Quantitative mean-field limit for interacting branching diffusions

Joaquín Fontbona ${ }^{1}$
Joint work with Felipe Muñoz
${ }^{1}$ DIM-CMM,
Universidad de Chile.
OTP-MFG-MAD, Valparaíso
January 2024

Outline

1. Motivation: Lotka-Volterra cross diffusion models
2. Mean-field interacting branching diffusions
3. Main result: convergence rate
4. Ideas of the proof: coupling and optimal transport
5. Motivation: cross diffusion models, local/non-local, Lotka-Volterra

2. Mean-field interacting branching diffusions

3. Main result
4. Idea of the proof

Motivation: Non local Lotka-Volterra cross-diffusion models

Motivation: Non local Lotka-Volterra cross-diffusion models

> PDE model of dispersive spatial interaction between 2 species + competition

$$
\left\{\begin{align*}
\partial_{t} u-\Delta\left(d_{1} u+a_{11} u u+a_{12} u v\right) & =\left(r_{1}-s_{11} u-s_{12} v\right) u \tag{SKT}\\
\partial_{t} v-\Delta\left(d_{2} v+a_{21} u v+a_{22} v v\right) & =\left(r_{2}-s_{22} v-s_{21} u\right) v
\end{align*}\right.
$$

-ㅛ [Shigesada, Kawasaki, Teramoto 1979]

Motivation：Non local Lotka－Volterra cross－diffusion models

＞PDE model of dispersive spatial interaction between 2 species + competition

$$
\left\{\begin{align*}
\partial_{t} u-\Delta\left(d_{1} u+a_{11} u u+a_{12} u v\right) & =\left(r_{1}-s_{11} u-s_{12} v\right) u \tag{SKT}\\
\partial_{t} v-\Delta\left(d_{2} v+a_{21} u v+a_{22} v v\right) & =\left(r_{2}-s_{22} v-s_{21} u\right) v
\end{align*}\right.
$$

－ －［Shigesada，Kawasaki，Teramoto 1979］
＞Global（weak）solutions：且［Galiano，Garzón，Jüngel 2003］，国［Chen，Jüngel 2004－2006］，因［Chen，Daus，Jüngel 2018］，目［Chen，Jüngel，Wang 2022］．Entropic structure．
> Non-local SKT system introduced in 目 [F^{\prime}, Méléard 2016]:

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta\left(d_{1} u+a_{11}\left(u * G^{1,1}\right) u+a_{12}\left(v * G^{1,2}\right) u\right)=\left(r_{1}-s_{11} u * C^{1,1}-s_{12} v * C^{1,2}\right) u \\
\partial_{t} v-\Delta\left(d_{2} v+a_{21}\left(u * G^{2,1}\right) v+a_{22}\left(v * G^{2,2}\right) v\right)=\left(r_{2}-s_{22} v * C^{2,2}-s_{21} u * C^{2,1}\right) v
\end{array}\right.
$$

(NL-SKT)
with $G^{i, j}, H^{i, j}, C^{i, j}$ regular kernels.
> Non-local SKT system introduced in 国 [F', Méléard 2016]:

$$
\left\{\begin{align*}
& \partial_{t} u-\Delta\left(d_{1} u+a_{11}\left(u * G^{1,1}\right) u+a_{12}\left(v * G^{1,2}\right) u\right)=\left(r_{1}-s_{11} u * C^{1,1}-s_{12} v * C^{1,2}\right) u \tag{NL-SKT}\\
& \partial_{t} v-\Delta\left(d_{2} v+a_{21}\left(u * G^{2,1}\right) v+a_{22}\left(v * G^{2,2}\right) v\right)=\left(r_{2}-s_{22} v * C^{2,2}-s_{21} u * C^{2,1}\right) v
\end{align*}\right.
$$

with $G^{i, j}, H^{i, j}, C^{i, j}$ regular kernels.
> Approximation of (NL-SKT) by mean-field particles system (Individual Based Model) via weak convergence techniques.
＞Non－local SKT system introduced in 国［F＇，Méléard 2016］：

$$
\left\{\begin{align*}
& \partial_{t} u-\Delta\left(d_{1} u+a_{11}\left(u * G^{1,1}\right) u+a_{12}\left(v * G^{1,2}\right) u\right)=\left(r_{1}-s_{11} u * C^{1,1}-s_{12} v * C^{1,2}\right) u \tag{NL-SKT}\\
& \partial_{t} v-\Delta\left(d_{2} v+a_{21}\left(u * G^{2,1}\right) v+a_{22}\left(v * G^{2,2}\right) v\right)=\left(r_{2}-s_{22} v * C^{2,2}-s_{21} u * C^{2,1}\right) v
\end{align*}\right.
$$ with $G^{i, j}, H^{i, j}, C^{i, j}$ regular kernels．

＞Approximation of（NL－SKT）by mean－field particles system（Individual Based Model）via weak convergence techniques．
＞Non－local \rightarrow local diffusion terms／PDE：国［Moussa 2020］，目［Dietert，Moussa 2021］
＞Non－local SKT system introduced in 目［F＇，Méléard 2016］：$_{\text {2 }}$ 20

$$
\left\{\begin{align*}
& \partial_{t} u-\Delta\left(d_{1} u+a_{11}\left(u * G^{1,1}\right) u+a_{12}\left(v * G^{1,2}\right) u\right)=\left(r_{1}-s_{11} u * C^{1,1}-s_{12} v * C^{1,2}\right) u \tag{NL-SKT}\\
& \partial_{t} v-\Delta\left(d_{2} v+a_{21}\left(u * G^{2,1}\right) v+a_{22}\left(v * G^{2,2}\right) v\right)=\left(r_{2}-s_{22} v * C^{2,2}-s_{21} u * C^{2,1}\right) v
\end{align*}\right.
$$ with $G^{i, j}, H^{i, j}, C^{i, j}$ regular kernels．

＞Approximation of（NL－SKT）by mean－field particles system（Individual Based Model）via weak convergence techniques．
＞Non－local \rightarrow local diffusion terms／PDE：国［Moussa 2020］，国［Dietert，Moussa 2021］
＞Derivation of related model（constant size）from mean－field particle system：国 ［Chen，Daus，Holzinger，Jüngel 2020］
＞Non－local SKT system introduced in ${ }^{-1}$［F＇，Méléard 2016］：

$$
\left\{\begin{align*}
\partial_{t} u-\Delta\left(d_{1} u+a_{11}\left(u * G^{1,1}\right) u+a_{12}\left(v * G^{1,2}\right) u\right) & =\left(r_{1}-s_{11} u * C^{1,1}-s_{12} v * C^{1,2}\right) u \tag{NL-SKT}\\
\partial_{t} v-\Delta\left(d_{2} v+a_{21}\left(u * G^{2,1}\right) v+a_{22}\left(v * G^{2,2}\right) v\right) & =\left(r_{2}-s_{22} v * C^{2,2}-s_{21} u * C^{2,1}\right) v
\end{align*}\right.
$$ with $G^{i, j}, H^{i, j}, C^{i, j}$ regular kernels．

＞Approximation of（NL－SKT）by mean－field particles system（Individual Based Model）via weak convergence techniques．
＞Non－local \rightarrow local diffusion terms／PDE：国［Moussa 2020］，国［Dietert，Moussa 2021］
＞Derivation of related model（constant size）from mean－field particle system：国 ［Chen，Daus，Holzinger，Jüngel 2020］

In this talk we stay in the probabilistic non－local setting of 国［F＇，Méléard 2016］and 2 study：

$$
\left\{\begin{align*}
\partial_{t} u-\Delta\left(d_{1} u+a_{11}\left(u * G^{1,1}\right) u+a_{12}\left(v * G^{1,2}\right) u\right) & =\left(r_{1}-s_{11} u * C^{1,1}-s_{12} v * C^{1,2}\right) u \tag{NL-SKT}\\
\partial_{t} v-\Delta\left(d_{2} v+a_{21}\left(u * G^{2,1}\right) v+a_{22}\left(v * G^{2,2}\right) v\right) & =\left(r_{2}-s_{22} v * C^{2,2}-s_{21} u * C^{2,1}\right) v
\end{align*}\right.
$$ with $G^{i, j}, H^{i, j}, C^{i, j}$ regular kernels．

＞Approximation of（NL－SKT）by mean－field particles system（Individual Based Model）via weak convergence techniques．
＞Non－local \rightarrow local diffusion terms／PDE：国［Moussa 2020］，国［Dietert，Moussa 2021］
＞Derivation of related model（constant size）from mean－field particle system：国 ［Chen，Daus，Holzinger，Jüngel 2020］

In this talk we stay in the probabilistic non－local setting of 国［F＇，Méléard 2016］and 2 study：

Question Q

Can we quantify the approximation of non－local SKT system by individual based models？

1. Motivation: cross diffusion models, local/non-local, Lotka-Volterra

2. Mean-field interacting branching diffusions

A simpler population model

A simpler population model

Binary branching diffusions in \mathbb{R}^{d} (one species) with:
> mean-field interaction in diffusion and drift
> logistic (global) competition

A simpler population model

Binary branching diffusions in \mathbb{R}^{d} (one species) with:
> mean-field interaction in diffusion and drift
> logistic (global) competition
Population process $\left(\mu_{t}^{K}\right)_{t \geq 0}$: measure valued process $\mu_{t}^{K}=\frac{1}{K} \sum_{n=1}^{N_{t}^{K}} \delta_{X_{t}^{n, K}} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$,
> $N_{t}^{K}:=K\left\langle\mu_{t}^{K}, 1\right\rangle$ number individuals alive at time $t \geq 0, K>0$ "carrying capacity".

A simpler population model

Binary branching diffusions in \mathbb{R}^{d} (one species) with:
> mean-field interaction in diffusion and drift
> logistic (global) competition
Population process $\left(\mu_{t}^{K}\right)_{t \geq 0}$: measure valued process $\mu_{t}^{K}=\frac{1}{K} \sum_{n=1}^{N_{t}^{K}} \delta_{X_{t}^{n, K}} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$,
> $N_{t}^{K}:=K\left\langle\mu_{t}^{K}, 1\right\rangle$ number individuals alive at time $t \geq 0, K>0$ "carrying capacity".
> $X_{t}^{1, K}, \ldots, X_{t}^{N_{t}^{K}, K}$ the individuals' positions in \mathbb{R}^{d}.

A simpler population model

Binary branching diffusions in \mathbb{R}^{d} (one species) with:
> mean-field interaction in diffusion and drift
> logistic (global) competition
Population process $\left(\mu_{t}^{K}\right)_{t \geq 0}$: measure valued process $\mu_{t}^{K}=\frac{1}{K} \sum_{n=1}^{N_{t}^{K}} \delta_{X_{t}^{n, K}} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$,
> $N_{t}^{K}:=K\left\langle\mu_{t}^{K}, 1\right\rangle$ number individuals alive at time $t \geq 0, K>0$ "carrying capacity".
$>X_{t}^{1, K}, \ldots, X_{t}^{N_{t}^{K}, K}$ the individuals' positions in \mathbb{R}^{d}.

Dynamics

A simpler population model

Binary branching diffusions in \mathbb{R}^{d} (one species) with:
> mean-field interaction in diffusion and drift
> logistic (global) competition
Population process $\left(\mu_{t}^{K}\right)_{t \geq 0}$: measure valued process $\mu_{t}^{K}=\frac{1}{K} \sum_{n=1}^{N_{t}^{K}} \delta_{X_{t}^{n, K}} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$,
> $N_{t}^{K}:=K\left\langle\mu_{t}^{K}, 1\right\rangle$ number individuals alive at time $t \geq 0, K>0$ "carrying capacity".
$>X_{t}^{1, K}, \ldots, X_{t}^{N_{t}^{K}, K}$ the individuals' positions in \mathbb{R}^{d}.

Dynamics

> Random initial measure μ_{0}^{K}.

A simpler population model

Binary branching diffusions in \mathbb{R}^{d} (one species) with:
> mean-field interaction in diffusion and drift
> logistic (global) competition
Population process $\left(\mu_{t}^{K}\right)_{t \geq 0}$: measure valued process $\mu_{t}^{K}=\frac{1}{K} \sum_{n=1}^{N_{t}^{K}} \delta_{X_{t}^{n, K}} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$,
> $N_{t}^{K}:=K\left\langle\mu_{t}^{K}, 1\right\rangle$ number individuals alive at time $t \geq 0, K>0$ "carrying capacity".
$>X_{t}^{1, K}, \ldots, X_{t}^{N_{t}^{K}, K}$ the individuals' positions in \mathbb{R}^{d}.

Dynamics

> Random initial measure μ_{0}^{K}.
> (1) Individuals carry independent reproduction clock of parameter $r>0$: $\mu_{t-}^{K} \mapsto \mu_{t}^{K}=\mu_{t-}^{K}+\frac{1}{K} \delta_{x}$ if indiv. located at $x \in \mathbb{R}^{d}$ reproduces, and

A simpler population model

Binary branching diffusions in \mathbb{R}^{d} (one species) with:
> mean-field interaction in diffusion and drift
> logistic (global) competition
Population process $\left(\mu_{t}^{K}\right)_{t \geq 0}$: measure valued process $\mu_{t}^{K}=\frac{1}{K} \sum_{n=1}^{N_{t}^{K}} \delta_{X_{t}^{n, K}} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$,
> $N_{t}^{K}:=K\left\langle\mu_{t}^{K}, 1\right\rangle$ number individuals alive at time $t \geq 0, K>0$ "carrying capacity".
> $X_{t}^{1, K}, \ldots, X_{t}^{N_{t}^{K}, K}$ the individuals' positions in \mathbb{R}^{d}.

Dynamics

> Random initial measure μ_{0}^{K}.
> (1) Individuals carry independent reproduction clock of parameter $r>0$: $\mu_{t-}^{K} \mapsto \mu_{t}^{K}=\mu_{t-}^{K}+\frac{1}{K} \delta_{x}$ if indiv. located at $x \in \mathbb{R}^{d}$ reproduces, and
(b) (conditionally) independent killing clock of parameter $c N_{t}^{K} / K$ for $c>0$: $\mu_{t-}^{K} \mapsto \mu_{t}^{K}=\mu_{t-}^{K}-\frac{1}{K} \delta_{x}$ if indiv. located at $x \in \mathbb{R}^{d}$ dies.

A simpler population model

Binary branching diffusions in \mathbb{R}^{d} (one species) with:
> mean-field interaction in diffusion and drift
> logistic (global) competition
Population process $\left(\mu_{t}^{K}\right)_{t \geq 0}$: measure valued process $\mu_{t}^{K}=\frac{1}{K} \sum_{n=1}^{N_{t}^{K}} \delta_{X_{t}^{n, K}} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$,
> $N_{t}^{K}:=K\left\langle\mu_{t}^{K}, 1\right\rangle$ number individuals alive at time $t \geq 0, K>0$ "carrying capacity".
$>X_{t}^{1, K}, \ldots, X_{t}^{N_{t}^{K}, K}$ the individuals' positions in \mathbb{R}^{d}.

Dynamics

> Random initial measure μ_{0}^{K}.
> (1) Individuals carry independent reproduction clock of parameter $r>0$: $\mu_{t-}^{K} \mapsto \mu_{t}^{K}=\mu_{t-}^{K}+\frac{1}{K} \delta_{x}$ if indiv. located at $x \in \mathbb{R}^{d}$ reproduces, and
(b) (conditionally) independent killing clock of parameter $c N_{t}^{K} / K$ for $c>0$: $\mu_{t-}^{K} \mapsto \mu_{t}^{K}=\mu_{t-}^{K}-\frac{1}{K} \delta_{x}$ if indiv. located at $x \in \mathbb{R}^{d}$ dies.
> Between birth and death events the individual $X^{n, K}$ evolves as the diffusion process

$$
\mathrm{d} X_{t}^{n, K}=b\left(X_{t}^{n, K}, H * \mu_{t}^{K}\left(X_{t}^{n, K}\right)\right) \mathrm{d} t+\sigma\left(X_{t}^{n, K}, G * \mu_{t}^{K}\left(X_{t}^{n, K}\right)\right) \mathrm{d} B_{t}^{n}
$$

Remark: $\left(N_{t}^{K}\right)_{t \geq 0}$ is a logistic branching process.

Remark: $\left(N_{t}^{K}\right)_{t \geq 0}$ is a logistic branching process.

Theorem (F' , Méléard '16, particular case)

Under Lipschitz regularity on σ, b, G, and H, moment assumptions on $\left(\mu_{0}^{K}\right)_{K}$ and weak convergence $\mu_{0}^{K} \rightarrow \mu_{0} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$, processes $\left(\mu_{t}^{K}\right)_{t \geq 0}$ converge weakly as $K \rightarrow \infty$ to $\left(\mu_{t}\right)_{t \geq 0}$, the unique weak solution of

$$
\partial_{t} \mu_{t}=L_{\mu_{t}}^{*} \mu_{t}+\left(r-c\left\langle\mu_{t}, 1\right\rangle\right) \mu_{t},
$$

with i.c. μ_{0}, where

$$
L_{\mu} f(x)=\frac{1}{2} \operatorname{Tr}(a(x, G * \mu(x)) \operatorname{Hess}(f)(x))+b(x, H * \mu(x)) \cdot \nabla f(x)
$$

Remarks:

$>\left(N_{t}^{K} / K\right)_{t \geq 0}$ converges to $n_{t}:=\left\langle\mu_{t}, 1\right\rangle$ solution of logistic ODE $\dot{n}_{t}=n_{t}\left(r-c n_{t}\right)$
> $\bar{\mu}_{t}:=\mu_{t} /\left\langle\mu_{t}, 1\right\rangle$ satisfies nonlinear diffusion equation of McKean-Vlasov type:

$$
\partial_{t} \bar{\mu}_{t}=L_{\mu_{t}}^{*} \bar{\mu}_{t}
$$

with i.c. $\bar{\mu}_{0}:=\mu_{0} /\left\langle\mu_{0}, 1\right\rangle$.

1. Motivation: cross diffusion models, local/non-local, Lotka-Volterra

2. Mean-field interacting branching diffusions

3. Main result
4. Idea of the proof

Main result

Main result

Assumptions : same as before, plus:
> Conditionally on N_{0}^{K}, atoms of μ_{0}^{K} are i.i.d. $\sim \bar{\mu}_{0}:=\mu_{0} /\left\langle\mu_{0}, 1\right\rangle, \mu_{0} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$
$>\int_{\mathbb{R}^{d}}|x|^{q} \mu_{0}(\mathrm{~d} x)<\infty$ for some $q>2$ and $\sup _{K} \mathbb{E}\left(\left\langle\mu_{0}^{K}, 1\right\rangle^{4}\right)<\infty$.
> \| $\cdot \|_{\mathrm{BL}^{*}}$ dual bounded-Lipschitz norm on space $\mathcal{M}\left(\mathbb{R}^{d}\right)$ of finite signed measures.

Main result

Assumptions : same as before, plus:
> Conditionally on N_{0}^{K}, atoms of μ_{0}^{K} are i.i.d. $\sim \bar{\mu}_{0}:=\mu_{0} /\left\langle\mu_{0}, 1\right\rangle, \mu_{0} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$
$>\int_{\mathbb{R}^{d}}|x|^{q} \mu_{0}(\mathrm{~d} x)<\infty$ for some $q>2$ and $\sup _{K} \mathbb{E}\left(\left\langle\mu_{0}^{K}, 1\right\rangle^{4}\right)<\infty$.
> \| $\cdot \|_{\mathrm{BL}^{*}}$ dual bounded-Lipschitz norm on space $\mathcal{M}\left(\mathbb{R}^{d}\right)$ of finite signed measures.

Main result

Assumptions: same as before, plus:
$>$ Conditionally on N_{0}^{K}, atoms of μ_{0}^{K} are i.i.d. $\sim \bar{\mu}_{0}:=\mu_{0} /\left\langle\mu_{0}, 1\right\rangle, \mu_{0} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$
$>\int_{\mathbb{R}^{d}}|x|^{q} \mu_{0}(\mathrm{~d} x)<\infty$ for some $q>2$ and $\sup _{K} \mathbb{E}\left(\left\langle\mu_{0}^{K}, 1\right\rangle^{4}\right)<\infty$.
> \| $\cdot \|_{\mathrm{BL}^{*}}$ dual bounded-Lipschitz norm on space $\mathcal{M}\left(\mathbb{R}^{d}\right)$ of finite signed measures.

Theorem (F., Muñoz, 2022, EJP)

For all $K, T>0$ one has

$$
\sup _{t \in[0, T]} \mathbb{E}\left(\left\|\mu_{t}^{K}-\mu_{t}\right\|_{\mathrm{BL}^{*}}\right) \leq C_{T}\left(I_{4}(K)+R_{q, d}(K)\right)
$$

where $C_{T}>0, R_{q, d}(K)$ is an explicit polynomial function $\rightarrow 0$ as $K \rightarrow \infty$ and $I_{4}(K)=\mathbb{E}\left(\left|\left\langle\mu_{0}^{K}, 1\right\rangle-\left\langle\mu_{0}, 1\right\rangle\right|^{4}\right)^{\frac{1}{4}}$ is a smaller term.

Main result

Assumptions: same as before, plus:
$>$ Conditionally on N_{0}^{K}, atoms of μ_{0}^{K} are i.i.d. $\sim \bar{\mu}_{0}:=\mu_{0} /\left\langle\mu_{0}, 1\right\rangle, \mu_{0} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$
$>\int_{\mathbb{R}^{d}}|x|^{q} \mu_{0}(\mathrm{~d} x)<\infty$ for some $q>2$ and $\sup _{K} \mathbb{E}\left(\left\langle\mu_{0}^{K}, 1\right\rangle^{4}\right)<\infty$.
> \| $\cdot \|_{\mathrm{BL}^{*}}$ dual bounded-Lipschitz norm on space $\mathcal{M}\left(\mathbb{R}^{d}\right)$ of finite signed measures.

Theorem (F., Muñoz, 2022, EJP)

For all $K, T>0$ one has

$$
\sup _{t \in[0, T]} \mathbb{E}\left(\left\|\mu_{t}^{K}-\mu_{t}\right\|_{\mathrm{BL}^{*}}\right) \leq C_{T}\left(I_{4}(K)+R_{q, d}(K)\right)
$$

where $C_{T}>0, R_{q, d}(K)$ is an explicit polynomial function $\rightarrow 0$ as $K \rightarrow \infty$ and $I_{4}(K)=\mathbb{E}\left(\left|\left\langle\mu_{0}^{K}, 1\right\rangle-\left\langle\mu_{0}, 1\right\rangle\right|^{4}\right)^{\frac{1}{4}}$ is a smaller term.
$R_{q, d}(K)$ is explicit...

Where does the rate $R_{d, q}(K)$ come from?

Recall:

> Wasserstein distance: $p \in[1, \infty)$, p-Wasserstein distance $W_{p}(\mu, \nu)$ between $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ defined by

$$
W_{p}(\mu, \nu)=\left(\inf _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{p} \pi(\mathrm{~d} x, \mathrm{~d} y)\right)^{\frac{1}{p}}
$$

$\Pi(\mu, \nu)$ set of probability laws over $\mathbb{R}^{d} \times \mathbb{R}^{d}$ with μ and ν as 1 st and 2 nd marginals .

Where does the rate $R_{d, q}(K)$ come from?

Recall:

> Wasserstein distance: $p \in[1, \infty)$, p-Wasserstein distance $W_{p}(\mu, \nu)$ between $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ defined by

$$
W_{p}(\mu, \nu)=\left(\inf _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{p} \pi(\mathrm{~d} x, \mathrm{~d} y)\right)^{\frac{1}{p}}
$$

$\Pi(\mu, \nu)$ set of probability laws over $\mathbb{R}^{d} \times \mathbb{R}^{d}$ with μ and ν as 1st and 2nd marginals . For any $X \sim \mu, Y \sim \nu$ on common probability space, $W_{p}(\mu, \nu) \leq \mathbb{E}\left(|X-Y|^{p}\right)^{\frac{1}{p}}$
Optimal coupling $\pi \in \Pi(\mu, \nu)$ realizing infimum always exists

Where does the rate $R_{d, q}(K)$ come from?

Recall:

> Wasserstein distance: $p \in[1, \infty)$, p-Wasserstein distance $W_{p}(\mu, \nu)$ between $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ defined by

$$
W_{p}(\mu, \nu)=\left(\inf _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{p} \pi(\mathrm{~d} x, \mathrm{~d} y)\right)^{\frac{1}{p}}
$$

$\Pi(\mu, \nu)$ set of probability laws over $\mathbb{R}^{d} \times \mathbb{R}^{d}$ with μ and ν as 1st and 2nd marginals . For any $X \sim \mu, Y \sim \nu$ on common probability space, $W_{p}(\mu, \nu) \leq \mathbb{E}\left(|X-Y|^{p}\right)^{\frac{1}{p}}$
Optimal coupling $\pi \in \Pi(\mu, \nu)$ realizing infimum always exists
> 目[Fournier, Guillin 2015]: Quantitative L.L.N. for empirical distributions : $\left(Z_{i}\right)_{i \geq 1}$ i.i.d. $\sim m \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ with q-moment $M_{q}<\infty, q>2$.

Where does the rate $R_{d, q}(K)$ come from?

Recall:

> Wasserstein distance: $p \in[1, \infty)$, p-Wasserstein distance $W_{p}(\mu, \nu)$ between $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ defined by

$$
W_{p}(\mu, \nu)=\left(\inf _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{p} \pi(\mathrm{~d} x, \mathrm{~d} y)\right)^{\frac{1}{p}}
$$

$\Pi(\mu, \nu)$ set of probability laws over $\mathbb{R}^{d} \times \mathbb{R}^{d}$ with μ and ν as 1st and 2nd marginals . For any $X \sim \mu, Y \sim \nu$ on common probability space, $W_{p}(\mu, \nu) \leq \mathbb{E}\left(|X-Y|^{p}\right)^{\frac{1}{p}}$
Optimal coupling $\pi \in \Pi(\mu, \nu)$ realizing infimum always exists
> 目[Fournier, Guillin 2015]: Quantitative L.L.N. for empirical distributions : $\left(Z_{i}\right)_{i \geq 1}$ i.i.d. $\sim m \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ with q-moment $M_{q}<\infty, q>2$.
Then, for some $C_{d, q}>0$ and all $N \in \mathbb{N} \backslash\{0\}$ FIXED,

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{Z_{i}}, m\right)\right) \leq C_{d, q} M_{q}^{\frac{2}{q}} R_{d, q}^{2}(N)
$$

Where does the rate $R_{d, q}(K)$ come from?

For all $K>0$ one has

$$
R_{d, q}(K)= \begin{cases}K^{-\frac{1}{4}}+K^{-\frac{(q-2)}{2 q}}, & \text { if } d<4 \text { and } q \neq 4, \\ K^{-\frac{1}{4}}(\log (1+K))^{\frac{1}{2}}+K^{-\frac{(q-2)}{2 q}}, & \text { if } d=4 \text { and } q \neq 4, \\ K^{-\frac{1}{d}}+K^{-\frac{(q-2)}{2 q}}, & \text { if } d>4 \text { and } q \neq \frac{d}{(d-2)},\end{cases}
$$

1. Motivation: cross diffusion models, local/non-local, Lotka-Volterra

2. Mean-field interacting branching diffusions

3. Main result
4. Idea of the proof

Basic ingredients

Basic ingredients

Basic ingredients

> If $\bar{\mu}, \bar{\nu} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ are normalized versions of $\mu, \nu \in \mathcal{M}\left(\mathbb{R}^{d}\right)$, then

$$
\begin{aligned}
\|\mu-\nu\|_{\mathrm{BL}}{ }^{*} & \leq\langle\mu, 1\rangle W_{1}(\bar{\mu}, \bar{\nu})+|\langle\mu, 1\rangle-\langle\nu, 1\rangle| \\
& \leq\langle\mu, 1\rangle W_{2}(\bar{\mu}, \bar{\nu})+|\langle\mu, 1\rangle-\langle\nu, 1\rangle|
\end{aligned}
$$

Basic ingredients

> If $\bar{\mu}, \bar{\nu} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ are normalized versions of $\mu, \nu \in \mathcal{M}\left(\mathbb{R}^{d}\right)$, then

$$
\begin{aligned}
\|\mu-\nu\|_{\mathrm{BL}}{ }^{*} & \leq\langle\mu, 1\rangle W_{1}(\bar{\mu}, \bar{\nu})+|\langle\mu, 1\rangle-\langle\nu, 1\rangle| \\
& \leq\langle\mu, 1\rangle W_{2}(\bar{\mu}, \bar{\nu})+|\langle\mu, 1\rangle-\langle\nu, 1\rangle|
\end{aligned}
$$

> Bound easily obtained at $t=0$ from Fournier-Guillin's result and conditional independence of atoms of μ_{0}^{K} given mass $\frac{N_{0}^{K}}{K}$:

$$
\begin{aligned}
\mathbb{E}\left(\left\|\mu_{0}^{K}-\mu_{0}\right\|_{\mathrm{BL}^{*}}\right) & \leq C \mathbb{E}\left(\frac{N_{0}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{0}^{K}, \bar{\mu}_{0}\right)\right)^{\frac{1}{2}} \mathbb{E}\left(\frac{N_{0}^{K}}{K}\right)^{\frac{1}{2}}+\mathbb{E}\left(\left|\left\langle\mu_{0}^{K}, 1\right\rangle-\left\langle\mu_{0}, 1\right\rangle\right|\right) \\
& \leq C R_{q, d}(K)+\mathbb{E}\left(\left|\left\langle\mu_{0}^{K}, 1\right\rangle-\left\langle\mu_{0}, 1\right\rangle\right|\right)
\end{aligned}
$$

Basic ingredients

> If $\bar{\mu}, \bar{\nu} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ are normalized versions of $\mu, \nu \in \mathcal{M}\left(\mathbb{R}^{d}\right)$, then

$$
\begin{aligned}
\|\mu-\nu\|_{\mathrm{BL}}{ }^{*} & \leq\langle\mu, 1\rangle W_{1}(\bar{\mu}, \bar{\nu})+|\langle\mu, 1\rangle-\langle\nu, 1\rangle| \\
& \leq\langle\mu, 1\rangle W_{2}(\bar{\mu}, \bar{\nu})+|\langle\mu, 1\rangle-\langle\nu, 1\rangle|
\end{aligned}
$$

> Bound easily obtained at $t=0$ from Fournier-Guillin's result and conditional independence of atoms of μ_{0}^{K} given mass $\frac{N_{0}^{K}}{K}$:

$$
\begin{aligned}
\mathbb{E}\left(\left\|\mu_{0}^{K}-\mu_{0}\right\|_{\mathrm{BL}^{*}}\right) & \leq C \mathbb{E}\left(\frac{N_{0}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{0}^{K}, \bar{\mu}_{0}\right)\right)^{\frac{1}{2}} \mathbb{E}\left(\frac{N_{0}^{K}}{K}\right)^{\frac{1}{2}}+\mathbb{E}\left(\left|\left\langle\mu_{0}^{K}, 1\right\rangle-\left\langle\mu_{0}, 1\right\rangle\right|\right) \\
& \leq C R_{q, d}(K)+\mathbb{E}\left(\left|\left\langle\mu_{0}^{K}, 1\right\rangle-\left\langle\mu_{0}, 1\right\rangle\right|\right)
\end{aligned}
$$

No longer true for $t>0$!!!

Main ingredient

Main ingredient

> COUPLING: construct on the same probability space as $\left(\mu_{t}^{K}\right)_{t \geq 0}$ process $\left(\nu_{t}^{K}\right)_{t \geq 0}$ such that

Main ingredient

> COUPLING: construct on the same probability space as $\left(\mu_{t}^{K}\right)_{t \geq 0}$ process $\left(\nu_{t}^{K}\right)_{t \geq 0}$ such that
i) $\nu_{0}^{K}=\mu_{0}^{K}$ and $K\left\langle\nu_{t}^{K}, 1\right\rangle=K\left\langle\mu_{t}^{K}, 1\right\rangle$ for all $t \geq 0$ almost surely.

Main ingredient

> COUPLING: construct on the same probability space as $\left(\mu_{t}^{K}\right)_{t \geq 0}$ process $\left(\nu_{t}^{K}\right)_{t \geq 0}$ such that
i) $\nu_{0}^{K}=\mu_{0}^{K}$ and $K\left\langle\nu_{t}^{K}, 1\right\rangle=K\left\langle\mu_{t}^{K}, 1\right\rangle$ for all $t \geq 0$ almost surely.
ii) For each $t \geq 0$, conditionally on $\left\langle\nu_{t}^{K}, 1\right\rangle$, atoms of ν_{t}^{K} are i.i.d. of law $\bar{\mu}_{t}$ solving $\partial_{t} \bar{\mu}_{t}=L_{\mu_{t}}^{*} \bar{\mu}_{t}$.
> Then, result boils down to control \mathbb{E} of :

$$
\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{t}^{K}, \bar{\mu}_{t}\right) \leq 2 \frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\nu}_{t}^{K}, \bar{\mu}_{t}\right)+2 \frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{t}^{K}, \bar{\nu}_{t}^{K}\right)
$$

Main ingredient

> COUPLING: construct on the same probability space as $\left(\mu_{t}^{K}\right)_{t \geq 0}$ process $\left(\nu_{t}^{K}\right)_{t \geq 0}$ such that
i) $\nu_{0}^{K}=\mu_{0}^{K}$ and $K\left\langle\nu_{t}^{K}, 1\right\rangle=K\left\langle\mu_{t}^{K}, 1\right\rangle$ for all $t \geq 0$ almost surely.
ii) For each $t \geq 0$, conditionally on $\left\langle\nu_{t}^{K}, 1\right\rangle$, atoms of ν_{t}^{K} are i.i.d. of law $\bar{\mu}_{t}$ solving $\partial_{t} \bar{\mu}_{t}=L_{\mu_{t}}^{*} \bar{\mu}_{t}$.
> Then, result boils down to control \mathbb{E} of :

$$
\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{t}^{K}, \bar{\mu}_{t}\right) \leq 2 \frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\nu}_{t}^{K}, \bar{\mu}_{t}\right)+2 \frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{t}^{K}, \bar{\nu}_{t}^{K}\right)
$$

> To grant i) use same P.P.M. for birth/death times of $\left(\mu_{t}^{K}\right)_{t \geq 0}$ and $\left(\nu_{t}^{K}\right)_{t \geq 0}$.

Main ingredient

> COUPLING: construct on the same probability space as $\left(\mu_{t}^{K}\right)_{t \geq 0}$ process $\left(\nu_{t}^{K}\right)_{t \geq 0}$ such that
i) $\nu_{0}^{K}=\mu_{0}^{K}$ and $K\left\langle\nu_{t}^{K}, 1\right\rangle=K\left\langle\mu_{t}^{K}, 1\right\rangle$ for all $t \geq 0$ almost surely.
ii) For each $t \geq 0$, conditionally on $\left\langle\nu_{t}^{K}, 1\right\rangle$, atoms of ν_{t}^{K} are i.i.d. of law $\bar{\mu}_{t}$ solving $\partial_{t} \bar{\mu}_{t}=L_{\mu_{t}}^{*} \bar{\mu}_{t}$.
> Then, result boils down to control \mathbb{E} of :

$$
\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{t}^{K}, \bar{\mu}_{t}\right) \leq 2 \frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\nu}_{t}^{K}, \bar{\mu}_{t}\right)+2 \frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{t}^{K}, \bar{\nu}_{t}^{K}\right) .
$$

> To grant i) use same P.P.M. for birth/death times of $\left(\mu_{t}^{K}\right)_{t \geq 0}$ and $\left(\nu_{t}^{K}\right)_{t \geq 0}$.
> To grant ii) atoms of $\nu_{t}^{K}=\frac{1}{K} \sum_{n=1}^{N_{t}^{K}} \delta_{Y_{t}^{n, K}}$ must be independent diffusions

$$
\mathrm{d} Y_{t}^{n, K}=b\left(Y_{t}^{n, K}, H * \mu_{t}\left(Y_{t}^{n, K}\right)\right) \mathrm{d} t+\sigma\left(Y_{t}^{n, K}, G * \mu_{t}\left(Y_{t}^{n, K}\right)\right) \mathrm{d} B_{t}^{n} .
$$

so that $\operatorname{Law}\left(Y_{t}^{n, K}\right)=\bar{\mu}_{t}$, and we must chose $Y_{\tau}^{n, K} \sim \bar{\mu}_{\tau}$ at its birth time τ.

Main ingredient

Main ingredient

> Term $\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\nu}_{t}^{K}, \bar{\mu}_{t}\right):$ OK similarly as for $t=0$.

Main ingredient

> Term $\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\nu}_{t}^{K}, \bar{\mu}_{t}\right):$ OK similarly as for $t=0$.
> Need a good control $\mathbb{E}\left(\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{t}^{K}, \bar{\nu}_{t}^{K}\right)\right) \leq \mathbb{E}\left(\frac{1}{K} \sum_{n=1}^{N_{t}^{K}}\left\|X_{t}^{n, K}-Y_{t}^{n, K}\right\|^{2}\right)$.

Main ingredient

> Term $\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\nu}_{t}^{K}, \bar{\mu}_{t}\right):$ OK similarly as for $t=0$.
> Need a good control $\mathbb{E}\left(\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{t}^{K}, \bar{\nu}_{t}^{K}\right)\right) \leq \mathbb{E}\left(\frac{1}{K} \sum_{n=1}^{N_{t}^{K}}\left\|X_{t}^{n, K}-Y_{t}^{n, K}\right\|^{2}\right)$.
> Using same $\mathrm{BM} B_{t}^{n}$ to drive $\left(X_{t}^{n, K}, Y_{t}^{n, K}\right)+$ Lipschitz coefficients +Gronwall, this boils down to couple birth positions ($X_{\tau}^{n, K}, Y_{\tau}^{n, K}$) optimally at birth time τ.

Main ingredient

> Term $\frac{N_{K}^{K}}{K} W_{2}^{2}\left(\bar{\nu}_{t}^{K}, \bar{\mu}_{t}\right):$ OK similarly as for $t=0$.
> Need a good control $\mathbb{E}\left(\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{t}^{K}, \bar{\nu}_{t}^{K}\right)\right) \leq \mathbb{E}\left(\frac{1}{K} \sum_{n=1}^{N_{t}^{K}}\left\|X_{t}^{n, K}-Y_{t}^{n, K}\right\|^{2}\right)$.
> Using same $\mathrm{BM} B_{t}^{n}$ to drive $\left(X_{t}^{n, K}, Y_{t}^{n, K}\right)+$ Lipschitz coefficients +Gronwall, this boils down to couple birth positions ($X_{\tau}^{n, K}, Y_{\tau}^{n, K}$) optimally at birth time τ.
> Noting that $X_{\tau}^{n, K} \sim \bar{\mu}_{\tau-}^{K}$ while $Y_{\tau}^{n, K} \sim \bar{\mu}_{\tau}$ we can use
 $\left(X_{\tau}^{n, K}, Y_{\tau}^{n, K}\right)$ from the optimal coupling w.r.t. W_{2} between $\bar{\mu}_{\tau-}^{K}$ and $\bar{\mu}_{\tau}$ ("measurably")

Main ingredient

> Term $\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\nu}_{t}^{K}, \bar{\mu}_{t}\right):$ OK similarly as for $t=0$.
$>$ Need a good control $\mathbb{E}\left(\frac{N_{t}^{K}}{K} W_{2}^{2}\left(\bar{\mu}_{t}^{K}, \bar{\nu}_{t}^{K}\right)\right) \leq \mathbb{E}\left(\frac{1}{K} \sum_{n=1}^{N_{t}^{K}}\left\|X_{t}^{n, K}-Y_{t}^{n, K}\right\|^{2}\right)$.
> Using same $\mathrm{BM} B_{t}^{n}$ to drive $\left(X_{t}^{n, K}, Y_{t}^{n, K}\right)+$ Lipschitz coefficients + Gronwall, this boils down to couple birth positions $\left(X_{\tau}^{n, K}, Y_{\tau}^{n, K}\right)$ optimally at birth time τ.
> Noting that $X_{\tau}^{n, K} \sim \bar{\mu}_{\tau-}^{K}$ while $Y_{\tau}^{n, K} \sim \bar{\mu}_{\tau}$ we can use
> - [Cortez, Fontbona 2016]'s coupling Lemma to sample at each birth time τ a pair $\left(X_{\tau}^{n, K}, Y_{\tau}^{n, K}\right)$ from the optimal coupling w.r.t. W_{2} between $\bar{\mu}_{\tau-}^{K}$ and $\bar{\mu}_{\tau}$ ("measurably")
> Drawing
> Triangle ineq. with $\bar{\nu}_{\tau-}^{K}+$ Gronwall \Rightarrow remainder terms of order $R_{d, q}(K)$ too.

Thank you!

