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Intro

Overview

▶ We study price formation models where agents trade a
commodity and interact via its price, ϖ.

▶ Balance condition is required: supply, Q, equals demand

▶ Supply may be deterministic or random, e.g., electricity from
sustainable sources.

▶ We can tackle general trading/storage costs



Intro

Related references

▶ Basar and Srikant - revenue maximizing Stackelberg games

▶ Kizilkale and Malhamé - load adaptive pricing (see also
Alasseur, Ben Taher, and Matoussi)

▶ Gomes and Saúde - deterministic price models

▶ Cardaliaguet and Lehale - MFG of controls and trade crowding

▶ Fujii and Takahashi - market clearing conditions with common
noise

▶ Shrivats, Firoozi and Jaimungal - equilibrium pricing in solar
renewable energy certificates

▶ Gomes, Gutierrez, and Ribeiro - quadratic models with
common noise

▶ Ashrafyan, Bakaryan, Gomes, and Gutierrez - potential
methods for common noise



Price formation

Overview

We consider the following price model:

▶ The model involves numerous agents trading a commodity
(such as energy stored in batteries) continuously.

▶ Agents aim to maximize profit by trading at price ϖ(t),
determined by supply-demand balance.

▶ the supply, Q(t), is exogenous (and possibly stochastic).



Price formation

Deterministic Framework

The model involves:

▶ a price ϖ ∈ C ([0,T ])

▶ a value function u ∈ C (R× [0,T ])

▶ a path describing the distribution of the agents,
m ∈ C ([0,T ],P).

Note: P is the set of probabilities on R with finite second-moment endowed with the 1-Wasserstein distance.



Price formation

A mean-field model for price formation - deterministic models

The control problem

▶ Each agent battery’s charge x(t) changes according to

ẋ(t) = α(t).

▶ Each agent selects α to minimize

J(x , t, α) =

∫ T

t
ℓ(x(t), α(s), t)ds + ū(x(T )),

where ℓ and the terminal cost, ū, are given.



Price formation

A mean-field model for price formation - deterministic models

Running cost structure

The Lagrangian takes into account wear and tear and price:

ℓ(x , α, t) = ℓ0(x , α) +ϖ(t)α(t).

For example,

ℓ0(x , α, t) =
c

2
α2(t) + V (x).



Price formation

A mean-field model for price formation - deterministic models

Running cost as a price impact

The running term c
2α

2(t) can also be seen as a (temporary) price
impact:

▶ Agents trading at a rate α pay an effective price

ϖ +
c

2
α.



Price formation

A mean-field model for price formation - deterministic models

Value function

The value function, u, is the infimum of J over all bounded
measurable controls:

u(x , t) = inf
α
J(x , t, α).

The corresponding Hamiltonian, H, is

H(x , p) = sup
a∈R

(−pa− ℓ0(x , a)) .



Price formation

A mean-field model for price formation - deterministic models

The Hamilton–Jacobi equation

From optimal control theory, u is a viscosity solution of{
−ut + H(x , ϖ(t) + ux) = 0

u(x ,T ) = ū(x).

At points of differentiability of u,

α∗(t) = −DpH(x(t), ϖ(t) + ux(x(t), t)).



Price formation

A mean-field model for price formation - deterministic models

Example

For ℓ0 as before,

H(x , p) =
p2

2c
− V (x).

So,

−ut +
1

2c
(ϖ(t) + ux)

2 − V (x) = 0

and the optimal dynamics is

ẋ = −ϖ(t)− ux(x(t), t).



Price formation

A mean-field model for price formation - deterministic models

The transport equation

The associated transport equation is:{
mt − (DpH(x , ux +ϖ(t))m)x = 0,

m(x , 0) = m̄(x),

where m̄ is the initial distribution of the agents.
Taking ℓ0 as before,

mt −
1

c
(m(ϖ + ux))x = 0.



Price formation

A mean-field model for price formation - deterministic models

Balance condition

We require that demand matches the energy production function
Q(t): ∫

R
α∗(t)m(x , t)dx = Q(t);

that is, ∫
R
DpH(x , ux +ϖ(t))m(x , t)dx = −Q(t).

This constraint determines the price, ϖ(t).



Price formation

A mean-field model for price formation - deterministic models

Deterministic problem

Given H ∈ C∞, a supply rate Q : [0,T ] → R, Q ∈ C∞, solve
−ut + H(x , ϖ(t) + ux) = 0

mt − (DpH(x , ϖ(t) + ux)m)x = 0∫
ΩDpH(x , ϖ(t) + ux)dm = −Q(t),

with the initial-terminal conditions{
u(x ,T ) = ū(x),

m(x , 0) = m̄(x),

where where ū, m̄ are given and m̄ is a probability.



Price formation

A mean-field model for price formation - deterministic models

Example

For ℓ0 as before:
−ut +

1
2c (ϖ(t) + ux)

2 − V (x) = 0

mt − 1
c (m(ϖ + ux))x = 0

−
∫
R(ϖ + ux)m(x , t)dx = Q(t);

with the initial-terminal conditions{
u(x ,T ) = ū(x),

m(x , 0) = m̄(x).



Price formation

A mean-field model for price formation - deterministic models

Connection with optimal transport

▶ Price model/Benamou-Brenier optimal transport (remove red,
add blue) 

−ut + H(x , ϖ(t) + ux) = 0

mt − (DpH(x , ϖ(t) + ux)m)x = 0∫
ΩDpH(x , ϖ(t) + ux)dm = −Q(t),

▶ Price boundary conditions{
u(x ,T ) = ū(x),

m(x , 0) = m̄(x),

▶ Optimal transport boundary conditions{
m(x ,T ) = m̄1(x),

m(x , 0) = m̄0(x),



Price formation

A mean-field model for price formation - deterministic models

Connection with optimal transport

▶ We can think of the price model as an optimal transport with
center of mass constraint

▶ The price is the Lagrange multiplier for the center of mass
constraint



Price formation

A mean-field model for price formation - deterministic models

Optimal transport with constraints

The price model equations are the optimality conditions for the
minimization problem

min
(µ,ν)∈A

∫ T

0

∫
R×R

ℓ(x , α)dµ(x , α, t) +

∫
R
ūdν(x),

where

A =
{
(µ, ν) ≥ 0 :

∫ T

0

∫
R×R

φt + αφx(x , t)dµ

=

∫
R
φ(x ,T )dν −

∫
R
φ(x , 0)dm̄, ∀φ ∈ C 1,∫

R×R
αdµ(x , α) = Q(t)

}
.

The price then becomes a Lagrange multiplier for the demand vs
supply balance condition.



Price formation

A mean-field model for price formation - deterministic models

Main Result

Theorem (G. and Saúde)

Under natural assumptions, there exists a solution (u,m, ϖ):

▶ u is a viscosity solution, Lipschitz and semiconcave in x, and
differentiable almost everywhere with respect to m

▶ m ∈ C ([0,T ],P)

▶ ϖ is Lipschitz continuous on [0,T ].

Under additional convexity assumptions, the solution is unique.



Price formation

Example - Finitely many agents

Finitely many agents

An important case corresponds to finitely many agents

m(x , t) =
1

N

N∑
i=1

δxi (t)(x).



Price formation

Example - Finitely many agents

Assumptions

Assume the natural convexity conditions

▶ (x , α) 7→ ℓ0(x , α) is strictly convex

▶ x 7→ ū(x) is strictly convex



Price formation

Example - Finitely many agents

Particle dynamics - N agents

Then, the system
ẋi = −DpH(xi , ϖ + pi )

ṗi = DxH(xi , ϖ + pi )
1
N

∑N
i=1DpH(xi , ϖ + pi ) = −Q(t)

with the boundary conditions{
xi (0) = xi

pi (T ) = Dx ū(xi (T ))

has a unique solution (x,p, ϖ).



Price formation

Example - Finitely many agents

Connection with price model

Let (m, u, ϖ) be the solution of the price model with
initial-terminal conditions

m(x , 0) =
1

N

N∑
i=1

δxi u(x ,T ) = ū(x)

Then,

▶ pi (t) = ux(xi (t), t),

▶ m(x , t) = 1
N

∑N
i=1 δxi (t)(x).



Price formation

Example - Finitely many agents

Constrained minimization

The preceding equations are the Euler-Lagrange equations of the
following minimization problem

min
1

N

∑
i

[∫ T

0
ℓ(xi , ẋi )ds + ū(xi (T ))

]
under the constraint

1

N

∑
i

ẋi = Q.

The constrained minimization approach gives the existence of a
solution by the direct method in the calculus of variations.



Price formation

A linear-quadratic model - deterministic

Linear-quadratic model - deterministic

Let
ℓ(t, α) =

c

2
α2 + αϖ(t),

where c > 0.
The corresponding MFG is

−ut +
(ϖ(t)+ux )2

2c = 0

mt − 1
c (m(ϖ(t) + ux))x = 0

1
c

∫
R(ϖ(t) + ux)mdx = −Q(t).



Price formation

A linear-quadratic model - deterministic

Each agent follows optimal trajectories that minimize∫ T

t
c
ẋ2

2
+ϖẋds,

and, thus, solve the Euler Lagrange equation:

c ẍ+ ϖ̇ = 0.

Integrating, we get the optimal consumption rule

ẋ(t) =
1

c
(θ −ϖ(t)) ,

for some θ ∈ R.



Price formation

A linear-quadratic model - deterministic

Differentiating the Hamilton-Jacobi equation,

−(ux)t + (ux +ϖ)
uxx
c

= 0,

and using the transport equation gives

d

dt

∫
R
uxmdx =

∫
R
uxtm + uxmt =

∫
R
uxtm +

1

c
ux (m(ϖ + ux))x

=
1

c

∫
R
(ϖ + ux)uxxm − uxxm(ϖ + ux)dx = 0.



Price formation

A linear-quadratic model - deterministic

Thus, the supply vs demand balance condition becomes

Q(t) = −1

c

∫
R
(ux +ϖ)mdx =

1

c
(Θ−ϖ) ,

where

Θ = −
∫
R
uxmdx (1)

is constant.
Thus, we have the linear price-supply relation

ϖ = Θ− cQ(t). (2)



Price formation

A linear-quadratic model - deterministic

Integrating the optimal consumption rule and taking into account
the linear price-supply relation:

x(T ) = x(t)+
1

c

∫ T

t
(θ−ϖ(s))ds = x+

T − t

c
(θ −Θ)+

∫ T

t
Q(s)ds.

Accordingly,

u(x , t) = inf
θ

∫ T

t

[
(θ −Θ+ cQ(s))2

2c
+

1

c
(θ −Θ+ cQ(s))(Θ− cQ(s))

]
+ ū

(
x +

(θ −Θ)

c
(T − t) + K

)
,

where

K =

∫ T

t
Q(s)ds.



Price formation

A linear-quadratic model - deterministic

By setting µ = θ −Θ, for each Θ, we determine uΘ by solving

uΘ(x , t) = inf
µ

[
T − t

2c
µ2 +

1

c
(T − t)Θµ+

∫ T

t

(
Θ− c

Q(s)

2

)
Q(s)ds

+ū
(
x +

µ

c
(T − t) + K

)]
.

If ū is a convex function, there is a unique solution, µ(Θ) for each
given Θ.



Price formation

A linear-quadratic model - deterministic

▶ Optimality conditions in the preceding minimization problem
give

µ+ ūx (x(T )) = −Θ, x(T ) = x +
µ

c
(T − t) + K (3)

▶ Given Θ, we solve the Hamilton-Jacobi equation for uΘ.

▶ We use the resulting expression for uΘ in (1) at t = 0 to get

Θ = −
∫
R
uΘx (x , 0)m0(x)dx . (4)

▶ Solving the preceding equation, we obtain Θ and hence ϖ
using the price-supply relation.



Price formation

A linear-quadratic model - deterministic

For example, consider the terminal cost

ū(y) =
γ

2
(y − ζ)2 .

Solving (3), we obtain

µ = −γ(K + x − ζ) + Θ

1 + γ T−t
c

.



Price formation

A linear-quadratic model - deterministic

Accordingly, we have

uΘ(x , t) =

γ(K + x − ζ)2 + (t−T )
c Θ(2γ(K + x − ζ) + Θ)

2
(
1 + γ T−t

c

)
+ΘK − c

∫ T

t

Q2(s)

2
ds.



Price formation

A linear-quadratic model - deterministic

Therefore,

ux(x , t) = γ
K + x − ζ − (T−t)

c Θ

1 + γ T−t
c

.



Price formation

A linear-quadratic model - deterministic

Using the previous expression for t = 0 in (4), we see that Θ solves

Θ = −γ
K0 + x̄ − ζ − T

c Θ

1 + γ T
c

where

x̄ =

∫
R
xm0dx

and

K0 =

∫ T

0
Q(s)ds.



Price formation

A linear-quadratic model - deterministic

Thus,

Θ = −γ(K0 + x̄ − ζ).

Therefore, using (2), we obtain

ϖ = −γ(K0 + x̄ − ζ)− cQ.



Price formation

A linear-quadratic model - deterministic

Because

ẋ(t) = −ϖ + ux(x(t), t)

c
,

we have {
ẋ(t) = (x̄(t)−x(t))γ

1+T−t
c

γ
+Q

x(0) = x ,
(5)

where

x̄(t) =

∫
R
xm(x , t)dx .



Price formation

A linear-quadratic model - deterministic

Averaging (5) with respect to m, we obtain the conservation of
energy:

˙̄x(t) = Q(t),

Thus, the trajectory of an individual agent is determined by{
ẋ(t) = (x̄(t)−x(t))γ

1+T−t
c

γ
+Q(t)

˙̄x(t) = Q.

The previous system is a closed system of ODEs that only involves
Q and the parameters of the problem.



Price formation

A potential approach

Integrating the transport equation

▶ Let (u,m, ϖ) solve the price problem.

▶ The transport equation can be written as
div(t,x) (m,−Hp(x , ϖ + ux)m) = 0.

▶ Hence, by Poincaré lemma, there exists φ : Θ → R such that

m = φx , Hp(x , ϖ + ux)m = φt .



Price formation

A potential approach

The potential

▶ We introduce a potential function φ : Θ → R representing, for
each t, the cumulative distribution of m(t, ·).

▶ Accordingly, φx = m and −φt is the agents’ current or flow.



Price formation

A potential approach

Perspective function

▶ Let L be the Legendre transform of H,
L(x , v) = supp∈R [−pv − H(x , p)].

▶ Consider the perspective function of L

F (x , j ,m) =


L
(
x , j

m

)
m, m > 0

+∞, j ̸= 0, m = 0

0, j = 0, m = 0.



Price formation

A potential approach

Deterministic potential problem

Find φ : Θ → R minimizing∫
Θ
F (x ,−φt , φx)− u′T (x)φt dxdt,

over φ s.t. φ(0, x) =
∫ x
−∞m0(y)dy , and, for all t ∈ [0,T ],

φx(t, ·) ∈ P(R) and∫
R
φ(t, x)− φ(0, x)dx = −

∫ t

0
Q(s)ds.



Price formation

A potential approach

Differentiating the Hamilton-Jacobi equation with respect to x and
using potential, we have

(
H
(
x ,−DvL

(
x ,−φt

φx

)))
x

+
(
DvL

(
x ,−φt

φx

)
+ϖ

)
t
= 0,

−
∫
R φt + Qφx dx = 0,

with φx(0, ·) = m0(·) and

− DvL

(
x ,−φt(T , x)

φx(T , x)

)
−ϖ(T ) = u′T (x).



Price formation

A potential approach

The previous equations are the Euler-Lagrange equations for the
functional∫

Θ
F (x ,−φt , φx)−ϖ (φt + Qφx)− u′Tφt dxdt.

ϖ can be seen as a Lagrange multiplier for the constraint∫
R
φt + Qφx dx = 0.



Price formation

A potential approach

Recovery of the value function

Further, let φ ∈ C 2(Θ) be a solution. Then, we recover the
solution (u,m, ϖ) as follows:

m = φx ,

and

u(t, x) = uT (x)−
∫ T

t
H
(
x ,−DvL

(
x , −φt(s,x)

φx (s,x)

))
ds.

ϖ is given by solving(
H
(
x ,−DvL

(
x ,−φt

φx

)))
x
+
(
DvL

(
x ,−φt

φx

)
+ϖ

)
t
= 0



The stochastic model

Stochastic Framework

In the stochastic case, the supply process solves

dQs = bS(s,Qs , ϖs)ds + σS(s,Qs , ϖs)dWs in [0,T ].

where

▶ the drift bS : [0,T ]× R2 → R and volatility
σS : [0,T ]× R2 → R+

0 are smooth.

▶ Ws is a standard one-dimensional Brownian motion

▶ ϖs is the price process (to be determined)



The stochastic model

A stochastic PDE system for common noise

Find m : [0,T ]× R → R, u,Z : [0,T ]× R× Ω → R, and
ϖ : [0,T ]×Ω → R progressively measurable, satisfying m ⩾ 0 and

−du + H(x , ϖ + ux)dt = Z (t, x)dW (t),

u(T , x) = uT (x),

mt − (Hp(x , ϖ + ux)m)x = 0,

m(0, x) = m0(x),

−
∫
RHp(x , ϖ + ux)mdx = Q(t).



The stochastic model

Main highlights

▶ The previous system couples a Stochastic partial differential
PDE with terminal conditions with a PDE with random
coefficients.

▶ Z is a new unknown needed to ensure progressively
measurability for u.



The stochastic model

Feedback approach

Feedback approach

We would like to determine the drift, bP : [0,T ]× R2 → R, and
the volatility, σP : [0,T ]× R2 → R+

0 , so that the price, ϖs , solves

dϖs = bP(s,Qs , ϖs)ds + σP(s,Qs , ϖs)dWs in [0,T ]

and ensures a market clearing condition if all the agents act
optimally.



The stochastic model

Feedback approach

▶ The feedback approach may fail, but when it works avoids the
use of the master equation.

▶ In particular, we can solve linear-quadratic models, which are
important in applications.

▶ The key technique is the use of an extended state space.



The stochastic model

Feedback approach

Problem statement - feedback approach

▶ Given the supply drift, bS , and supply volatility, σS , and q̄

▶ Find u, w̄ ∈ R, the price at t = 0, bP : R2 × [0,T ] → R, and
σP : R2 × [0,T ] → R solving


−ut + H(x,w + ux ) = bSuq + bPuw + 1

2
(σS )2uqq + σSσPuqw + 1

2
(σP )2uww

dmt =

(
− div(mb) +

(
m

(σS )2

2

)
qq

+ (mσSσP )qw +

(
m

(σP )2

2

)
ww

)
dt − div(mσ)dWt∫

R3 q + DpH(x,w + ux (x, q,w, t))mt (dx × dq × dw) = 0,

where b = (−DpH(x ,w + ux), b
S , bP), σ = (0, σS , σP), the

divergence is taken w.r.t. (x , q,w), and terminal-initial
conditions 

u(x, q,w,T ) = Ψ(x, q,w)

m0 = m̄ = m̄x × δq̄ × δw̄ .



The stochastic model

Feedback approach

▶ The first equation is the Hamilton-Jacobi equation for the
extended control problem

▶ By standard verification arguments, the optimal trajectories
solve 

dXs = −DpH(Xs , ϖs + ux(s,Xs ,Qs , ϖs))ds

dQs = bS(s,Qs , ϖs)ds + σS(s,Qs , ϖs)dWs

dϖs = bP(s,Qs , ϖs)ds + σP(s,Qs , ϖs)dWs .

▶ This equation induces a random flow that transports m0.



The stochastic model

Feedback approach

Stochastic transport

m solves the stochastic transport equation if∫
R3

ψ(z , t)mt(dz) =

∫
R3

ψ(z , 0)m0(dz)+

+

∫ t

0

∫
R3

∂tψ(z , s) + Dzψ(z , s) · b(s, z)

+

∫ t

0

∫
R3

1

2
tr
(
D2

zzψ(z , s) : (σ(s, z),σ(s, z))
)
ms(dz)ds+

+

∫ t

0

∫
R3

Dzψ(z , s) · σ(s, z)ms(dz)dWs

for any smooth test function ψ : R3 × [0,T ] → R.



The stochastic model

Feedback approach

Linear-quadratic model - stochastic case

▶ Suppose that bS , bP , σS , and σP are linear in q and w ,H is
quadratic, and the terminal condition ψ is quadratic.

▶ Then

−ut+H(x ,w+ux) = bSuq+bPuw+
1
2 (σ

S)2uqq+σ
SσPuqw+

1
2 (σ

P)2uww

has a linear-quadratic solution; that is a solution which is a
second-degree polynomial in (x , q,w).



The stochastic model

Feedback approach

Differential balance condition

For H(x , p) = p2

2c , the balance condition takes the form

Qt = −ϖt −
∫

ux(x ,Qt , ϖt , t)dm.

Then

dQt = −dϖ −
∫ (

uxqσ
S + uxwσ

P
)
dmdWt ,



The stochastic model

Feedback approach

Because u is quadratic, uxq = cxq(t) and uxw = cxw (t). Thus

bP = −bS

and
σS = −σP − cxq(t)σ

S − cxw (t)σ
P

Which shows that the problem is solvable.



The stochastic model

Feedback approach

Example

Let
L(v) = 1

2v
2

and set the terminal cost at time T = 1

Ψ(x) = (x − α)2.

We take m̄ to be a normal standard distribution;
We assume the supply is mean-reverting

dQt = (1− Qt)dt + QtdWt ,

with initial condition q̄ = 1.



The stochastic model

Feedback approach

Price dynamics

Therefore, the dynamics for the price becomes

dϖt = −(1− Qt)dt −
1+a22
1+a32

QtdWt ,

where a22 and a32 solve

ȧ22 =− a32 + a22(1 + 2a12)

ȧ32 =2a12(1 + a32),

with terminal conditions a22(1) = 0 and a32(1) = 0



The stochastic model

Feedback approach

0.2 0.4 0.6 0.8 1.0
t

-2

2

4

Qt

ωt (α=0)

ωt (α=0.25)

ωt (α=0.5)

ωt (α=0.75)

Fig. Supply vs. Price for the values α = 0, α = 0.1, α = 0.25, α = 0.5



The stochastic model

Finitely many agents - The stochastic model

Finitely many agents

▶ Let Q, be an L2 adapted stochastic process with respect to a
filtration F

▶ HF is the set of processes v : [0,T ]× Ω → R, that are
measurable and adapted w.r.t. F, and satisfy ∥v∥2HF <∞,
where

⟨v ,w⟩HF := E

[∫ T

0
vtwtdt

]
, ∥v∥2HF := ⟨v , v⟩HF .

▶ Each agent controls trading rate:

dXt = vtdt, t ∈ [0,T ],

choosing v ∈ HF.



The stochastic model

Finitely many agents - The stochastic model

Problem formulation

Find a price ϖ and control v i , all adapted to F, such that for
1 ⩽ i ⩽ N, X i solves dX i

t = v itdt, with X i
0 = x i0, and minimizes the

E

[∫ T

0
L(X i

t , v
i
t ) +ϖtv

i
t dt + ū(X i

T )

]
,

subject to

1

N

N∑
i=1

v it = Qt , for 0 ⩽ t ⩽ T .

Here ϖ is the Lagrange multiplier for this balance constraint.



The stochastic model

Finitely many agents - The stochastic model

▶ Key tool to prove existence is the direct method in the
calculus of variations in HF.

▶ Under further convexity conditions uniqueness follows.



The stochastic model

Finitely many agents - The stochastic model

Existence of a price

Theorem
Under natural growth and convexity assumptions:

▶ There exists a unique minimizer v∗ ∈ HN
F

▶ consider the corresponding trajectory X ∗. For 1 ⩽ i ⩽ N, let
P i ,Z i ∈ HF solve, on [0,T ],{

dP i
t = −Lx(X

∗
t
i , v∗t

i )dt + Z i
tdWt

P i
T = ū′(X ∗

T
i ).

▶ There exists a unique Π ∈ HF such that

Π = P i + Lv (X
∗i , v∗i ) for 1 ⩽ i ⩽ N.

▶ Further, ϖ = −Π.



Numericas

Binomial tree approximation

Numerical approximations

▶ Except for quadratic problems, there are no other known
solutions.

▶ Numerical methods are needed and a binomial tree is perhaps
one of the easiest ways to do so.



Numericas

Binomial tree approximation

Binomial aproximation

To obtain numerical approximations, we consider a binomial
discretization of the driving Brownian motion.

∆W0 = 0

∆W1 = +
√

h

∆W1 = −
√

h

∆W2 = +
√
h

∆W2 = −
√
h

∆W2 = +
√
h

∆W2 = −
√
h

{0,+
√
h, +

√
h}

{0,+
√
h, −

√
h}

{0,−
√
h, +

√
h}

{0,−
√
h, −

√
h}

Fig. Binomial Tree diagram for M = 2 time steps (left) and list of
realizations of the noise (right).



Numericas

Binomial tree approximation

Q0 = q0

Q1,1

Q2,1

Q1,2

Q2,2

Q3,2

Q4,2

{q0,Q1,1,Q1,2}

{q0,Q1,1,Q2,2}

{q0,Q2,1,Q3,2}

{q0,Q2,1,Q4,2}

Fig. Binomial Tree diagram for M = 2 time steps (left) and list of
realizations of the supply (right).



Numericas

Binomial tree approximation

▶ At time tk , the discrete price process ϖ takes the value ϖk ,
and the measurability condition w.r.t. Fk means that
ϖk ∈

{
ϖ1,k , . . . , ϖ2k ,k

}
, where the values ϖj ,k are unknown

▶ The controls for each player are also a function of the tree

▶ At each node, we imposed the balance condition constraint

▶ We discretize the objective functional in the natural way



Numericas

Binomial tree approximation

Fig. Binomial Tree and Hamilton-Jacobi approximations for η = 0 and 3,
5, 7, and 9 time steps.



Numericas

Binomial tree approximation

Fig. Sample path of the supply and the corresponding Binomial Tree and
Hamilton-Jacobi approximations of the price for M = 9 time steps. The
L2 distance between price approximations is 9.16618 ∗ 10−2.



Machine learning approach - finitely many agents

Motivation for ML approaches

▶ Stochastic supply price can be approximated numerically by a
binomial tree

▶ Good agreement between numerical results and exact solutions

▶ However, dimensionality curse limits accuracy.

▶ Machine learning can improve resolution.



Machine learning approach - finitely many agents

RNN architecture - trading rate

(
t0,X

(i)⟨0⟩, ϖ⟨0⟩)
y
⟨0⟩
h =

(
Q⟨0⟩,h⟨−1⟩)

y[1] = σ[1]
(
W[1]y[0] + b[1]

)
y[0] =

(
t0,X

(i)⟨0⟩, ϖ⟨0⟩, a⟨0⟩
)

a⟨0⟩ = σ[1]
(
W

[2]
h h⟨0⟩ + b

[2]
h

)
h⟨0⟩ = σ

[1]
h

(
W

[1]
h y

⟨0⟩
h + b

[1]
h

)

y[2] = σ[2]
(
W[2]y[1] + b[2]

)
y[3] = W[3]y[2] + b[3]

v(i)⟨0⟩ = y[3]

X (i)⟨1⟩ = X (i)⟨1⟩ + hv(i)⟨0⟩

y
⟨1⟩
h =

(
Q⟨1⟩, h⟨0⟩

)

y[1] = σ[1]
(
W[1]y[0] + b[1]

)
y[0] =

(
t1,X

(i)⟨1⟩, ϖ⟨1⟩, a⟨1⟩
)

a⟨1⟩ = σ[1]
(
W

[2]
h h⟨1⟩ + b

[2]
h

)
h⟨1⟩ = σ

[1]
h

(
W

[1]
h y

⟨1⟩
h + b

[1]
h

)

y[2] = σ[2]
(
W[2]y[1] + b[2]

)
y[3] = W[3]y[2] + b[3]

v(i)⟨1⟩ = y[3]

. . .

X (i)⟨M⟩ = X (i)⟨M−1⟩ + hv(i)⟨M−1⟩

y
⟨M⟩
h =

(
Q⟨M⟩, h⟨M−1⟩)

y[1] = σ[1]
(
W[1]y[0] + b[1]

)
y[0] =

(
tM ,X

(i)⟨M⟩, ϖ⟨M⟩, a⟨M⟩)
a⟨M⟩ = σ[1]

(
W

[2]
h h⟨M⟩ + b

[2]
h

)
h⟨M⟩ = σ

[1]
h

(
W

[1]
h y

⟨M⟩
h + b

[1]
h

)

y[2] = σ[2]
(
W[2]y[1] + b[2]

)
y[3] = W[3]y[2] + b[3]

v(i)⟨M⟩ = y[3]

Fig. Iteration of the RNN for v∗, RNNv , with supply history dependence



Machine learning approach - finitely many agents

RNN price

y
⟨0⟩
h =

(
Q⟨0⟩,h⟨−1⟩)

y[1] = σ[1]
(
W[1]y[0] + b[1]

)
y[0] =

(
t0, a

⟨0⟩)
a⟨0⟩ = σ[1]

(
W

[2]
h h⟨0⟩ + b

[2]
h

)
h⟨0⟩ = σ

[1]
h

(
W

[1]
h y

⟨0⟩
h + b

[1]
h

)

y[2] = σ[2]
(
W[2]y[1] + b[2]

)
y[3] = W[3]y[2] + b[3]

ϖ⟨0⟩ = y[3]

y
⟨1⟩
h =

(
Q⟨1⟩, h⟨0⟩

)

y[1] = σ[1]
(
W[1]y[0] + b[1]

)
y[0] =

(
t1, a

⟨1⟩)
a⟨1⟩ = σ[1]

(
W

[2]
h h⟨1⟩ + b

[2]
h

)
h⟨1⟩ = σ

[1]
h

(
W

[1]
h y

⟨1⟩
h + b

[1]
h

)

y[2] = σ[2]
(
W[2]y[1] + b[2]

)
y[3] = W[3]y[2] + b[3]

ϖ⟨1⟩ = y[3]

. . .

y
⟨M⟩
h =

(
Q⟨M⟩, h⟨M−1⟩)

y[1] = σ[1]
(
W[1]y[0] + b[1]

)
y[0] =

(
tM , a

⟨M⟩)
a⟨M⟩ = σ[1]

(
W

[2]
h h⟨M⟩ + b

[2]
h

)
h⟨M⟩ = σ

[1]
h

(
W

[1]
h y

⟨M⟩
h + b

[1]
h

)

y[2] = σ[2]
(
W[2]y[1] + b[2]

)
y[3] = W[3]y[2] + b[3]

ϖ⟨M⟩ = y[3]

Fig. Iteration of the RNN for ϖ, RNNϖ, with supply history dependence



Machine learning approach - finitely many agents

Loss function

We consider the adversarial loss function

L (Θv ,Θϖ) =
1

N

N∑
i=1

(
M−1∑
k=0

h
(
L(X (i)⟨k⟩, v(i)⟨k⟩(Θv ))

+ϖ⟨k⟩(Θϖ)
(
v(i)⟨k⟩(Θv )− Q⟨k⟩

))
+ uT (X

(i)⟨M⟩)

)
.

Using L, we train NNv and NNϖ using an adversarial approach.



Machine learning approach - finitely many agents

Arrow-Hurwicz-Uzawa like iteration

Key idea:

▶ Perform a descent step in Θv

▶ Perform a ascent step in Θϖ.



Machine learning approach - finitely many agents

Common noise RRN training

▶ To train the RNN, we use a new sample for Q at each SGD
step.

▶ The RNN preserves progressive measurability.



Machine learning approach - finitely many agents

(a) Price realization (b) Price realization.

Fig. Exact price and RNN approximation. The grey window highlights
the times where noise operates.



Machine learning approach - finitely many agents

Common noise - Approximate optimality conditions

The ML framework gives an approximate solution of the optimality
conditions

dP̃n(t) =
(
Hx(X̃

n(t), P̃n(t) +ϖN(t)) + ϵn(t)
)
dt

+Z̃n(t)dW (t),

P̃n(T ) = u′T (X̃
n(T ))− ϵnT ,

dX̃ n(t) = −Hp(X̃
n(t), P̃n(t) + ϖ̃N(t))dt,

X̃ n(0) = xn0 ,

1
N

N∑
n=1

−Hp(X̃
n(t), P̃n(t) + ϖ̃N(t)) = Q(t) + ϵB(t),



Machine learning approach - finitely many agents

A posteriori estimates - common noise

Theorem
Let H be uniformly concave-convex in (x , p), separable, with
Lipschitz continuous derivatives, uT is convex with DuT Lipschitz.
Let (X,P) and ϖN solve the N-player price problem with a
common noise. Let (X̃, P̃) and ϖ̃N be a corresponding
approximate solution. Then

∥ϖN − ϖ̃N∥ ⩽ C

(
∥ϵH∥+ ∥ϵB∥

)
.



Conclusions and future work

Conclusions and future work

▶ We developed price formation with common noise.

▶ Our formulation, combined with machine learning techniques,
provides a way for solving certain infinite-dimensional MFGs
without using the master equation.

▶ Future work should
▶ develop the theory for infinitely many agents with common

noise
▶ identify better network architectures and convergence results.
▶ understand how time-varying preferences affect the model
▶ callibration problem



Conclusions and future work

The end

Thanks a lot for your attention! Questions?
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