The dual charge method for the multimarginal optimal transport with Coulomb cost

Rodrigue Lelotte

Conference Numerical methods for optimal transport problems, mean field games, and multi-agent dynamic, Chile (Jan 24)

Motivation from statistical physics (1/2)

- N identical particles with positions $x_1, ..., x_N$ in \mathbb{R}^d
- x_1, \ldots, x_N distributed along $\mathbb{P}(x_1, \ldots, x_N) \in \mathscr{P}_{sym}((\mathbb{R}^d)^N)$
- Two-body interaction potential w(|x-y|) with $w: \mathbb{R}_+ \to \mathbb{R}_+$ lsc

$$c_w(x_1,\ldots,x_N) := \sum_{1 \le i < j \le N} w(|x_i - x_j|)$$

• One-body external potential V(x), e.g. confining potential

Ground-state/free energy

$$F_N^{(T)}(V) := \inf_{\mathbb{P} \in \mathscr{P}_{sym}((\mathbb{R}^d)^N)} \left\{ \int_{\mathbb{R}^{dN}} \left(c_w + \sum_{i=1}^N V(x_i) \right) d\mathbb{P} + T \cdot Ent(\mathbb{P}) \right\}$$

where $T \geq 0$ is temperature and $Ent(\mathbb{P}) = \int_{\mathbb{R}^{dN}} \mathbb{P} \log \mathbb{P}$ is entropy.

• Computing $F_N^{(T)}(V)$ complicated $N\gg 1$: many local minima

Two-step minimisation: split infimum into two infima

$$F_{N}^{(T)}(V) = \inf_{\mathbb{P} \in \mathscr{P}_{sym}((\mathbb{R}^{d})^{N})} \{\cdots\} = \inf_{\rho \in \mathscr{P}(\mathbb{R}^{d})} \inf_{\mathbb{P} \in \mathscr{P}_{sym}((\mathbb{R}^{d})^{N}) \ s.t. \ \pi_{1}^{\sharp} \mathbb{P} = \rho} \{\cdots\}$$

Multimarginal OT: rewrite ground-state/free energy as

$$F_N^{(T)}(V) = \inf_{
ho} \left\{ OT_N^{(T)}(
ho) + \int_{\mathbb{R}^{dN}} V
ho
ight\}, \quad OT_N^{(T)}(
ho) := \inf_{\mathbb{P} \text{ s.t. } \pi_1^\sharp \mathbb{P} =
ho} \left\{ \int_{\mathbb{R}^{dN}} c_W d\mathbb{P} + T \cdot Ent(\mathbb{P})
ight\}$$

• $OT_N^{(T)}(\rho)$ complicated, but indep. of $V \implies$ use approximations (DFT & chemists)

What is my problem?

$$OT_{N}^{(T)}(
ho) := \inf_{\mathbb{P} \text{ s.t. } \pi_{1}^{\sharp}\mathbb{P} =
ho} \left\{ \int_{\mathbb{R}^{dN}} c_{w} \mathrm{d}\mathbb{P} + T \cdot \mathit{Ent}(\mathbb{P})
ight\}$$

- We want to solve numerically $OT_N^{(T)}(\rho)$ when $N \gg 1$
- E.g. for small $0 < T \ll 1$, in order to approximate the unregularized OT, i.e. $OT_N^{(0)}(\rho)$

Kantorovich duality (T > 0)

$$OT_N^{(T)}(
ho) = \sup_{V: \mathbb{R}^d o \mathbb{R}} \left\{ -T \log Z_{ au}(V) - N \int_{\mathbb{R}^d} V
ho \right\}$$

El Strong duality & existence of a (unique) Kantorovich potential V_{τ} proved in [Chayes, Chayes & Lieb, '84] in physics paper related to classical DFT

A simple idea

$$OT_N^{(T)}(
ho) = \sup_{V: \mathbb{R}^d o \mathbb{R}} \left\{ -T \log Z_T(V) - N \int_{\mathbb{R}^d} V
ho \right\}$$

Idea to solve $OT_N^{(T)}$ (with $0 < T \ll 1$ typically)

- 1. Decompose $V_{\tau} \in Span(\{\phi_i\}_{i=1,...,M})$ onto finite basis $\{\phi_i\}_{i=1,...,M}$
- 2. Solve concave maximization problem

$$OT_N^{(T)}(
ho) \simeq \sup_{V \in \mathit{Span}(\{\phi_i\}_{i=1,...,M})} \left\{ -T \log Z_T(V) - N \int_{\mathbb{R}^d} V
ho
ight\}$$

• Dual of Moment Constrained OT [Alfonsi, Coyaud, Ehrlacher & Lombardi, '21]

$$\pi_1^\sharp \mathbb{P}_ au =
ho \qquad ext{v.s.} \qquad \int_{\mathbb{R}^{dN}} \sum_{i=1}^N \phi_i(x_j) \mathrm{d} \mathbb{P}_ au = \int_{\mathbb{R}^d} \phi_i
ho \quad orall i = 1, \ldots, M.$$

Optimise with gradient ascent : gradient can be computed by MCMC methods

How to choose ϕ_i 's ? Special case of Coulomb interaction (1/2)

- Coulomb interaction $w(|x-y|) = |x-y|^{-1}$ in dimension d=3
- If $\rho_N := \rho$ for fixed $\rho \in \mathscr{P}(\mathbb{R}^d)$, following mean-field limit holds

$$rac{V_{0,N}}{N} \xrightarrow[N o \infty]{} -
ho * |x|^{-1}$$
 (formally by [Cotar, Friesecke & Pass, '14])

• If $ho_N:=|\Omega_N|^{-1}\mathbb{1}_{\Omega_N}$ where $\Omega_N=N^{1/3}\Omega$ for nice $\Omega\subset\mathbb{R}^3$

$$\frac{F_N^{(0)}(\rho_N)}{N} - N^{-1} \min_{x_1, \dots, x_N} \left\{ c_w(x_1, \dots, x_N) - N \sum_{i=1}^N \rho_N * |x_i|^{-1} + c(N) \right\} \xrightarrow[N \to \infty]{} 0$$

proved by [Cotar, Petrache, '19] and [Lewin, Lieb & Seiringer, '19]

Takeaway message :
$$V_0(x) = -N\rho * |x|^{-1} + correction terms (N \gg 1).$$

How to choose the ϕ_i 's ? Special case of Coulomb interaction (2/2)

Our idea to discretize V_T for $T \ll 1$ — see also [Mendl & Lin, '14]

1. Write $V_{ au}$ as potential generated by an external dual charge $ho_{ au}^{(e)}$

$$V_{\tau}(x) = -\rho_{\tau}^{(e)} * |x|^{-1} := -\int_{\mathbb{D}^3} \rho_{\tau}^{(e)}(y) |x-y|^{-1} dy.$$

2. Decompose $\rho_T^{(e)} \in Span(\{\mu_i\}_{i=1,...,M})$ onto a finite basis $\{\mu_i\}_{i=1,...,M}$

 $\underline{\text{Remark}}: \ \forall \ T \geq 0, \ \rho_{\ T}^{(e)} \ \text{exists and can be assumed to be positive and s.t.} \ \int_{\mathbb{R}^{dN}} \ \rho_{\ T}^{(e)} = N-1 \ \text{as proved in [L, '22]}$

• Otherwise stated : $V_{\tau} \in Span(\{\phi_i\}_{i=1,...,M})$ with $\phi_i = \mu_i * |x|^{-1}$

Vague claim (formally by [Cotar, Friesecke & Pass, '14], true in d=1 [L, '22])

If
$$ho_N:=
ho$$
 with fixed $ho\in\mathscr{P}(\mathbb{R}^d)$, then $rac{
ho_0^{(e)}}{N}rac{ extit{narrow}}{N o\infty}
ho$

Numerics of uniform droplets

• Uniform Droplets, i.e.

$$N \in \mathbb{N}, \quad \rho_N = N^{-1} \mathbb{1}_{B_N}, \quad \text{with } B_N := B(0, r_N) \subset \mathbb{R}^3 \text{ s.t. } |B_N| = N$$

• Ball B_N discretized into M concentric shells, i.e.

$$B_N = \bigcup_{i=1}^M S_i$$
 where $S_i := B(r_i) \setminus B(r_{i-1})$, $0 = r_0 < r_1 \le \dots \le r_{M-1} < r_M = r_N$

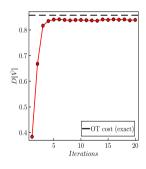
• μ_i are indicators of S_i 's, i.e.

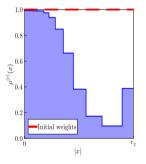
$$V_{\tau} \simeq \widehat{V}(\omega_1, \dots, \omega_M) = \sum_{i=1}^M \omega_i \, \mu_i * |x|^{-1} \text{ with } \quad \mu_i = \mathbb{1}_{S_i} \qquad (T \ll 1)$$

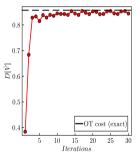
• Initialised on mean-field limit i.e $\omega_i^{(0)} = 1$ for i = 1, ..., M

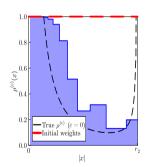
- **Parameters**: N = 2, with $M \in \{10,20\}$ and $T \in \{50^{-1},500^{-1}\}$
- Optimised $\widehat{V}(\widehat{\omega_1},...,\widehat{\omega_M})$ is plugged into unregularized OT dual, *i.e.*

$$D_0(\widehat{V}) := \min_{x_1,\ldots,x_N} \left\{ c_w + \sum_{i=1}^N \widehat{V}(x_i) \right\} - \int_{\mathbb{R}^3} \widehat{V} \rho$$

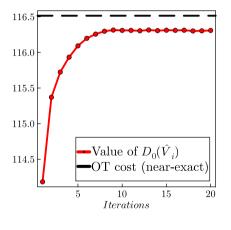


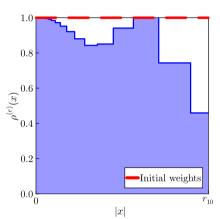






- Parameters: N = 20, with M = 50 and $T = 150^{-1}$
- Compared with upper bound of [Räsänen, Gori-Giorgi & Seidl, '16]





Conclusion

- Efficient discretisation of Kantorovich potentials for Coulomb-like cost
- Lots of room for optimisation improvement gradient & MCMC methods
- Question : In which sense $V_0 \simeq -N\rho * |x|^{-1}$? $1^{st}/2^{nd}$ -order corrections ?

Thank you!