An ODE characterisation of entropic (multi-marginal) optimal transport

Luca Nenna
joint work with B. Pass
Numerical methods for optimal transport problems, mean field games and multi-agent dynamics, Universidad Técnica Federico Santa María, 08/01/2024, Valparaíso
(LMO) Université Paris-Saclay and INRIA-Saclay (ParMA)

Overview

1. A crash introduction to (multi-marginal) Optimal Transport Classical Optimal transport

Multi-marginal optimal transport
2. Entropic Multi-Marginal Optimal Transport
3. The ODE
4. The algorithm and some numerical results
5. An extension to general (entropic) multi-marginal problem

A crash introduction to (multi-marginal)

 Optimal Transport
Classical Optimal Transportation Theory

Consider two probability measures μ_{i} on $X_{i} \subseteq \mathbb{R}^{d}$, and c a cost function (e.g. continuous or l.s.c.), the Optimal Transport (OT) problem is defined as follows

$$
\begin{equation*}
\mathrm{OT}_{0}:=\inf \left\{\int_{X} c\left(x_{1}, x_{2}\right) \mathrm{d} \gamma\left(x_{1}, x_{2}\right) \mid \gamma \in \Pi\left(\mu_{1}, \mu_{2}\right)\right\} \tag{1}
\end{equation*}
$$

where $\Pi\left(\mu_{1}, \mu_{2}\right)$ denotes the set of couplings $\gamma\left(x_{1}, x_{2}\right) \in \mathcal{P}(\boldsymbol{X})$ having μ_{1} and μ_{2} as marginals.

- Solution à la Monge the transport plan γ is deterministic (or à la Monge) if $\gamma=(I d, T)_{\sharp} \mu$ where $T_{\sharp} \mu_{1}=\mu_{2}$.

Classical Optimal Transportation Theory

Consider two probability measures μ_{i} on $X_{i} \subseteq \mathbb{R}^{d}$, and c a cost function (e.g. continuous or l.s.c.), the Optimal Transport (OT) problem is defined as follows

$$
\begin{equation*}
\mathrm{OT}_{0}:=\inf \left\{\int_{\boldsymbol{x}} c\left(x_{1}, x_{2}\right) \mathrm{d} \gamma\left(x_{1}, x_{2}\right) \mid \gamma \in \Pi\left(\mu_{1}, \mu_{2}\right)\right\} \tag{1}
\end{equation*}
$$

where $\Pi\left(\mu_{1}, \mu_{2}\right)$ denotes the set of couplings $\gamma\left(x_{1}, x_{2}\right) \in \mathcal{P}(\boldsymbol{X})$ having μ_{1} and μ_{2} as marginals. - Solution à la Monge the transport plan γ is deterministic (or à la Monge) if $\gamma=(I d, T)_{\sharp} \mu$ where $T_{\sharp} \mu_{1}=\mu_{2}$.

- Duality:

$$
\begin{equation*}
\sup \left\{\mathcal{J}\left(\phi_{1}, \phi_{2}\right) \mid\left(\phi_{1}, \phi_{2}\right) \in \mathcal{K}\right\} \tag{2}
\end{equation*}
$$

where

$$
\mathcal{J}\left(\phi_{1}, \phi_{2}\right):=\int_{X_{1}} \phi_{1} \mathrm{~d} \mu_{1}+\int_{X_{2}} \phi_{2} \mathrm{~d} \mu_{2}
$$

and \mathcal{K} is the set of bounded and continuous functions (ϕ_{1}, ϕ_{2}) such that $\phi_{1}\left(x_{1}\right)+\phi\left(x_{2}\right) \leq c\left(x_{1}, x_{2}\right)$.

The Multi-Marginal Optimal Transportation

Take (1) m probability measures $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$; (2) c a cost function. Then the multi-marginal OT problem reads as:

Take (1) m probability measures $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$; (2) c a cost function. Then the multi-marginal OT problem reads as:

Multi-Marginal Optimal Transport problem

It reads as:

$$
\begin{equation*}
\mathrm{MOT}_{0}:=\inf _{\gamma \in \Pi\left(\mu_{\mathbf{1}}, \ldots, \mu_{m}\right)} \int_{\boldsymbol{X}} c\left(x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right) \tag{3}
\end{equation*}
$$

where $\Pi\left(\mu_{1}, \ldots, \mu_{m}\right)$ denotes the set of couplings $\gamma\left(x_{1}, \ldots, x_{m}\right)$ having μ_{i} as marginals.

Take (1) m probability measures $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$; (2) c a cost function. Then the multi-marginal OT problem reads as:

Multi-Marginal Optimal Transport problem

It reads as:

$$
\begin{equation*}
\mathrm{MOT}_{0}:=\inf _{\gamma \in \Pi\left(\mu_{\mathbf{1}}, \ldots, \mu_{m}\right)} \int_{\boldsymbol{X}} c\left(x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right) \tag{3}
\end{equation*}
$$

where $\Pi\left(\mu_{1}, \ldots, \mu_{m}\right)$ denotes the set of couplings $\gamma\left(x_{1}, \ldots, x_{m}\right)$ having μ_{i} as marginals.

- Solution à la Monge: $\gamma=\left(I d, T_{2}, \ldots, T_{m}\right)_{\sharp} \mu_{1}$ where $T_{i \sharp} \mu_{1}=\mu_{i}$.

Take (1) m probability measures $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$; (2) c a cost function. Then the multi-marginal OT problem reads as:

Multi-Marginal Optimal Transport problem

It reads as:

$$
\begin{equation*}
\mathrm{MOT}_{0}:=\inf _{\gamma \in \Pi\left(\mu_{1}, \ldots, \mu_{m}\right)} \int_{\boldsymbol{X}} c\left(x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right) \tag{3}
\end{equation*}
$$

where $\Pi\left(\mu_{1}, \ldots, \mu_{m}\right)$ denotes the set of couplings $\gamma\left(x_{1}, \ldots, x_{m}\right)$ having μ_{i} as marginals.

- Solution à la Monge: $\gamma=\left(I d, T_{2}, \ldots, T_{m}\right)_{\sharp} \mu_{1}$ where $T_{i \sharp} \mu_{1}=\mu_{i}$.
- Duality: Both 2 and m marginal OT problems admit a useful dual formulation

The Multi-Marginal Optimal Transportation

Take (1) m probability measures $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$; (2) c a cost function. Then the multi-marginal OT problem reads as:

Multi-Marginal Optimal Transport problem

It reads as:

$$
\begin{equation*}
\operatorname{MOT}_{0}:=\inf _{\gamma \in \Pi\left(\mu_{1}, \ldots, \mu_{m}\right)} \int_{X} c\left(x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right) \tag{3}
\end{equation*}
$$

where $\Pi\left(\mu_{1}, \ldots, \mu_{m}\right)$ denotes the set of couplings $\gamma\left(x_{1}, \ldots, x_{m}\right)$ having μ_{i} as marginals.

- Solution à la Monge: $\gamma=\left(I d, T_{2}, \ldots, T_{m}\right)_{\sharp} \mu_{1}$ where $T_{i \sharp} \mu_{1}=\mu_{i}$.
- Duality: Both 2 and m marginal OT problems admit a useful dual formulation

Why is it a difficult problem to treat?
Example: $m=3, d=1, \mu_{i}=\mathcal{L}_{[0,1]} \forall i$ and $c\left(x_{1}, x_{2}, x_{3}\right)=\left|x_{1}+x_{2}+x_{3}\right|^{2}$.

- Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);
- $\exists T_{i}$ optimal, are not differentiable at any point and they are fractal maps ibid., Thm 4.6
- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;

Why are we interested in MOT?

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma\left(x_{1}, \ldots, x_{m}\right)$ returns the probability of finding electrons at position x_{1}, \ldots, x_{m};
- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma\left(x_{1}, \ldots, x_{m}\right)$ returns the probability of finding electrons at position x_{1}, \ldots, x_{m};
- Incompressible Euler Equations (Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma\left(x_{1}, \ldots, x_{m}\right)$ returns the probability of finding electrons at position x_{1}, \ldots, x_{m};
- Incompressible Euler Equations (Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma\left(x_{1}, \ldots, x_{m}\right)$ returns the probability of finding electrons at position x_{1}, \ldots, x_{m};
- Incompressible Euler Equations (Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- Risk measures (Ennaji, Mérigot, Luca Nenna, and Pass 2022)
- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma\left(x_{1}, \ldots, x_{m}\right)$ returns the probability of finding electrons at position x_{1}, \ldots, x_{m};
- Incompressible Euler Equations (Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- Risk measures (Ennaji, Mérigot, Luca Nenna, and Pass 2022)
- Martingale transport (JD's talk), etc

Entropic Multi-Marginal Optimal
Transport

Definition of the problem

Consider (1) m probability measures μ_{i} on $X_{i} \subseteq \mathbb{R}^{d}$ of dimension d_{i}; (2) a cost function $c: X \rightarrow \mathbb{R}_{+}$ (e.g. continuous or Isc) where $\boldsymbol{X}:=\times_{i}^{m} X_{i}$;

Definition of the problem

Consider (1) m probability measures μ_{i} on $X_{i} \subseteq \mathbb{R}^{d}$ of dimension d_{i}; (2) a cost function $c: X \rightarrow \mathbb{R}_{+}$ (e.g. continuous or Isc) where $\boldsymbol{X}:=\times_{i}^{m} X_{i}$;

Entropic Multi-Marginal Optimal Transport problem

It reads as:

$$
\text { MOT }_{\varepsilon}:=\inf _{\gamma \in \Pi\left(\mu_{1}, \ldots, \mu_{m}\right)}\left\{\int_{X} c\left(x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right)+\varepsilon \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)\right\}
$$

where the infimum is taken among all couplings γ having μ_{i} as marginals $\left(\gamma \in \Pi\left(\mu_{1}, \ldots, \mu_{m}\right)\right.$), and $\varepsilon>0$ is a small temperature parameter.

Some remarks:

- $m=2$. Classical Entropic Optimal Transport.

Some remarks:

- $m=2$. Classical Entropic Optimal Transport.
- $\varepsilon=0$ and $m=2$. Classical Monge-Kantorovich problem with value MOT_{0} : convex problem, but may have several solutions $\gamma, \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)$ may be finite or not!

Some remarks:

- $m=2$. Classical Entropic Optimal Transport.
- $\varepsilon=0$ and $m=2$. Classical Monge-Kantorovich problem with value MOT_{0} : convex problem, but may have several solutions $\gamma, \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)$ may be finite or not!
- $\varepsilon>0$. Strictly convex cost \Longrightarrow unique solution $\gamma_{\varepsilon}=e^{-c / \varepsilon} \prod_{i=1}^{m} e^{\phi_{i} / \varepsilon}$ with finite entropy where the ϕ_{i} are the optimal dual variables.

Some remarks:

- $m=2$. Classical Entropic Optimal Transport.
- $\varepsilon=0$ and $m=2$. Classical Monge-Kantorovich problem with value MOT_{0} : convex problem, but may have several solutions $\gamma, \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)$ may be finite or not!
- $\varepsilon>0$. Strictly convex cost \Longrightarrow unique solution $\gamma_{\varepsilon}=e^{-c / \varepsilon} \prod_{i=1}^{m} e^{\phi_{i} / \varepsilon}$ with finite entropy where the ϕ_{i} are the optimal dual variables.
- Asymptotics as $\varepsilon \rightarrow 0$

Theorem ((Luca Nenna and Pegon 2023))

Let μ_{i} be compactly supported measures over X_{i} with L^{∞} densities. Assume that $c \in \mathcal{C}^{2}(X)$ and satisfying a signature condition on second mixed derivatives. Then

$$
\mathrm{MOT}_{\varepsilon}=\mathrm{MOT}_{0}+\frac{1}{2}\left(\sum_{i=1}^{m} d_{i}-\max _{i} d_{i}\right) \varepsilon \log (1 / \varepsilon)+O(\varepsilon)
$$

What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.

What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.
Main steps of the work:

1. Introduce a suitable one parameter family of cost functions c_{η}, interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;

What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.

Main steps of the work:

1. Introduce a suitable one parameter family of cost functions c_{η}, interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;
2. Differentiate the optimality condition of the dual $\mathrm{MOT}_{\varepsilon}:=\sup _{\phi} \tilde{\Phi}(\phi, \eta)$ with respect to η (ε is now fixed);

What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.

Main steps of the work:

1. Introduce a suitable one parameter family of cost functions c_{η}, interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;
2. Differentiate the optimality condition of the dual $\mathrm{MOT}_{\varepsilon}:=\sup _{\phi} \tilde{\Phi}(\phi, \eta)$ with respect to η (ε is now fixed);
3. The solution of the original multi-marginal problem can be now recovered by solving an ordinary differential equation (ODE) whose initial condition is the solution to the simpler problem;

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} \phi}{\mathrm{~d} \eta}(\eta)=-\left[D_{\phi, \phi}^{2} \tilde{\Phi}(\phi(\eta), \eta)\right]^{-1} \frac{\partial}{\partial \eta} \nabla_{\phi} \tilde{\Phi}(\phi(\eta), \eta) \\
\phi(0)=\phi_{w}
\end{array}\right.
$$

What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.

Main steps of the work:

1. Introduce a suitable one parameter family of cost functions c_{η}, interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;
2. Differentiate the optimality condition of the dual $\mathrm{MOT}_{\varepsilon}:=\sup _{\phi} \tilde{\Phi}(\phi, \eta)$ with respect to η (ε is now fixed);
3. The solution of the original multi-marginal problem can be now recovered by solving an ordinary differential equation (ODE) whose initial condition is the solution to the simpler problem;

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} \phi}{\mathrm{~d} \eta}(\eta)=-\left[D_{\phi, \phi}^{2} \tilde{\Phi}(\phi(\eta), \eta)\right]^{-1} \frac{\partial}{\partial \eta} \nabla_{\phi} \tilde{\Phi}(\phi(\eta), \eta) \\
\phi(0)=\phi_{w}
\end{array}\right.
$$

Remark: This method is actually inspired by the one introduced in (G. Carlier, Galichon, and
Santambrogio 2009/10) to compute the Monge solution of the two marginal problem, starting from the Knothe-Rosenblatt rearrangement.

The ODE

How to derive the differential equation

Some assumptions to make it simple:

1. (Equal marginals and discrete set) All the marginals are equal $\mu_{i}=\rho=\sum_{x \in X} \rho_{x} \delta_{X}$, where X is a finite subset.
2. (Pair-wise cost) $c_{\eta}\left(x_{1}, \ldots, x_{m}\right):=\eta \sum_{i=2}^{m} \sum_{j=i+1}^{m} w\left(x_{i}, x_{j}\right)+\sum_{i=2}^{m} w\left(x_{1}, x_{i}\right)$.
3. (Symmetric cost) The two body cost w is symmetric $w(x, y)=w(x, y)$.
4. (Finite cost) The two body cost function $w: X \times X \rightarrow \mathbb{R}$ is everywhere real-valued.

How to derive the differential equation

Some assumptions to make it simple:

1. (Equal marginals and discrete set) All the marginals are equal $\mu_{i}=\rho=\sum_{x \in X} \rho_{x} \delta_{X}$, where X is a finite subset.
2. (Pair-wise cost) $c_{\eta}\left(x_{1}, \ldots, x_{m}\right):=\eta \sum_{i=2}^{m} \sum_{j=i+1}^{m} w\left(x_{i}, x_{j}\right)+\sum_{i=2}^{m} w\left(x_{1}, x_{i}\right)$.
3. (Symmetric cost) The two body cost w is symmetric $w(x, y)=w(x, y)$.
4. (Finite cost) The two body cost function $w: X \times X \rightarrow \mathbb{R}$ is everywhere real-valued.

Step 1: Consider the dual problem (it is convex!);

$$
\begin{equation*}
\inf _{\phi}\{\tilde{\Phi}(\phi, \eta)\}, \tag{4}
\end{equation*}
$$

where

$$
\tilde{\Phi}(\phi, \eta):=-(m-1) \int_{X} \phi \mathrm{~d} \rho+\varepsilon \int_{X} \underbrace{\log \left(\int_{X^{m-1}} \exp \left(\frac{\sum_{i=2}^{m} \phi-c_{\eta}}{\varepsilon}\right) \mathrm{d} \otimes^{m-1} \rho\right)}_{\text {Log-Sum-Exp }} \mathrm{d} \rho .
$$

Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla_{\phi} \tilde{\Phi}(\phi, \eta)=0$. Then, by differentiate w.r.t. η we obtain

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} \eta}(\eta)=-\left[D_{\phi, \phi}^{2} \tilde{\Phi}(\phi(\eta), \eta)\right]^{-1} \frac{\partial}{\partial \eta} \nabla_{\phi} \tilde{\Phi}(\phi(\eta), \eta)
$$

Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla_{\phi} \tilde{\Phi}(\phi, \eta)=0$. Then, by differentiate w.r.t. η we obtain

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} \eta}(\eta)=-\left[D_{\phi, \phi}^{2} \tilde{\Phi}(\phi(\eta), \eta)\right]^{-1} \frac{\partial}{\partial \eta} \nabla_{\phi} \tilde{\Phi}(\phi(\eta), \eta)
$$

Step 3: The following well-posedness theorem then holds.

Theorem

Let $\phi(\eta)$ be the solution to the dual problem above for all $\eta \in[0,1]$. Then $\eta \mapsto \phi(\eta)$ is \mathcal{C}^{1} and is the unique solution to the Cauchy problem with $\phi(0)=\phi_{w}$.

Sketch of the proof:

Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla_{\phi} \tilde{\Phi}(\phi, \eta)=0$. Then, by differentiate w.r.t. η we obtain

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} \eta}(\eta)=-\left[D_{\phi, \phi}^{2} \tilde{\Phi}(\phi(\eta), \eta)\right]^{-1} \frac{\partial}{\partial \eta} \nabla_{\phi} \tilde{\Phi}(\phi(\eta), \eta)
$$

Step 3: The following well-posedness theorem then holds.

Theorem

Let $\phi(\eta)$ be the solution to the dual problem above for all $\eta \in[0,1]$. Then $\eta \mapsto \phi(\eta)$ is \mathcal{C}^{1} and is the unique solution to the Cauchy problem with $\phi(0)=\phi_{w}$.

Sketch of the proof:

- The pure second derivatives with respect to ϕ as well as the mixed second derivatives with respect to ϕ and η exist and are Lipschitz;

Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla_{\phi} \tilde{\Phi}(\phi, \eta)=0$. Then, by differentiate w.r.t. η we obtain

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} \eta}(\eta)=-\left[D_{\phi, \phi}^{2} \tilde{\Phi}(\phi(\eta), \eta)\right]^{-1} \frac{\partial}{\partial \eta} \nabla_{\phi} \tilde{\Phi}(\phi(\eta), \eta)
$$

Step 3: The following well-posedness theorem then holds.

Theorem

Let $\phi(\eta)$ be the solution to the dual problem above for all $\eta \in[0,1]$. Then $\eta \mapsto \phi(\eta)$ is \mathcal{C}^{1} and is the unique solution to the Cauchy problem with $\phi(0)=\phi_{w}$.

Sketch of the proof:

- The pure second derivatives with respect to ϕ as well as the mixed second derivatives with respect to ϕ and η exist and are Lipschitz;
- The Hessian with respect to ϕ is invertible: since the cost is bounded then the potentials are bounded too ((Guillaume Carlier 2021)). So one can restrict the study of the well-posedness of the ODE on the set

$$
U:=\left\{\phi \mid \phi_{x_{0}}=0,\|\phi\|_{\infty} \leq C\right\}
$$

On this set the functional $\tilde{\Phi}$ is now strongly convex.

The algorithm and some numerical results

The algorithm to compute the ODE solution

- Algorithm to compute the ϕ via explicit Euler method takes the following form:

Require: $\phi(0)=\phi_{w}$
1: while $\left\|\phi^{(k+1)}-\phi^{(k)}\right\|<$ tol do
2: $\quad D^{(k)}:=D_{\phi, \phi}^{2} \tilde{\Phi}\left(\phi^{(k)}, k h\right)$
3: $\quad b^{(k)}:=-\frac{\partial}{\partial \epsilon} \nabla_{\phi} \tilde{\Phi}\left(\phi^{(k)}, k h\right)$
4: Solve $D^{(k)} z=b^{(k)}$
5: $\quad \phi^{(k+1)}=\phi^{(k)}+h z$
6: end while

The algorithm to compute the ODE solution

- Algorithm to compute the ϕ via explicit Euler method takes the following form:

Require: $\phi(0)=\phi_{w}$
1: while $\left\|\phi^{(k+1)}-\phi^{(k)}\right\|<$ tol do
2: $\quad D^{(k)}:=D_{\phi, \phi}^{2} \tilde{\Phi}\left(\phi^{(k)}, k h\right)$
3: $\quad b^{(k)}:=-\frac{\partial}{\partial \epsilon} \nabla_{\phi} \tilde{\Phi}\left(\phi^{(k)}, k h\right)$
4: Solve $D^{(k)} z=b^{(k)}$
5: $\quad \phi^{(k+1)}=\phi^{(k)}+h z$
6: end while

Remarks:

- The Euler scheme converges linearly and the uniform error between the discretized solution obtained via the scheme and the solution to the ODE is $O(h)$;
- Thanks to the regularity of the RHS of the ODE one can apply high order methods.

The algorithm to compute the ODE solution

- Algorithm to compute the ϕ via explicit Euler method takes the following form:

Require: $\phi(0)=\phi_{w}$
1: while $\left\|\phi^{(k+1)}-\phi^{(k)}\right\|<$ tol do
2: $\quad D^{(k)}:=D_{\phi, \phi}^{2} \tilde{\Phi}\left(\phi^{(k)}, k h\right)$
3: $\quad b^{(k)}:=-\frac{\partial}{\partial \epsilon} \nabla_{\phi} \tilde{\Phi}\left(\phi^{(k)}, k h\right)$
4: Solve $D^{(k)} z=b^{(k)}$
5: $\quad \phi^{(k+1)}=\phi^{(k)}+h z$
6: end while

Remarks:

- The Euler scheme converges linearly and the uniform error between the discretized solution obtained via the scheme and the solution to the ODE is $O(h)$;
- Thanks to the regularity of the RHS of the ODE one can apply high order methods.
- At each step k we obtaine the solution of the entropic multi-marginal problem with cost $c_{k h}$!

Comparison with Sinkhorn

Consider $\varepsilon=0.006, m=3$, the uniform measure on $[0,1]$ uniformily discretized with 400 gridpoints, the pairwise interaction $w(x, y)=-\log (0.1+|x-y|)$ and a reference solution ϕ_{ε} computed via a gradient descent algorithm. Then we have the following comparison between the ODE approach and Sinkhorn in terms of performances

	3rd RK	5th RK	8th RK	Sinkhorn
relative error	1.47×10^{-5}	7.8×10^{-6}	7.62×10^{-6}	5.46×10^{-6}
iterations	87	87	87	820
CPU time (sec)	72.39	158.9	385.1	102.8

Some numerical results

- Log cost and support of the coupling $\gamma_{1,2}^{\eta}$.

Generalized solutions to incompressible Euler Equations

- Brenier's relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.

Generalized solutions to incompressible Euler Equations

- Brenier's relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.
- The incompressibility at each time t, the distribution of position need be uniform.

Generalized solutions to incompressible Euler Equations

- Brenier's relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.
- The incompressibility at each time t, the distribution of position need be uniform.
- If we consider a uniform discretization of $[0, T]$ (where T is the final time) with m steps in time, we recover a multi-marginal formulation of the Brenier principle with the specific cost function

$$
c\left(x_{1}, \ldots, x_{m}\right)=\frac{m^{2}}{2 T^{2}} \sum_{i=1}^{m-1}\left|x_{i+1}-x_{i}\right|^{2}+\beta\left|F\left(x_{1}\right)-x_{m}\right|^{2},
$$

where $\beta>0$ is a penalization parameter in order to enforce the initial-final constraint.

Generalized solutions to incompressible Euler Equations

- Brenier's relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.
- The incompressibility at each time t, the distribution of position need be uniform.
- If we consider a uniform discretization of $[0, T]$ (where T is the final time) with m steps in time, we recover a multi-marginal formulation of the Brenier principle with the specific cost function

$$
c\left(x_{1}, \ldots, x_{m}\right)=\frac{m^{2}}{2 T^{2}} \sum_{i=1}^{m-1}\left|x_{i+1}-x_{i}\right|^{2}+\beta\left|F\left(x_{1}\right)-x_{m}\right|^{2},
$$

where $\beta>0$ is a penalization parameter in order to enforce the initial-final constraint.

- If we consider now the ODE setting, we have now to deal with a non symmetric case and so to solve a system, still well posed, of ODEs. In particular we consider the following c_{η} cost

$$
c_{\eta}\left(x_{1}, \ldots, x_{m}\right)=\frac{m^{2}}{2 T^{2}}\left|x_{2}-x_{1}\right|^{2}+\eta\left(\frac{m^{2}}{2 T^{2}} \sum_{i=2}^{m-1}\left|x_{i+1}-x_{i}\right|^{2}\right)+\beta\left|F\left(x_{1}\right)-x_{m}\right|^{2} .
$$

At $\eta=1$ we plot the coupling $\gamma_{1, i}$ giving the probability of finding a generalized particle initially at x_{1} to be at x_{i} at time i.

At $\eta=1$ we plot the coupling $\gamma_{1, i}$ giving the probability of finding a generalized particle initially at x_{1} to be at x_{i} at time i.

- $F(x)=1-x$

$t=0$

$t=1 / 4$

$t=1 / 2$

$t=3 / 4$

$t=1$

At $\eta=1$ we plot the coupling $\gamma_{1, i}$ giving the probability of finding a generalized particle initially at x_{1} to be at x_{i} at time i.

- $F(x)=1-x$

$$
t=0
$$

$t=1 / 4$

$t=1 / 2$

$t=3 / 4$

$$
t=1
$$

- $F(x)=(x+1 / 2) \bmod 1$

$t=0$

$t=1 / 4$

$t=1 / 2$

$t=3 / 4$

$t=1$

An extension to general (entropic) multi-marginal problem

Extension to general multi-marginal problems

(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "1st" generalization

$$
\mathrm{MOT}_{\varepsilon}:=\inf _{\gamma \in \mathrm{M}_{\left(\mu_{\mathbf{1}}, \ldots, \mu_{m}\right)}}\left\{\int_{\mathbf{X}} c\left(\boldsymbol{\eta}, x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right)+\varepsilon \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)\right\}
$$

where the cost function is not anymore symmetric but such that $c\left(0, x_{1}, \ldots, x_{m}\right)$ give a MOT easy to solve:

1. $c\left(0, x_{1}, \ldots, x_{m}\right)=0$;

Extension to general multi-marginal problems

(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "1st" generalization

$$
\mathrm{MOT}_{\varepsilon}:=\inf _{\gamma \in \mathrm{M}_{\left(\mu_{\mathbf{1}}, \ldots, \mu_{m}\right)}}\left\{\int_{\mathbf{X}} c\left(\boldsymbol{\eta}, x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right)+\varepsilon \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)\right\}
$$

where the cost function is not anymore symmetric but such that $c\left(0, x_{1}, \ldots, x_{m}\right)$ give a MOT easy to solve:

1. $c\left(0, x_{1}, \ldots, x_{m}\right)=0$;
2. $c\left(\eta, x_{1}, \ldots, x_{m}\right)$ is the Euler cost;

Extension to general multi-marginal problems

(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "1st" generalization

$$
\mathrm{MOT}_{\varepsilon}:=\inf _{\gamma \in \mathrm{M}_{\left(\mu_{\mathbf{1}}, \ldots, \mu_{m}\right)}}\left\{\int_{\mathbf{X}} c\left(\boldsymbol{\eta}, x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right)+\varepsilon \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)\right\}
$$

where the cost function is not anymore symmetric but such that $c\left(0, x_{1}, \ldots, x_{m}\right)$ give a MOT easy to solve:

1. $c\left(0, x_{1}, \ldots, x_{m}\right)=0$;
2. $c\left(\eta, x_{1}, \ldots, x_{m}\right)$ is the Euler cost;
3. $c\left(\eta, x_{1}, z, x_{2}\right)=(1-\eta)\left|x_{1}-z\right|^{2}+\eta\left|z-x_{3}\right|^{2}, \gamma$ is a 3 marginals coupling with only two fixed marginals, μ_{1} and μ_{2}. Then the z-marginal of γ gives the Wasserstein geodesic at time η.

Extension to general multi-marginal problems

(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "1st" generalization

$$
\operatorname{MOT}_{\varepsilon}:=\inf _{\gamma \in \Pi_{\left(\mu_{\mathbf{1}}, \ldots, \mu_{m}\right)}}\left\{\int_{\mathbf{X}} c\left(\boldsymbol{\eta}, x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right)+\varepsilon \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)\right\}
$$

where the cost function is not anymore symmetric but such that $c\left(0, x_{1}, \ldots, x_{m}\right)$ give a MOT easy to solve:

1. $c\left(0, x_{1}, \ldots, x_{m}\right)=0$;
2. $c\left(\eta, x_{1}, \ldots, x_{m}\right)$ is the Euler cost;
3. $c\left(\eta, x_{1}, z, x_{2}\right)=(1-\eta)\left|x_{1}-z\right|^{2}+\eta\left|z-x_{3}\right|^{2}, \gamma$ is a 3 marginals coupling with only two fixed marginals, μ_{1} and μ_{2}. Then the z-marginal of γ gives the Wasserstein geodesic at time η.
4. $c\left(\eta, x_{1}, \ldots, x_{m}, z\right)=\sum_{i=1}^{m} \lambda_{i}(\eta)\left|x_{i}-z\right|^{2}$ such that $\sum_{i=1}^{m} \lambda_{i}(\eta)=1$ for every η and γ is an $m+1$ coupling with m fixed marginals. Then at for every η the z-marginal of γ is the Wasserstein barycenter with weights $\lambda_{i}(\eta)$.

Extension to general multi-marginal problems

(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "2nd" generalization

$$
\operatorname{MOT}_{\varepsilon}:=\inf _{\gamma \in \Pi^{Q}\left(\mu_{1}, \ldots, \mu_{m}\right)}\left\{\int_{\mathrm{X}} c\left(\eta, x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right)+\varepsilon \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)\right\},
$$

where $\Pi^{Q}\left(\mu_{1}, \ldots, \mu_{m}\right)$ is the set of coupling having μ_{1}, \ldots, μ_{m} as marginals and satisfying an additional constraint $\int q \mathrm{~d} \gamma=0$ for all $q \in Q$ where Q be a set of bounded continuous function on \boldsymbol{X}.

- Classical case: $Q=\{0\}$;

Extension to general multi-marginal problems

(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "2nd" generalization

$$
\operatorname{MOT}_{\varepsilon}:=\inf _{\gamma \in \Pi^{Q}\left(\mu_{1}, \ldots, \mu_{m}\right)}\left\{\int_{\mathrm{X}} c\left(\eta, x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right)+\varepsilon \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)\right\},
$$

where $\Pi^{Q}\left(\mu_{1}, \ldots, \mu_{m}\right)$ is the set of coupling having μ_{1}, \ldots, μ_{m} as marginals and satisfying an additional constraint $\int q \mathrm{~d} \gamma=0$ for all $q \in Q$ where Q be a set of bounded continuous function on \boldsymbol{X}.

- Classical case: $Q=\{0\}$;
- Generalized Euler solution: force $\gamma_{1, m}=(I d, F)_{\sharp} \mathcal{L}$;

Extension to general multi-marginal problems

(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "2nd" generalization

$$
\operatorname{MOT}_{\varepsilon}:=\inf _{\gamma \in \Pi^{Q}\left(\mu_{1}, \ldots, \mu_{m}\right)}\left\{\int_{\mathrm{X}} c\left(\eta, x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right)+\varepsilon \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)\right\},
$$

where $\Pi^{Q}\left(\mu_{1}, \ldots, \mu_{m}\right)$ is the set of coupling having μ_{1}, \ldots, μ_{m} as marginals and satisfying an additional constraint $\int q \mathrm{~d} \gamma=0$ for all $q \in Q$ where Q be a set of bounded continuous function on \boldsymbol{X}.

- Classical case: $Q=\{0\}$;
- Generalized Euler solution: force $\gamma_{1, m}=(I d, F)_{\sharp} \mathcal{L}$;
- Martingale OT: $\Pi^{Q}\left(\mu_{1}, \mu_{2}\right)$ with extra constraint

$$
\int q\left(x_{1}\right)\left(x_{2}-x_{1}\right) \mathrm{d} \gamma=0, \quad \forall q \in \mathcal{C}_{b}\left(X_{1}\right) .
$$

Extension to general multi-marginal problems

(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "2nd" generalization

$$
\text { MOT }_{\varepsilon}:=\inf _{\gamma \in \Pi^{Q}\left(\mu_{1}, \ldots, \mu_{m}\right)}\left\{\int_{\mathbf{X}} c\left(\eta, x_{1}, \ldots, x_{m}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{m}\right)+\varepsilon \operatorname{Ent}\left(\gamma \mid \otimes_{i=1}^{m} \mu_{i}\right)\right\},
$$

where $\Pi^{Q}\left(\mu_{1}, \ldots, \mu_{m}\right)$ is the set of coupling having μ_{1}, \ldots, μ_{m} as marginals and satisfying an additional constraint $\int q \mathrm{~d} \gamma=0$ for all $q \in Q$ where Q be a set of bounded continuous function on \boldsymbol{X}.

- Classical case: $Q=\{0\}$;
- Generalized Euler solution: force $\gamma_{1, m}=(I d, F)_{\sharp} \mathcal{L}$;
- Martingale OT: $\Pi^{Q}\left(\mu_{1}, \mu_{2}\right)$ with extra constraint

$$
\int q\left(x_{1}\right)\left(x_{2}-x_{1}\right) \mathrm{d} \gamma=0, \quad \forall q \in \mathcal{C}_{b}\left(X_{1}\right)
$$

- Multi-period martingale OT: e.g. 3 -period $\Pi^{Q}\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ with extra constraint

$$
\int\left[q\left(x_{1}\right)\left(x_{2}-x_{1}\right)+h\left(x_{1}, x_{2}\right)\left(x_{3}-x_{2}\right)\right] \mathrm{d} \gamma=0, \quad \forall q \in \mathcal{C}_{b}\left(X_{1}\right), \forall h \in \mathcal{C}_{b}\left(X_{1} \times X_{2}\right)
$$

Take-home messages:

- An ODE to characterize entropic multi-marginal optimal transport;

Take-home messages:

- An ODE to characterize entropic multi-marginal optimal transport;
- It works for symmetric and non symmetric cost;

Take-home messages:

- An ODE to characterize entropic multi-marginal optimal transport;
- It works for symmetric and non symmetric cost;
- Regularity allows to use high order methods;

Take-home messages:

- An ODE to characterize entropic multi-marginal optimal transport;
- It works for symmetric and non symmetric cost;
- Regularity allows to use high order methods;
- It allows to interpolate between different costs and for each $\eta \in[0,1]$ it returns the solution to the corresponding multi-marginal problems.

Take-home messages:

- An ODE to characterize entropic multi-marginal optimal transport;
- It works for symmetric and non symmetric cost;
- Regularity allows to use high order methods;
- It allows to interpolate between different costs and for each $\eta \in[0,1]$ it returns the solution to the corresponding multi-marginal problems.
- Wasserstein geodesics, Barycenter problem and Martingale transport;

Take-home messages:

- An ODE to characterize entropic multi-marginal optimal transport;
- It works for symmetric and non symmetric cost;
- Regularity allows to use high order methods;
- It allows to interpolate between different costs and for each $\eta \in[0,1]$ it returns the solution to the corresponding multi-marginal problems.
- Wasserstein geodesics, Barycenter problem and Martingale transport;

Thank You!!

