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Intro

Overview

» We study price formation models where agents trade a
commodity and interact via its price, w.

» Balance condition is required: supply, @, equals demand

» Supply may be deterministic or random, e.g., electricity from
sustainable sources.

» We can tackle general trading/storage costs
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Related references

» Basar and Srikant - revenue maximizing Stackelberg games

» Kizilkale and Malhamé - load adaptive pricing (see also
Alasseur, Ben Taher, and Matoussi)

» Gomes and Sadde - deterministic price models
» Cardaliaguet and Lehale - MFG of controls and trade crowding

» Fujii and Takahashi - market clearing conditions with common
noise

» Shrivats, Firoozi and Jaimungal - equilibrium pricing in solar
renewable energy certificates

» Gomes, Gutierrez, and Ribeiro - quadratic models with
common noise

» Ashrafyan, Bakaryan, Gomes, and Gutierrez - potential
methods for common noise
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Price formation

Overview

We consider the following price model:

» The model involves numerous agents trading a commodity
(such as energy stored in batteries) continuously.

» Agents aim to maximize profit by trading at price w(t),
determined by supply-demand balance.

» the supply, Q(t), is exogenous (and possibly stochastic).
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Price formation

Deterministic Framework

The model involves:
» a price w € C([0, T))
» a value function v € C(R x [0, T])

» a path describing the distribution of the agents,
m € C([0, T],P).

NOTE: P is the set of probabilities on R with finite second-moment endowed with the 1-Wasserstein distance.
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A

mean-field model for price formation - deterministic models

The control problem

» Each agent battery's charge x(t) changes according to

» Each agent selects o to minimize

:
Jx,t,a) = /t 0(x(t), a(s), t)ds + G(x(T)),

where ¢ and the terminal cost, I, are given.
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A

mean-field model for price formation - deterministic models

Running cost structure

The Lagrangian takes into account wear and tear and price:
Ux, o, t) = Lo(x, ) + w(t)a(t).

For example,
lo(x,a, t) = gaz(t) + V(x).

) J
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A

mean-field model for price formation - deterministic models

Running cost as a price impact

The running term Sa(t) can also be seen as a (temporary) price
impact:

> Agents trading at a rate « pay an effective price

+C
w — Q.
20(
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A

mean-field model for price formation - deterministic models

Value function

The value function, u, is the infimum of J over all bounded
measurable controls:

u(x,t) =inf J(x, t,a).
The corresponding Hamiltonian, H, is
H(X7 P) = sup (_pa - EO(X7 a)) :

acR
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A mean-field model for price formation - deterministic models

The Hamilton—Jacobi equation

From optimal control theory, u is a viscosity solution of

{—ut + H(x,w(t) +ux) =0
u(x, T) = a(x).

At points of differentiability of u,

() = —DpH(x(t), w(t) + ux(x(t), t)).

%')))},
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A

mean-field model for price formation - deterministic models

Example

For £y as before, ,

H(x,p) = 2= = V(x).
So,

i+ 2—1C(w(t) Fu)?— V(x) =0

and the optimal dynamics is

x = —w(t) — u(x(t), t).

%')))},
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A

mean-field model for price formation - deterministic models

The transport equation

The associated transport equation is:

{mt — (DpH(x, ux + w(t))m), =0,
m(x,0) = m(x),

where m is the initial distribution of the agents.
Taking ¢g as before,

mg — %(m(w + ux))x = 0.

) J
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A

mean-field model for price formation - deterministic models

Balance condition

We require that demand matches the energy production function

Q(1):
/Ra*(t)m(x, fdx = Q(b):

that is,

A DpH(x, ux + w(t))m(x, t)dx = —Q(t).

This constraint determines the price, w(t).

) J
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A mean-field model for price formation - deterministic models

Deterministic problem

Given H € C*, asupply rate Q: [0, T] = R, Q € C*, solve

—ur + H(x,w(t) +ux) =0
my — (DpH(x, @(t) + ux)m) =0
Jo DoH(x,@(t) + ux)dm = —Q(t),

with the initial-terminal conditions

{u(x, T) = (),

]

m(x,0) = m(x),

where where &, m are given and m is a probability.
D
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A mean-field model for price formation - deterministic models

Example

For ¢y as before:

—up + 5= (w(t) + ux)®> — V(x) =0
m; — L(m(w + ue))x =0

- fR(w + u)m(x, t)dx = Q(t);
with the initial-terminal conditions

{u(x, T) = i(x),
m(x,0) = m(x).

)

((



A mean-field model for price formation - deterministic models

Connection with optimal transport

» Price model/Benamou-Brenier optimal transport (remove red,
add blue)
—ur+ H(x,w(t)+u) =0
m; — (DpH(x, w(t) + ux)m)x =0
Jo DoH(x,@(t) + ux)dm = —Q(t),
» Price boundary conditions

{u(x, T) = i(x),
m(x,0) = m(x),

» Optimal transport boundary conditions

{m(x, T) = i (x),

m(x,0) = mo(x), a'

G



A

mean-field model for price formation - deterministic models

Connection with optimal transport

» We can think of the price model as an optimal transport with
center of mass constraint

» The price is the Lagrange multiplier for the center of mass
constraint
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A mean-field model for price formation - deterministic models

Optimal transport with constraints

The price model equations are the optimality conditions for the
minimization problem

-
min / / U(x,a)du(x, a, t)—l—/ﬁdu(x),
(nr)eAto  JrRxR R

where

]
A={(m.r)>0: / / i+ ape(x, )du
0 RxR

- / o, T)dv — / o(x,0)dm, Vi e CT,
R R

/RXR adp(x.0) = Q(1)}.

The price then becomes a Lagrange multiplier for the demand vs
supply balance condition.

X



A mean-field model for price formation - deterministic models

Main Result

Theorem (G. and Sadde)
Under natural assumptions, there exists a solution (u, m, w):

» u is a viscosity solution, Lipschitz and semiconcave in x, and
differentiable almost everywhere with respect to m

» me C([0, T],P)
» w is Lipschitz continuous on [0, T].
Under additional convexity assumptions, the solution is unique.

%
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Example - Finitely many agents
Finitely many agents

An important case corresponds to finitely many agents

N
1
m(x, t) = N Z bx;(t) (%)-
i=1

=)
o
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E

xample - Finitely many agents

Assumptions

Assume the natural convexity conditions
» (x,a) — lo(x,a) is strictly convex

» x +— @(x) is strictly convex

U J
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Example - Finitely many agents

Particle dynamics - N agents

Then, the system

)'(,' = —DPH(X,',W + p,-)
pi = D«H(x;, @ + pi)
LSV DyH(xi @ + pi) = —Q(t)

with the boundary conditions
X;(O) = Xj
pi(T) = Dxii(x;(T))

has a unique solution (x, p, @).

((((0\*‘_—_
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Example - Finitely many agents

Connection with price model

Let (m, u, @) be the solution of the price model with
initial-terminal conditions

N
1 _
m(x,0) = N E_l Oy, u(x, T) = d(x)
Then,

> pi(t) = ux(xi(t), 1),
> m(X7 t) = % Zf\lzl 6x,-(t)(x)'

%')))},
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Example - Finitely many agents

Constrained minimization

The preceding equations are the Euler-Lagrange equations of the
following minimization problem

min 2 > [ /O i, %5)ds + 3(xi(T))

under the constraint 1
N Z xi =Q
1

The constrained minimization approach gives the existence of a
solution by the direct method in the calculus of variations.
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A linear-quadratic model - deterministic

Linear-quadratic model - deterministic

Let
Ut o) = —a 2 4 aw(t),

where ¢ > 0.
The corresponding MFG is

iy + E@EP g

me = -(m(W(t) +Ux))x =0
1 [o(@(t) + u)mdx = —Q(t).

)
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A linear-quadratic model - deterministic

Each agent follows optimal trajectories that minimize
T X2 .
c— + wxds,
2
t
and, thus, solve the Euler Lagrange equation:
cx+w =0.

Integrating, we get the optimal consumption rule

X(t) = 2 (6 w(1)),

for some 0 € R.
U) ]
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A linear-quadratic model - deterministic

Differentiating the Hamilton-Jacobi equation,

Uxx

—(ux)t + (ux + w)T =0,

and using the transport equation gives

d 1
— [ uxmdx = [ uem+umy = | uem~+ —u(m(w + uy)),
dt R R R C

1

= E /(w + UX)UXXm - Uxxm(w + Ux)dX =0.
R

) J

(]



A linear-quadratic model - deterministic

Thus, the supply vs demand balance condition becomes

Qm:—%4w+wmw:%@—w%

where
© = —/ ux,mdx (1)
R

is constant.
Thus, we have the linear price-supply relation

@ =0 - cQ(t). (2)

((((0\*‘_—_
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A linear-quadratic model - deterministic

Integrating the optimal consumption rule and taking into account

the linear price-supply relation:
(6 0)+ / Q(s
Accordingly,

T o c s 2
u(x, t) = igf/t [(9 O+ Q)" | %(e—eﬂo(s))(e—ca(s))}

x(T):x(t)+% /t (0—(s))ds = x+-

2c

+a(x+(9_ce)(T—t)+K),

where
-
= / Q(s)ds
t

X



A linear-quadratic model - deterministic

By setting 11 = 6 — ©, for each ©, we determine u® by solving

T2: t,uz + %(T —t)Ou+ /tT (@ — c?) Q(s)ds

u®(x,t) = inf
I

—i—E(x—i-/f(T—t)—i—K)

If @ is a convex function, there is a unique solution, (®©) for each
given ©.

((((0\*‘_—_
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A linear-quadratic model - deterministic

» Optimality conditions in the preceding minimization problem
give

ptE((T)=-6, (T =x+5T-t)+Kk (3

> Given ©, we solve the Hamilton-Jacobi equation for u®.

> We use the resulting expression for u® in (1) at t = 0 to get

= — UeX molX)dax.
o- /Rx(,O) o(x)d (4)

» Solving the preceding equation, we obtain © and hence @
using the price-supply relation.



A linear-quadratic model - deterministic

For example, consider the terminal cost

- v

a(y) = 5 (v =€)
Solving (3), we obtain

_ WK+ x-¢)+©
Lyfet

U J
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A linear-quadratic model - deterministic
Accordingly, we have

u®(x,t) =

V(K +x — )2+ EDe2y(K + x - ¢) + ©)

2(1+7T)
T A2
+@K—c/ QT(s)ds
t

~



A

linear-quadratic model - deterministic

Therefore,
K+x—-(— @@
1 + 7y T—t

c

UX(X’ t) =7




A

linear-quadratic model - deterministic

Using the previous expression for t = 0 in (4), we see that © solves

Ko+x-¢—Te

©=-
T T
where
X = [ xmgdx
R
and
-
Ko = Q(s)ds

) J
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A linear-quadratic model - deterministic

Thus,

© =—y(Ko+ x— ().
Therefore, using (2), we obtain

@ = (Ko +X— )~ cQ

Uaid




deterministic

A linear-quadratic model -

Because
x(t) = @+ ue(x(1), t)’
c

we have (R(6)x())

. _(x(t)—x(t))y

M0 ="rrn +a (5)

x(0) = x,
where

)_((t):/Rxm(x, t)dx.

U J
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A linear-quadratic model - deterministic

Averaging (5) with respect to m, we obtain the conservation of
energy:

x(t) = Q(t),

Thus, the trajectory of an individual agent is determined by

{ x(t) = (*ﬂ—_f”uo()

The previous system is a closed system of ODEs that only involves
Q and the parameters of the problem.

X



A potential approach

Integrating the transport equation

» Let (u, m, @) solve the price problem.

P> The transport equation can be written as
div(e x) (m, —Hp(x, @ + ux)m) = 0.
» Hence, by Poincaré lemma, there exists ¢ : © — R such that

m =y, Hp(x, @+ u)m= ;.

) J
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A potential approach

The potential

» We introduce a potential function ¢ : © — R representing, for
each t, the cumulative distribution of m(t, ).

» Accordingly, px = m and —; is the agents’ current or flow.

) J
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A potential approach

Perspective function

> Let L be the Legendre transform of H,
L(x,v) = suppex [-pv — H(x. p)].
» Consider the perspective function of L

L(x,#)m, m >0
F(X7.j7m): +OO, J;éO,m:O
0, j=0, m=0.

)
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A potential approach

Deterministic potential problem

Find ¢ : © — R minimizing
/@F(x, —pt, px) — UT(X)pe dxdt,

over  s.t. ¢(0,x) = [ mg(y)dy, and, for all t € [0, T],
ox(t, ) € P(R) and

[ et = 0= *Q(s)ds.

)
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A potential approach

Differentiating the Hamilton-Jacobi equation with respect to x and
using potential, we have

(H (-t (x =),
+ (DVL <x, —gj—;) + w)t — 0,
_fR‘Pt‘i‘Q‘PX dx =0,

with ¢ (0,-) = mg(-) and

ot (3, = 2HTX N oy o,
( ex(T, x)

((((0\*‘_—_
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A potential approach

The previous equations are the Euler-Lagrange equations for the
functional

/@F(Xa —pt, x) — @ (pr + Qux) — u'Tgot dxdt.

w can be seen as a Lagrange multiplier for the constraint

R

) J
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A potential approach

Recovery of the value function

Further, let € C?(O) be a solution. Then, we recover the
solution (u, m, @) as follows:

m = Qx,
and
’ ()
—@t(S,X
u(t,x) = ur(x) —/t H (x, -D,L (x, %)) ds.
w is given by solving

<H (x, —D,L (x, —i—;)))x n (DVL (x, —g—;) +w>t —0

((((0\*‘_—_
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The stochastic model

Stochastic Framework

In the stochastic case, the supply process solves
dQs = b°(s, Qs, ws)ds + o°(s, Qs, ws)dWs in [0, T].

where

> the drift b° : [0, T] x R? — R and volatility
o° 1[0, T] x R — R{ are smooth.

» W; is a standard one-dimensional Brownian motion

» s is the price process (to be determined)



The stochastic model

A stochastic PDE system for common noise

Find m:[0,T] xR —-R, u,Z:[0, T] xRxQ — R, and
w : [0, T] x Q — R progressively measurable, satisfying m > 0 and

(—du+ H(x, @ + uy)dt = Z(t,x)dW(t),
u(T,x) = ur(x),
me — (Hp(x, @ + ux)m), =0,
m(0,x) = mo(x),

(= Jr Hp(x, @ + ux)mdx = Q(t).

((((0\*‘_—_
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The stochastic model

Main highlights

» The previous system couples a Stochastic partial differential
PDE with terminal conditions with a PDE with random
coefficients.

» Z is a new unknown needed to ensure progressively
measurability for u.

) J
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The stochastic model

Feedback approach

Feedback approach

We would like to determine the drift, b” : [0, T] x R? — R, and
the volatility, o : [0, T] x R? — Rar, so that the price, ws, solves

dws = bP(s, Qs, ws)ds + O'P(S, Qs,ws)dWs in [0, T]

and ensures a market clearing condition if all the agents act
optimally.

((((0\%
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The stochastic model

Feedback approach

» The feedback approach may fail, but when it works avoids the
use of the master equation.

» In particular, we can solve linear-quadratic models, which are
important in applications.

» The key technique is the use of an extended state space.

) J
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The stochastic model

Feedback approach

Problem statement - feedback approach

> Given the supply drift, b%, and supply volatility, o°, and §
» Find u, w € R, the price at t =0, b” : R2 x [0, T] — R, and
of :R?2 x [0, T] — R solving

dm; = (— div(mb) + (m@) + (moSUP)qw + (m@) ) dt — div(mo)dW;
qq ww

{—ut + H(x,w + uy) = bsuq + bPu, + %(a‘s)zuqq + o'so'Pqu + %(O'P)Zuww
f]R3 q 4+ DpH(x, w + ux(x, g, w, t))m¢(dx X dg X dw) =0,

where b = (—DpH(x,w + uy), b>, bF), o = (0,0°,0F), the
divergence is taken w.r.t. (x, g, w), and terminal-initial
conditions

my = m=m" X 8 X 6.

{u(x, q,w, T) = ¥(x, q, w)

X



The stochastic model

Feedback approach

» The first equation is the Hamilton-Jacobi equation for the
extended control problem

» By standard verification arguments, the optimal trajectories
solve

dXs = —DpH(Xs, ws + ux(s, Xs, Qs, ws))ds
dQs = b>(s, Qs, ws)ds + 0° (s, Qs, ws)dWs
dws = bP(s, Qs, ws)ds + O'P(S, Qs, ws)dW.

» This equation induces a random flow that transports my.

X



The stochastic model

Feedback approach

Stochastic transport

m solves the stochastic transport equation if
/ (2, t)me(dz) = / (2, 0)mo(dz)+
R3 R3
+ [ [ ota.s)+ Dz) b 2)
0
/ / ~tr (DLy(z,s) : (o(s, 2),0(s, 2))) ms(dz)ds+
R3 2
+ [ [ oates) ol amszan,

for any smooth test function ¢ : R3 x [0, T] — R.

((((0\*‘_—_
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The stochastic model

Feedback approach

Linear-quadratic model - stochastic case

» Suppose that b°, bP, 0%, and o are linear in g and w,H is
quadratic, and the terminal condition 1 is quadratic.
» Then

—ur+H(x, wuy) = bsuq+bPuW+%(05)2uqq+asapqu+%(aP)2uWW

has a linear-quadratic solution; that is a solution which is a
second-degree polynomial in (x, g, w).

) J
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The stochastic model
Feedback approach

Differential balance condition

For H(x, p) = %, the balance condition takes the form

Qr = —wws — / uy(x, Q¢, e, t)dm.

Then
dQ; = —de — / (tq0° + ™) dmdW,

%')))},
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The stochastic model
F

eedback approach

Because u is quadratic, uyg = cxq(t) and uxw = caw(t). Thus
bP — _bS

and

0° = —oF — cq(t)o® — can(t)o”

Which shows that the problem is solvable.

) J
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The stochastic model

Feedback approach

Example

Let
L(v) = %vz

and set the terminal cost at time T =1
V(x) = (x — a)?

We take m to be a normal standard distribution;
We assume the supply is mean-reverting

dQ: = (1 — Qp)dt + QrdW,,

with initial condition g = 1.

) J
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The stochastic model

Feedback approach

Price dynamics

Therefore, the dynamics for the price becomes

2
dwt = —(1 — Qt)dt — E—_—%Qtth,

where 23 and a3 solve

% =— ag + a%(l + 235)
a5 =2a3(1+ a3),

with terminal conditions a3(1) = 0 and a3(1) =0

) J
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‘— The stochastic model
Feedback approach

—
— w (a=0)
—— wy (a=0.25)

t —— wy (a=0.5)
— wy (a=0.75)

Fig. Supply vs. Price for the values « =0, & = 0.1, & = 0.25, « = 0.5

‘%»)))p
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The stochastic model
Finitely many agents - The stochastic model

Finitely many agents

> Let Q, be an L? adapted stochastic process with respect to a
filtration IF

» Hp is the set of processes v : [0, T] x Q — R, that are
measurable and adapted w.r.t. I, and satisfy ||v||%H]F < 00,
where

-
(v,w)p, = E [/0 vtwtdt] , ”V”%{F = (V, V)Hj-
» Each agent controls trading rate:
dXt = tht, t e [O, T],

choosing v € Hy.

X



The stochastic model

Finitely many agents - The stochastic model

Problem formulation

Find a price @ and control v/, all adapted to IF, such that for
1<i <N, X' solves dX| = v{dt, with Xj = x3, and minimizes the

-
B [ L) + mod desaxh)]
0
subject to
1L
NZvé:Qt, for0<t<T.
i=1

Here w is the Lagrange multiplier for this balance constraint.

) J
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The stochastic model
Fi

initely many agents - The stochastic model

> Key tool to prove existence is the direct method in the
calculus of variations in Hy.

» Under further convexity conditions uniqueness follows.

U J
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The stochastic model
Finitely many agents - The stochastic model

Existence of a price

Theorem
Under natural growth and convexity assumptions:

» There exists a unique minimizer v* € ]H%

» consider the corresponding trajectory X*. For 1 <i < N, let
P Z" € Hy solve, on [0, T],

dPi = —L (X, v dt + ZidW,
PL =T (X3).

» There exists a unique 1 € Hy such that

M=P 4+ L,(X" v) forl1 <i<N.

X

» Further, w = —I1.



EBinomial tree approximation

Numerical approximations

» Except for quadratic problems, there are no other known
solutions.

» Numerical methods are needed and a binomial tree is perhaps
one of the easiest ways to do so.

) J
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T

Binomial tree approximation

Binomial aproximation

To obtain numerical approximations, we consider a binomial
discretization of the driving Brownian motion.

AW, = +Vh {0,+vVh, +Vh}

AWy = +Vh

AW, = —vA {0, +vh, — \/E}

AWy =0

AWy = +vVh {0’ _\/R + \/E}

AW, = —Vh

AWy = —vVh {0’_\/%, —\/E}

Fig. Binomial Tree diagram for M = 2 time steps (left) and list of )
realizations of the noise (right).
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Binomial tree approximation

Q1,2
Q1,1
@2
Qo = q0
Q3,2
Q2,1
Qa2

{q0, Qu,1, Qu 2}

{90, Q1,1, @22}

{q0, Q2,1, @32}

{q0, @,1, Qa2}

Fig. Binomial Tree diagram for M = 2 time steps (left) and list of

realizations of the supply (right).
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T

Binomial tree approximation

> At time t, the discrete price process w takes the value wy,
and the measurability condition w.r.t. F, means that
wi € {ka, ... ,’(D'zk’k}, where the values w; ) are unknown

» The controls for each player are also a function of the tree

v

At each node, we imposed the balance condition constraint

» We discretize the objective functional in the natural way

X



EBinomial tree approximation

t4-Binomial Tree . cj-Hamikton Jacobi  M=3 w-Binomial Tree - wj-Hamilton Jacobi ~ M=5
10 10 ¥ !
1 1
4 ]
B - 3 H
0s 1 T
08 : . t
3
20 L i L H iy
B oz o4 als a8 10
02 !
-0s
00 I L I L iy
I o2 ola o 08 10
w-Binomial Tree - oy—Hamilton Jacobi ~ M=7 ay-Binomial Tree - ey -Hamilton Jacobi ~ M=8
e y | I B
e B - ( = i e — e —
w . 1 ol i) 1
1 ' | - v !
o8 i i . 1 1
" H i ' [} t
¥ B ol w04 Tos he ! 1.0
00 = = T - t % H
0z Q4 08 " 10 « ] A
- ] T
a5 2 -1 - -
-10
. B .
-15

Fig. Binomial Tree and Hamilton-Jacobi approximations for n = 0 and 3,
5, 7, and 9 time steps.
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EBinomial tree approximation

wy-Binomial Tree - w—-Hamilton Jacobi — Q

0.8
0.6
04
02 1 |
\///\—_____

I L L I t
02 0.4 06 o8

Fig. Sample path of the supply and the corresponding Binomial Tree and
Hamilton-Jacobi approximations of the price for M = 9 time steps. The
L? distance between price approximations is 9.16618 % 1072,
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Machine learning approach - finitely many agents

Motivation for ML approaches

» Stochastic supply price can be approximated numerically by a
binomial tree

» Good agreement between numerical results and exact solutions
» However, dimensionality curse limits accuracy.

» Machine learning can improve resolution.

) J
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Machine learning approach - finitely many agents

RNN architecture - trading rate

VO —

I8 = Wiyl 4

¥ = o1 (Wil 4 1,2])

il = it (yytlol i

v = (£, XDO), (0 a(0))
a(0 — ol W[Z]h( >+b[2] —
B — [1] Wlll <>+b[1]

T
% — (QO,ni-1)
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Machine learning approach - finitely many agents

RNN price
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Machine learning approach - finitely many agents

Loss function

We consider the adversarial loss function

N M—-1

1 i i

L(©,,05) = N g ( E h(L(X( )<k>,v( )(k>(ev))
i=1 k=0

+w(eL) <v(i)(k)(@v) - Q<k>> )

; uT(x<f><M>)> |

Using £, we train NN, and NN, using an adversarial approach.
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Arrow-Hurwicz-Uzawa like iteration

Key idea:

» Perform a descent step in ©,

» Perform a ascent step in ©.
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Machine learning approach - finitely many agents

Common noise RRN training

» To train the RNN, we use a new sample for @ at each SGD
step.

> The RNN preserves progressive measurability.
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Machine learning approach - finitely many agents
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(a) Price realization (b) Price realization.

Fig. Exact price and RNN approximation. The grey window highlights
the times where noise operates.

%')))},

((



Machine learning approach - finitely many agents

Common noise - Approximate optimality conditions

The ML framework gives an approximate solution of the optimality

conditions
(4P (1) = (Ho(X(1), B"(t) + (¢ ))+€"(t)> dt
F2()AW(0),
(T = (X7(T)) — 5.
dX7(t) = —Hp(X"(t), Pr(t) + &M (t))dt
X" (A(I))—xo,
& X MK P(0) + 5(0) = Q)+ eule).
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Machine learning approach - finitely many agents

A posteriori estimates - common noise

Theorem

Let H be uniformly concave-convex in (x, p), separable, with
Lipschitz continuous derivatives, ut is convex with Dut Lipschitz.
Let (X,P) and w" solve the N-player price problem with a
common noise. Let (X P) and &N be a corresponding
approximate solution. Then

[ — M| < c(neHn T ||es||).
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Conclusions and future work

Conclusions and future work

» We developed price formation with common noise.

» Qur formulation, combined with machine learning techniques,
provides a way for solving certain infinite-dimensional MFGs
without using the master equation.

» Future work should

» develop the theory for infinitely many agents with common
noise
identify better network architectures and convergence results.

>
» understand how time-varying preferences affect the model
» callibration problem
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‘— Conclusions and future work

The end

Thanks a lot for your attention! Questions?
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