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A crash introduction to (multi-marginal)
Optimal Transport



Classical Optimal Transportation Theory

Consider two probability measures 1; on X; C R9, and ¢ a cost function (e.g. continuous or |.s.c.), the
Optimal Transport (OT) problem is defined as follows

OTo = inf { [ clame)anta) |7 € nmhuz)} (1)

where M(u1, p2) denotes the set of couplings v(x1, x2) € P(X) having p1 and u2 as marginals.
e Solution a la Monge the transport plan « is deterministic (or a la Monge) if v = (Id, T)su where

Tspa = pa.
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Optimal Transport (OT) problem is defined as follows

OTo = inf { [ clame)anta) |7 € nmhuz)} (1)

where M(u1, p2) denotes the set of couplings v(x1, x2) € P(X) having p1 and u2 as marginals.
e Solution a la Monge the transport plan « is deterministic (or a la Monge) if v = (Id, T)su where

Tspa = pa.
e Duality:

sup {J(¢1, ¢2) | (¢1,¢2) € K} . (2)

where

3(61,02) = /X $1dp + /X $adpiz

and X is the set of bounded and continuous functions
(¢17 ¢2) such that ¢1(X1) + ¢(X2) < C(X1,X2).
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The Multi-Marginal Optimal Transportation

Take (1) m probability measures p; € P(X;); (2) ¢ a cost function. Then the multi-marginal OT
problem reads as:
Multi-Marginal Optimal Transport problem

It reads as:
MOT, = inf / c(x1, -y xm)dy(xt, ..., Xm) 3
YEM(pa,se-sitm) S x
where M(u1, ..., um) denotes the set of couplings y(x1,. .., xm) having p; as marginals.
° cy=(Id, T2, ..., Tm)sp1 where Tizu1 = p;.
° : Both 2 and m marginal OT problems admit a useful dual formulation

Why is it a difficult problem to treat?
Example: m=3,d =1, u; = Lo, Vi and c(x1, x2,x3) = |x1 + x2 +X3|2,

e Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);

e 3 T; optimal, are not differentiable at any point and they are fractal maps ibid., Thm 4.6
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e The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and
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e In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and
Gori-Giorgi 2012; Cotar, Friesecke, and Kliippelberg 2013)). The plan v(x1, ..., xm) returns the
probability of finding electrons at position xi, ..., Xm;

e Incompressible Euler Equations (Brenier 1989) : ~(w) gives “the mass of fluid” which follows a
path w. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).

e Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
e Risk measures (Ennaji, Mérigot, Luca Nenna, and Pass 2022)

e Martingale transport (JD's talk), etc
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Entropic Multi-Marginal Optimal
Transport



Definition of the problem

Consider (1) m probability measures p; on X; € RY of dimension dj; (2) a cost function ¢ : X — R
(e.g. continuous or Isc) where X := x["X;
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Definition of the problem

Consider (1) m probability measures p; on X; € RY of dimension dj; (2) a cost function ¢ : X — R
(e.g. continuous or Isc) where X := x["Xi;

Entropic Multi-Marginal Optimal Transport problem

It reads as:
MOT. = inf / c(xty .oy Xm)dyY(xty ooy Xm) + eEnt(y| @y wi) ¢,
YEM(paseeespbm) X
where the infimum is taken among all couplings v having u; as marginals (v € M(u1,...,um)), and

€ > 0 is a small temperature parameter.
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e m = 2. Classical Entropic Optimal Transport.

e ¢ =0 and m = 2. Classical Monge-Kantorovich problem with value MOTg: convex problem, but
may have several solutions ~y, Ent(y| ®; pi) may be finite or not!

m

e = > 0. Strictly convex cost = unique solution v = e~ /¢ I, e®/¢ with finite entropy
where the ¢, are the optimal dual variables.

e Asymptotics as € — 0

Theorem ((Luca Nenna and Pegon 2023))

Let p; be compactly supported measures over X; with L> densities. Assume that ¢ € €*(X) and
satisfying a signature condition on second mixed derivatives. Then

m

MOT. = MOTo + % (Z d; — max d,->a log(1/e) + O(¢).

i=1
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What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.
Main steps of the work:

1. Introduce a suitable one parameter family of cost functions ¢,, interpolating between the original
multi-marginal problem and a simpler one whose complexity scales linearly in the number of
marginals;

2. Differentiate the optimality condition of the dual MOT. := sup, ®(¢,7) with respect to 7 (¢ is
now fixed);

3. The solution of the original multi-marginal problem can be now recovered by solving an ordinary
differential equation (ODE) whose initial condition is the solution to the simpler problem;

%(n) - —[Di,ﬂ’(qﬁ(n%n)]*la%wéwm), )

¢(0) = dw,

Remark: This method is actually inspired by the one introduced in (G. Carlier, Galichon, and
Santambrogio 2009/10) to compute the Monge solution of the two marginal problem, starting

from the Knothe-Rosenblatt rearrangement.
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The ODE




How to derive the differential equation

Some assumptions to make it simple:
1. (Equal marginals and discrete set) All the marginals are equal p; = p = Y~ _, pxdx, where X is a

finite subset.

. (Pair-wise cost) c;(x1,...,xm) =137, 27 3 w(xi, X)) + 2oL, w(xi, X;).

. (Symmetric cost) The two body cost w is symmetric w(x,y) = w(x,y).

A W N

. (Finite cost) The two body cost function w : X x X — R is everywhere real-valued.
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How to derive the differential equation

Some assumptions to make it simple:

1. (Equal marginals and discrete set) All the marginals are equal p; = p = Y~ _, pxdx, where X is a
finite subset.

2. (Pair-wise cost) c;(x1,...,Xxm) =027, D75 wxi, x;) + D00, w(xa, Xi).

3. (Symmetric cost) The two body cost w is symmetric w(x,y) = w(x, y).

4. (Finite cost) The two body cost function w : X x X — R is everywhere real-valued.
Step 1: Consider the dual problem (it is convex!);
inf < & 4
inf {®(,m)} . (4)
where

() == —(m — 1)/X¢dp+e/XIog (/X'Mexp <Z"Zj’c”>d®’"—lp>dp.

Log-Sum-Exp
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Step 2: Thanks to convexity we have that the minimizers are characterized by Vd)fls(d), 1) = 0. Then, by
differentiate w.r.t. n we obtain

dé

o) = 1D B(o(n). ] 5 TeB(60), ).
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Step 3: The following well-posedness theorem then holds.

Theorem

Let ¢(n) be the solution to the dual problem above for all ) € [0,1]. Then n — ¢(n) is €' and is the
unique solution to the Cauchy problem with ¢(0) = ¢u.

Sketch of the proof:
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Step 2: Thanks to convexity we have that the minimizers are characterized by V¢5>(¢, 1) = 0. Then, by
differentiate w.r.t. n we obtain

S ) = ~1D2.o 860}, )] - V(o). ).

Step 3: The following well-posedness theorem then holds.

Theorem

Let ¢(n) be the solution to the dual problem above for all n € [0,1]. Then 1 — &(n) is C* and is the
unique solution to the Cauchy problem with ¢(0) = ¢

Sketch of the proof:

e The pure second derivatives with respect to ¢ as well as the mixed second derivatives with respect to
¢ and 7 exist and are Lipschitz;

e The Hessian with respect to ¢ is invertible: since the cost is bounded then the potentials are bounded
too ((Guillaume Carlier 2021)). So one can restrict the study of the well-posedness of the ODE on
the set

U={¢|¢x =0, [[¢]|lc < C}.

On this set the functional ® is now strongly convex.
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The algorithm and some numerical
results




The algorithm to compute the ODE solution

e Algorithm to compute the ¢ via explicit Euler method takes the following form:
Require: ¢(0) = ¢

1: while ||+ — ¢()|| <tol do

2: DM .= D%¢¢(¢(k), kh)

3 b= —8—V¢$(¢(k),kh)

€

4: Solve D"z = pk

5. ot = ¢ 4 py

6: end while
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The algorithm to compute the ODE solution

e Algorithm to compute the ¢ via explicit Euler method takes the following form:
Require: ¢(0) = ¢

1: while ||+ — ¢()|| <tol do

2. DW .= D%¢¢(¢(k), kh)

3 b= —8—V¢&>(¢(k),kh)

€

4: Solve Dz = pk)

5. ot = ¢ 4 py

6: end while

Remarks:

e The Euler scheme converges linearly and the uniform error between the discretized solution
obtained via the scheme and the solution to the ODE is O(h);
e Thanks to the regularity of the RHS of the ODE one can apply high order methods.

e At each step k we obtaine the solution of the entropic multi-marginal problem with cost ck!
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Comparison with Sinkhorn

Consider € = 0.006, m = 3, the uniform measure on [0, 1] uniformily discretized with 400 gridpoints,
the pairwise interaction w(x,y) = —log(0.1 + |x — y|) and a reference solution ¢. computed via a
gradient descent algorithm. Then we have the following comparison between the ODE approach and

Sinkhorn in terms of performances

3rd RK 5th RK 8th RK Sinkhorn
relative error 1.47x107% | 7.8 x107° | 7.62x107° | 5.46 x 10°°
iterations 87 87 87 820
CPU time (sec) 72.39 158.9 385.1 102.8

10/15



Some numerical results

e Log cost and support of the coupling 77 ,.

V.4

n=0.25 n=0.75 n=1
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Generalized solutions to incompressible Euler Equations

e Brenier's relaxed formulation consists in finding a probability measure over absolutely continuous
paths which minimizes the average kinetic energy.
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e Brenier's relaxed formulation consists in finding a probability measure over absolutely continuous
paths which minimizes the average kinetic energy.
e The incompressibility at each time t, the distribution of position need be uniform.

e If we consider a uniform discretization of [0, T] (where T is the final time) with m steps in time,
we recover a multi-marginal formulation of the Brenier principle with the specific cost function

2 m—1

m
c(x1,. ..y xm) = 572 Z |xiy1 — x,-\z + B|F(x) — xm\z,
i=1

where B > 0 is a penalization parameter in order to enforce the initial-final constraint.

e If we consider now the ODE setting, we have now to deal with a non symmetric case and so to
solve a system, still well posed, of ODEs. In particular we consider the following ¢, cost

2 m—1

2
m m
(X1, ..oy Xm) = ﬁ‘X2—X1|2+77(2T2 E |X,'+1—X,'|2> +B|F(X1)—Xm|2.
i=2
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At 1 = 1 we plot the coupling ~1,; giving the probability of finding a generalized particle initially at x1
to be at x; at time /.
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At 1 = 1 we plot the coupling ~1,; giving the probability of finding a generalized particle initially at x1

DUDN

t=20 t=1/4 t=1/2 t=3/4

to be at x; at time /.
e F(x)=1-—x

e F(x)=(x+1/2) mod 1

t=1/4 t=1/2 t=23/4 =
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An extension to general (entropic)
multi-marginal problem




Extension to general multi-marginal problems

(joint work with B. Pass and J. Zoen-Git Hiew )

Consider the following "1st" generalization

MOT. =

inf

vEN(pa

.....

Km)

{/C(T]7X17"'aXm)d’Y(X17"'7Xm)+EEnt(’Y ®Im:1 Mi)}a
X

where the cost function is not anymore symmetric but such that ¢(0, x1, ..., xm) give a MOT easy to

solve:

1. ¢(0,x1,. . Xm)
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c(0,x1,...,Xm) =0;

1.
2. ¢(n,x1,...,xm) is the Euler cost;
3.

c(n,x1, 2, %) =

(1 —n)x1 — z|> + 0|z — x3|?, 7 is a 3 marginals coupling with only two fixed

marginals, p1 and p2. Then the z—marginal of v gives the Wasserstein geodesic at time 7.
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Consider the following "1st" generalization

MOT. = inf / c(m,x1, .oy Xm)dy(x1, ..., xm) + eEnt(y] @21 wi) ¢,
YEM(pa,..m) X
where the cost function is not anymore symmetric but such that ¢(0, x1, ..., xm) give a MOT easy to
solve:
1. ¢(0,x1,...,Xm) =0;

2. ¢(n,x1,...,xm) is the Euler cost;

3. c(n,x1,z,x2) = (1 —n)|x1 — z|> + 0|z — x3|, 7 is a 3 marginals coupling with only two fixed
marginals, p1 and p2. Then the z—marginal of v gives the Wasserstein geodesic at time 7.

4. c(n,x1,. -y Xm, 2) = >omy Ni(n)|xi — z|* such that 3°7, X\i(n) = 1 for every  and v is an m + 1
coupling with m fixed marginals. Then at for every n the z—marginal of + is the Wasserstein
barycenter with weights \;(n).
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Extension to general multi-marginal problems

(joint work with B. Pass and J. Zoen-Git Hiew )

Consider the following "2nd" generalization

MOT. = inf / c(n, X1,y xm)dy(xa, ..., xm) + eEnt(y | @21 i) ¢,
YETIQ (p1,eeesftm) X
where TI9(pt1, . . ., ptm) is the set of coupling having 1, ..., jum as marginals and satisfying an

additional constraint [ gdy = 0 for all g € Q where Q be a set of bounded continuous function on X.

e Classical case: Q@ = {0};
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additional constraint [ gdy = 0 for all g € Q where Q be a set of bounded continuous function on X.

e Classical case: Q@ = {0};
e Generalized Euler solution: force v1,m, = (Id, F): L ;
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additional constraint [ gdy = 0 for all g € Q where Q be a set of bounded continuous function on X.

o Classical case: @ = {0};
e Generalized Euler solution: force v1,m = (Id, F);L ;
o Martingale OT: M9(u1, 112) with extra constraint
/q(xl)(xz —x1)dy =0, Vg e Cy(X).
o Multi-period martingale OT: e.g. 3—period M®(u1, 2, 13) with extra constraint

/[q(Xl)(Xz = X1) + h(X1,X2)(X3 = Xz)]d’y = 0., Vq S eb(Xl),Vh S C’b(Xl X Xz)
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Conclusion

Take-home messages:

An ODE to characterize entropic multi-marginal optimal transport;

e It works for symmetric and non symmetric cost;

Regularity allows to use high order methods;

e It allows to interpolate between different costs and for each n € [0, 1] it returns the solution to the
corresponding multi-marginal problems.

Wasserstein geodesics, Barycenter problem and Martingale transport;

Thank You!!
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