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Introduction of Hughes’ model

Transport of pedestrian : the LWR model

We want to model a moving crowd. The crowd is represented as a
pedestrian density ρ(t, x) between 0 and 1.
Starting at t = 0, the pedestrians want to move out of the room
the exit(s).
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Introduction of Hughes’ model

Transport of pedestrian : the LWR model

In the one-dimensional case, the agents flux is represented by the
flux function f .

∫ b

a
ρ(t, x) dx =

∫ b

a
ρ(0, x) dx +

∫ t

0
f (s, a) ds −

∫ t

0
f (s, b)ds∫ b

a

∫ t

0
∂tρ(s, x) ds dx = −

∫ t

0

∫ b

a
∂x f (s, x)dx ds

We end up with:∫ b

a

∫ t

0
∂tρ(s, x) + ∂x f (ρ(s, x)) dx ds = 0
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Introduction of Hughes’ model

Transport of pedestrian : the LWR model

Short version, a scalar conservation law:

ρt + f (ρ)x = 0.

The flux is equal to the density multiply by the speed of agents.

f (s, x) := ρ(s, x)v(s, x)

The velocity v is itself governed by the local density:

v(s, x) := vmax(1 − ρ)

We set vmax = 1 and recover:

f (s, x) := f (ρ(s, x)) := ρ(s, x)(1 − ρ(s, x))

• M. J. Lighthill and G. B. Whitham, On kinematic waves. ii. a
theory of traffic flow on long crowded roads, (1955).
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Introduction of Hughes’ model

Transport of pedestrian : the LWR model

• Non-existence of continuous solutions
We use a method of characteristics to propagate the initial datum:

So we consider weak solutions :

∀ϕ ∈ C∞
c ,

∫∫
(0,T )×R

ρϕt + f (ρ)ϕx dt dx = 0
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Introduction of Hughes’ model

Transport of pedestrian : the LWR model

• Non-uniqueness of weak solutions
Consider {

ρt +
[
ρ2/2

]
x = 0

ρ(0, x) = 1(0,+∞)
(1)

Then the two density functions ρ described below are weak
solutions:
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Introduction of Hughes’ model

Transport of pedestrian : the LWR model

Krushkov : entropy conditions
We say that ρ ∈ L∞ is an entropy solution to{

ρt + f (ρ)x = 0
ρ(0, ·) = ρ0(·) ∈ L∞

if

|ρ−k |t+(sign(ρ− k) (f (ρ)− f (k)))x ≤ 0 in the distributional sense.

So ∀k ∈ R, ∀ϕ ∈ C∞
c∫∫

(0,T )×R
|ρ− k |ϕt + sign(ρ− k) (f (ρ)− f (k))ϕx dt dx

+

∫
R

|ρ0 − k |ϕ(0, x)dx ≥ 0
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Introduction of Hughes’ model

Transport of pedestrian : the LWR model

Interpretation of Kruskov entropy condition in the context of traffic:
The admissible shocks correspond to the traffic jams.
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Introduction of Hughes’ model

The direction of pedestrian

Back to the initial problem, at t = 0, the agents want to exit the
room minimizing their exit time (or total cost...).

Suppose V (t, x) ∈ S1 is a vector field corresponding to the choice
of direction of an agent located in x at time t. Then the density
equation follows from LWR:

ρt + divx(V (t, x)ρv(ρ)) = 0.

How do we compute V ?
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Introduction of Hughes’ model

The direction of pedestrian

For a fixed density ρ(x), we use an optimal control problem.
Fix a density ρ in a given domain Ω. Let α(·) ∈ C1([0,+∞),S1).
Consider the following dynamic for the controlled trajectories yx
solution of the Cauchy problem:{

ẏx(t) = v(ρ(yx(t)))α(t)
yx(0) = x .

In order to model the "disconfort" one can experiment by staying in
high density regions, we use a running cost function g(ρ) increasing
with respect to the density. Also, since each agent seeks to
minimize its exit cost, we assume g > 0. We define the value
function:

ϕ(x) =
∫ ∞

0
g(ρ(yx(t)))1Ω(yx(t)) dt.
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Introduction of Hughes’ model

The direction of pedestrian

Heuristically, suppose that the infinum is a minimum reached for an
optimal control y⋆

x (·).
The pedestrian at x should follow the direction field V (x) = ẏ⋆

x (0).

Then, using the dynamic programming principle, we should have

ẏ⋆
x (0) = − ∇ϕ(x)

||∇ϕ(x)||
.

For a fixed ρ, using the classical Hamilton-Jacobi-Bellman
approach, we want to find the gradient of the viscosity solution the
following eikonal equation:

||∇ϕ|| = c(ρ)
v(ρ)

.

Two big criticism of this model :
• For any t, each agent instantaneously knows the density of the
crowd in the whole domain.
• The agents do not anticipate the movement the other pedestrian.



Existence and numerics for Hughes’ model

Introduction of Hughes’ model

The direction of pedestrian

To summarize, we should find the solutions of the Hughes model:

ρt + divx(
−∇ϕ
|∇ϕ| ρv(ρ)) = 0

|∇xϕ| = g(ρ)
v(ρ)

ϕ(x ∈ E ) = 0
(∇xϕ · nΩ)+ = 0 if x ∈ ∂Ω\E

ρ(0, x) = ρ(x)

(2)

where nΩ is the normal unit vector to the boundary of the domain
Ω and g is a given cost function depending on the local density.
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The one-dimensional case

A simpler version of the Eikonal equation

In the one-dimensional case, we are interested in a corridor (−1, 1)
with two exits located at x = ±1.
Then the problem {

|∂xϕ| = c(ρ)
ϕ(x = ±1) = 0

can be rewriten as an "equilibrium" equation.

We want to solve:
ρt + [sign(x − ξ(t))ρv(ρ)]x = 0∫ ξ(t)

−1
c(ρ(t, x)) dx =

∫ 1

ξ(t)
c(ρ(t, x)) dx .

The curve ξ is called the turning curve.
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The one-dimensional case

An existence result

Theorem
Let ρ0 ∈ L∞((−1, 1), (0, 1)). Let f verify

f ∈ W 1,∞((0, 1)) is concave, non-negative and s. t. f (0) = 0 = f (1),

meas
{

p ∈ [0, 1] s.t. f ′(p) = 0
}
= 0.

If the cost c is affine,

c(ρ) = 1 + αρ, α > 0,

then there exists (ρ, ξ) a solution to the Hughes problem where ρ is a
discontinuous-flux entropy solution.

Proof: a fixed point argument.
The affine cost assumption is an issue : c(ρ) = g(ρ)

v(ρ) .
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The one-dimensional case

Numerical scheme

A splitting algorithm :

ρn = FVS(ξn) adapted around the turning curve.

ζn+1 solution to
∫ ζn+1

−1
c(ρn) =

∫ 1

ζn+1

c(ρn)

ξn+1(s) :=
n∑

i=0

1[i∆t,(i+1)∆t[(s)
(

s − i∆t
∆t

ζi+1 +
(i + 1)∆t − s

∆t
ζi

)

ξ is one step in time ahead of ρ.
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The one-dimensional case

Numerical scheme
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Numerics towards the 2D problem

We can approach the eikonal equation’s solution via a fast
marching numerical scheme. This time we can’t easily track the
discontinuities so the finite volume scheme is adapted at each edge
of the mesh. For fun, here is a simulation for the university
restaurant of Tours:



Existence and numerics for Hughes’ model

Numerics towards the 2D problem

Thank you.
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