, Daus, Jüngel 2018], ? [Chen, Jüngel, Wang
2022]. Entropic structure.
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� Non-local SKT system introduced in ? [F’, Méléard 2016] :{
∂tu− ∆(d1u + a11(u ∗G1,1)u + a12(v ∗G1,2)u) = (r1 − s11u ∗ C1,1 − s12v ∗ C1,2)u,

∂tv − ∆(d2v + a21(u ∗G2,1)v + a22(v ∗G2,2)v) = (r2 − s22v ∗ C2,2 − s21u ∗ C2,1)v.
(NL-SKT)

with Gi,j , Hi,j , Ci,j regular kernels.

� Approximation of (NL-SKT) by mean-field particles system (Individual Based
Model) via weak convergence techniques.

� Non-local → local diffusion terms/PDE: ? [Moussa 2020], ? [Dietert, Moussa 2021]

� Derivation of related model (constant size) from mean-field particle system: ?

[Chen, Daus, Holzinger, Jüngel 2020]

In this talk we stay in the probabilistic non-local setting of ? [F’, Méléard 2016] and
study:

Question Ù

Can we quantify the approximation of non-local SKT system by individual based models?
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A simpler population model

Binary branching diffusions in Rd (one species) with:

� mean-field interaction in diffusion and drift

� logistic (global) competition

Population process (µKt )t≥0 : measure valued process µKt =
1

K

NK
t∑

n=1

δ
X

n,K
t
∈M+(Rd),

� NK
t := K〈µKt , 1〉 number individuals alive at time t ≥ 0, K > 0 “carrying capacity”.

� X1,K
t , . . . , XNK

t ,K
t the individuals’ positions in Rd.

Dynamics

� Random initial measure µK0 .

� À Individuals carry independent reproduction clock of parameter r > 0:
µKt− 7→ µKt = µKt− + 1

K
δx if indiv. located at x ∈ Rd reproduces, and

À (conditionally) independent killing clock of parameter cNK
t /K for c > 0:

µKt− 7→ µKt = µKt− − 1
K
δx if indiv. located at x ∈ Rd dies.

� Between birth and death events the individual Xn,K evolves as the diffusion process

dXn,K
t = b

(
Xn,K
t , H ∗ µKt (Xn,K

t )
)

dt+ σ
(
Xn,K
t , G ∗ µKt (Xn,K

t )
)

dBnt .
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Remark: (NK
t )t≥0 is a logistic branching process.

Theorem (F’ , Méléard ’16, particular case)

Under Lipschitz regularity on σ, b,G, and H, moment assumptions on (µK0 )K and weak
convergence µK0 → µ0 ∈ M+(Rd), processes (µKt )t≥0 converge weakly as K → ∞ to
(µt)t≥0, the unique weak solution of

∂tµt = L∗µt
µt + (r − c〈µt, 1〉)µt,

with i.c. µ0, where

Lµf(x) =
1

2
Tr (a(x,G ∗ µ(x))Hess(f)(x)) + b(x,H ∗ µ(x)) · ∇f(x).

Remarks:

� (NK
t /K)t≥0 converges to nt := 〈µt, 1〉 solution of logistic ODE ṅt = nt(r − cnt)

� µ̄t := µt/〈µt, 1〉 satisfies nonlinear diffusion equation of McKean-Vlasov type:

∂tµ̄t = L∗µt
µ̄t

with i.c. µ̄0 := µ0/〈µ0, 1〉.
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Main result

Assumptions : same as before, plus:

� Conditionally on NK
0 , atoms of µK0 are i.i.d. ∼ µ̄0 := µ0/〈µ0, 1〉, µ0 ∈M+(Rd)

�
∫
Rd |x|q µ0(dx) <∞ for some q > 2 and supK E(〈µK0 , 1〉4) <∞.

� ‖ · ‖BL∗ dual bounded-Lipschitz norm on space M(Rd) of finite signed measures.

Theorem (F., Muñoz, 2022, EJP)

For all K,T > 0 one has

sup
t∈[0,T ]

E
(∥∥µKt − µt∥∥BL∗

)
≤ CT (I4(K) +Rq,d(K))

where CT > 0, Rq,d(K) is an explicit polynomial function → 0 as K →∞ and

I4(K) = E
(
|〈µK0 , 1〉 − 〈µ0, 1〉|4

) 1
4 is a smaller term.

Rq,d(K) is explicit...
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Where does the rate Rd,q(K) come from?

Recall:

� Wasserstein distance: p ∈ [1,∞), p-Wasserstein distance Wp(µ, ν) between
µ, ν ∈ P(Rd) defined by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

|x− y|p π(dx, dy)

) 1
p

.

Π(µ, ν) set of probability laws over Rd ×Rd with µ and ν as 1st and 2nd marginals .

For any X ∼ µ, Y ∼ ν on common probability space, Wp(µ, ν) ≤ E(|X − Y |p)
1
p

Optimal coupling π ∈ Π(µ, ν) realizing infimum always exists

� ? [Fournier, Guillin 2015]: Quantitative L.L.N. for empirical distributions :

(Zi)i≥1 i.i.d. ∼ m ∈ P(Rd) with q−moment Mq <∞, q > 2.

Then, for some Cd,q > 0 and all N ∈ N \ {0} FIXED,

E
(
W 2

2

(
1

N

N∑
i=1

δZi ,m

))
≤ Cd,qM

2
q
q R2

d,q(N).
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Where does the rate Rd,q(K) come from?

For all K > 0 one has

Rd,q(K) =


K−

1
4 +K

− (q−2)
2q , if d < 4 and q 6= 4,

K−
1
4 (log(1 +K))

1
2 +K

− (q−2)
2q , if d = 4 and q 6= 4,

K−
1
d +K

− (q−2)
2q , if d > 4 and q 6= d

(d−2)
,

Main result (12 / 17)



1. Motivation: cross diffusion models, local/non-local, Lotka-Volterra

2. Mean-field interacting branching diffusions

3. Main result

4. Idea of the proof

Idea of the proof (13 / 17)



Basic ingredients

� If µ̄, ν̄ ∈ P(Rd) are normalized versions of µ, ν ∈M(Rd), then

‖µ− ν‖BL∗ ≤ 〈µ, 1〉W1(µ̄, ν̄) + |〈µ, 1〉 − 〈ν, 1〉|
≤ 〈µ, 1〉W2(µ̄, ν̄) + |〈µ, 1〉 − 〈ν, 1〉|

� Bound easily obtained at t = 0 from Fournier-Guillin’s result and conditional

independence of atoms of µK0 given mass
NK

0
K

:

E
(
‖µK0 − µ0‖BL∗

)
≤ C E

(NK
0

K
W 2

2

(
µ̄K0 , µ̄0

)) 1
2E
(NK

0

K

) 1
2

+ E
(∣∣〈µK0 , 1〉 − 〈µ0, 1〉

∣∣),
≤ C Rq,d(K) + E

(∣∣〈µK0 , 1〉 − 〈µ0, 1〉
∣∣)

No longer true for t > 0 !!!
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Main ingredient

� COUPLING: construct on the same probability space as (µKt )t≥0 process (νKt )t≥0

such that

i) νK0 = µK0 and K〈νKt , 1〉 = K〈µKt , 1〉 for all t ≥ 0 almost surely.

ii) For each t ≥ 0, conditionally on 〈νKt , 1〉, atoms of νKt are i.i.d. of law µ̄t solving
∂tµ̄t = L∗µt

µ̄t.

� Then, result boils down to control E of :

NK
t

K
W 2

2 (µ̄Kt , µ̄t) ≤ 2
NK
t

K
W 2

2 (ν̄Kt , µ̄t) + 2
NK
t

K
W 2

2 (µ̄Kt , ν̄
K
t ).

� To grant i) use same P.P.M. for birth/death times of (µKt )t≥0 and (νKt )t≥0.

� To grant ii) atoms of νKt = 1
K

∑NK
t

n=1 δY n,K
t

must be independent diffusions

dY n,Kt = b
(
Y n,Kt , H ∗ µt(Y n,Kt )

)
dt+ σ

(
Y n,Kt , G ∗ µt(Y n,Kt )

)
dBnt .

so that Law(Y n,Kt ) = µ̄t, and we must chose Y n,Kτ ∼ µ̄τ at its birth time τ .
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Main ingredient

� Term
NK

t
K
W 2

2 (ν̄Kt , µ̄t): OK similarly as for t = 0.

� Need a good control E
(
NK

t
K
W 2

2 (µ̄Kt , ν̄
K
t )
)
≤ E

(
1
K

∑NK
t

n=1 ‖X
n,K
t − Y n,Kt ‖2

)
.

� Using same BM Bnt to drive (Xn,K
t , Y n,Kt ) + Lipschitz coefficients +Gronwall, this

boils down to couple birth positions (Xn,K
τ , Y n,Kτ ) optimally at birth time τ .

� Noting that Xn,K
τ ∼ µ̄Kτ− while Y n,Kτ ∼ µ̄τ we can use

� ? [Cortez, Fontbona 2016]’s coupling Lemma to sample at each birth time τ a pair
(Xn,K

τ , Y n,Kτ ) from the optimal coupling w.r.t. W2 between µ̄Kτ− and µ̄τ
(“measurably” ....)

� Drawing

� Triangle ineq. with ν̄Kτ− + Gronwall ⇒ remainder terms of order Rd,q(K) too.

Idea of the proof (16 / 17)
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Thank you!
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