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LTransport of pedestrian : the LWR model

We want to model a moving crowd. The crowd is represented as a
pedestrian density p(t, x) between 0 and 1.

Starting at t = 0, the pedestrians want to move out of the room
the exit(s).
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In the one-dimensional case, the agents flux is represented by the
flux function f.

b
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We end up with:

/ab /Otatp(s,x) + 0xf(p(s,x))dxds =0
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Short version, a scalar conservation law:
pt +f(p)x = 0.

The flux is equal to the density multiply by the speed of agents.

f(s,x) = p(s,x)v(s,x)
The velocity v is itself governed by the local density:

v(s,X) = Vmax(1 — p)
We set vmax = 1 and recover:

F(s,%) = F(p(s,%)) = p(s,%)(L — p(s, X))

e M. J. Lighthill and G. B. Whitham, On kinematic waves. ii. a
theory of traffic flow on long crowded roads, (1955).
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LTransport of pedestrian : the LWR model

e Non-existence of continuous solutions
We use a method of characteristics to propagate the initial datum:
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e Non-existence of continuous solutions
We use a method of characteristics to propagate the initial datum:
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So we consider weak solutions :

Vo € C, // pde + F(p)px dtdx =0
(0,T)xR
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e Non-uniqueness of weak solutions
pe+[p?/2] =0
p(0,x) = L(0,40)

Consider {
Then the two density functions p described below are weak
solutions:
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Krushkov : entropy conditions
We say that p € L™ is an entropy solution to

{ pe +1(p)x =0
p(0,-) = po(-) € L™

if
|p—k|e+(sign(p — k) (f(p) — f(k))), <0 in the distributional sense.
So Vk € R, V¢ € C°

J[ o Ko+ signlo — 0 (F(p)  £(0)) 6 de
(0,T)xR

+ [ 1p0— Ko(0.x)dx > 0
R
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Interpretation of Kruskov entropy condition in the context of traffic:
The admissible shocks correspond to the traffic jams.
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Back to the initial problem, at t = 0, the agents want to exit the
room minimizing their exit time (or total cost...).

E

2

1 E=E,UE,UE,

Suppose V/(t,x) € St is a vector field corresponding to the choice
of direction of an agent located in x at time t. Then the density
equation follows from LWR:

pr + dive(V(t, x)pv(p)) = O.

How do we compute V ?
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For a fixed density p(x), we use an optimal control problem.
Fix a density p in a given domain Q. Let a(-) € C1([0, +00), S1).
Consider the following dynamic for the controlled trajectories yy
solution of the Cauchy problem:

{)’/x(t) = v(p(yx(t)))a(t)
yx(0) = x.

In order to model the "disconfort" one can experiment by staying in
high density regions, we use a running cost function g(p) increasing
with respect to the density. Also, since each agent seeks to
minimize its exit cost, we assume g > 0. We define the value
function:

b(x) = /0 " g (Pl (D)) La((2)) dt.
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Heuristically, suppose that the infinum is a minimum reached for an
optimal control y}(-).

The pedestrian at x should follow the direction field V(x) = yz(0).

Then, using the dynamic programming principle, we should have
. V(x)
% (0) =

) VeI

For a fixed p, using the classical Hamilton-Jacobi-Bellman

approach, we want to find the gradient of the viscosity solution the
following eikonal equation:

v = <

v(p

)

~—

Two big criticism of this model :

e For any t, each agent instantaneously knows the density of the
crowd in the whole domain.

e The agents do not anticipate the movement the other pedestrian.
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To summarize, we should find the solutions of the Hughes model:

pe+ dive( [T pv(p)) = 0
‘Vx¢‘ — g(P)
d(x € E) 0 (2)
(Vx¢-nq)t =0if x € 9Q\E
p(0,x) = p(x)
where nq is the normal unit vector to the boundary of the domain
Q and g is a given cost function depending on the local density.
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La simpler version of the Eikonal equation

In the one-dimensional case, we are interested in a corridor (—1,1)
with two exits located at x = £1.

Then the problem
‘6X¢‘ = C(p)
p(x=+1)=0

can be rewriten as an "equilibrium" equation.

-1 0 &) !

We want to solve:
pt + [sign(x — &(t))pv(p)], = 0

() :
/ c(p(t,x))dX:/ c(p(t, X)) dx.

-1 &(1)
The curve € is called the turning curve.
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L An existence result

Let pg € L>((—1,1),(0,1)). Let f verify

f € Wh*((0,1)) is concave, non-negative and s. t. £(0) =0 = f(1),
meas{p € [0,1] s.t. f'(p) = O} =0.
If the cost c is affine,
c(p)=1+ap, a>0,

then there exists (p, &) a solution to the Hughes problem where p is a
discontinuous-flux entropy solution.

Proof: a fixed point argument.
The affine cost assumption is an issue : ¢(p) =

=

glp
v(p

~
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A splitting algorithm :

pn = FVS(&n) adapted around the turning curve.

Cn+1 1
Cn+1 solution to / c(pn) = / c(pn)
¢

-1

n s — iAt i+1)At—s
Env1(s) = Z; Ljiat,(i+1)at(s) < At Giv1 + (itg’)

¢ is one step in time ahead of p.
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We can approach the eikonal equation’s solution via a fast
marching numerical scheme. This time we can't easily track the
discontinuities so the finite volume scheme is adapted at each edge
of the mesh. For fun, here is a simulation for the university
restaurant of Tours:
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Thank you.
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