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Motivation from statistical physics (1/2)

e N identical particles with positions x1,...,xy in RY
® xi,...,xy distributed along P(x1,...,xn) € Peym((RY)N)
® Two-body interaction potential w(|x —y|) with w: Ry — R, Isc
cw(xt,. .., xn) = Z w(|xi — x;[)
1<i<j<N

® One-body external potential V/(x), e.g. confining potential

Ground-state/free energy

FO(V)= inf {/RdN (cw+£: V(x,-))dIF’—i— T Ent(IP’)}

PE Paym((RI)V) =

where T >0 is temperature and Ent(PP) = [pav PlogP is entropy.
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Motivation from statistical physics (2/2) FI(\IT)(V)::inf]Pg,@Sym((]Rd)N){-/iRdN (CMZ{VZI V(Xl,))dPJrT.Ent(P)}

e Computing F,E,T)(V) complicated N> 1 : many local minima

Two-step minimisation : split infimum into two infima

F{D(V)y= inf Y= inf inf
v (V) Pe%ym((Rd)"’){ J peZ(RY) Pez@sym((Rd)’V)s.t.ni]P’:p{ J

Multimarginal OT: rewrite ground-state/free energy as

F/&/T)(V) = ir;f{OTI(VT)(p)jL/RdN Vp}, OT,E,T)(p) = inf p{/RdN cndP+ T.Ent(]p)} |

Pst miP=

° OT,(VT)(p) complicated, but indep. of V' = use approximations (DFT & chemists)

2/10



What is my problem ? oT"(p):= inf { / cndP+ T~Ent(]P’)}
Ps.t. anP:p RN

® We want to solve numerically OT,(VT)(p) when N>>1
® E.g forsmall 0 < T <1, in order to approximate the unregularized OT, i.e. OT,&,O)(p)

Kantorovich duality (T > 0)

o7\ (p)= sup {—TIogZT(V)—N/Rd Vp}

V:RI-R

B Strong duality & existence of a (unique) Kantorovich potential V; proved in [Chayes,
Chayes & Lieb, ’84] in physics paper related to classical DFT
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A simple idea otV (p)= sup {—TIogZT(V)—N/ Vp}
V:RISR R

Idea to solve OT,(VT) (with 0 < T < 1 typically)

1. Decompose V; € Span({¢;}i=1..m) onto finite basis {§;}i=1,. m
2. Solve concave maximization problem
o7\ (p) ~ sup {—TIogZT(V)—N Vp}
VeSpan({9i}i-1...m) R

® Dual of Moment Constrained OT [Alfonsi, Coyaud, Ehrlacher & Lombardi, ’21]

N
ﬂhp)-,— =p V.S. /Rde;(pi(Xj)dPT = /Rd ¢,p Vi= 1,. cog M. |

® Optimise with gradient ascent : gradient can be computed by MCMC methods
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How to choose ¢;’s ? Special case of Coulomb interaction (1/2)

® Coulomb interaction w(|x —y|) =|x—y| " in dimension d =3
e If py :=p for fixed p € Z(RY), following mean-field limit holds

Vo,n 1
T N—) —p * ‘X| (formally by [Cotar, Friesecke & Pass, ’14])
—00

° If py = \QN\*lllQN where Qu = N3Q for nice Q c R3

F(O) . N
W— N~ min {cw(xl,...,xN)—NXpN* |x,-|_1+c(N)} EO

XLy XN =

proved by [Cotar, Petrache, ’19] and [Lewin, Lieb & Seiringer, ’19]

Takeaway message : Vy(x) = —Np * |x| 1 + correction terms (N > 1).
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How to choose the ¢;’s ? Special case of Coulomb interaction (2/2)

Our idea to discretize V; for T << 1 — see also [Mendl & Lin, ’14]

(e)

1. Write V; as potential generated by an external dual charge p;

Va(x) = =p{Pxlx = = [ p{O()x—y1ay.
2. Decompose pge) € Span({i}i=1..m) onto a finite basis {ii}i=1. _m

Remark : VT >0, p(Te) exists and can be assumed to be positive and s.t. [pan p(Te) = N-—1 as proved in [L, ’22]

® Otherwise stated : V; € Span({¢;}i=1..m) with ¢; = u;* x|t

Vague claim (formally by [Cotar, Friesecke & Pass, ’14], truein d =1 [L, ’22])

) narrow
If pyy ;= p with fixed p € Z(RY), then P 2%,

N—>o0
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Numerics of uniform droplets

Uniform Droplets, i.e.

NeN, py=N'1p, with By:=B(0,ry) CR®st. [By|=N J

Ball By discretized into M concentric shells, i.e.

By = U,-AiIS,- where S;:= B(rj))\ B(ri-1), O0=n<n<---<m1<ry=rn J

® [1; are indicators of §;'s, i.e.

Ve~ V(oy,...,om) =My o x|t with =15, (T<1) J

Initialised on mean-field limit i.e ©® =1 fori=1,...,M

i
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® Parameters: N =2, with M € {10,20} and T € {50*,500'}
e Optimised V(@i,..., @) is plugged into unregularized OT dual, i.e.

Do(V):= min {ew+ Ll V(x)} ~ fis Vo |

P (@)

P (@)
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e Parameters: N =20, with M =50 and T =150
® Compared with upper bound of [Rds&nen, Gori-Giorgi & Seidl, ’16]
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Conclusion

e Efficient discretisation of Kantorovich potentials for Coulomb-like cost
® | ots of room for optimisation improvement — gradient & MCMC methods

® Question : In which sense Vo~ —Np  |x|~1 7 15t /2"9_order corrections ?

Thank you !

10/10



