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A crash introduction to (multi-marginal)
Optimal Transport



Classical Optimal Transportation Theory

Consider two probability measures µi on Xi ⊆ Rd , and c a cost function (e.g. continuous or l.s.c.), the
Optimal Transport (OT) problem is defined as follows

OT0 := inf

{∫
X
c(x1, x2)dγ(x1, x2) | γ ∈ Π(µ1, µ2)

}
(1)

where Π(µ1, µ2) denotes the set of couplings γ(x1, x2) ∈ P(X ) having µ1 and µ2 as marginals.
• Solution à la Monge the transport plan γ is deterministic (or à la Monge) if γ = (Id ,T )♯µ where
T♯µ1 = µ2.

• Duality:

sup {J(ϕ1, ϕ2) | (ϕ1, ϕ2) ∈ K} . (2)

where

J(ϕ1, ϕ2) :=

∫
X1

ϕ1dµ1 +

∫
X2

ϕ2dµ2

and K is the set of bounded and continuous functions
(ϕ1, ϕ2) such that ϕ1(x1) + ϕ(x2) ≤ c(x1, x2).

1/15



Classical Optimal Transportation Theory

Consider two probability measures µi on Xi ⊆ Rd , and c a cost function (e.g. continuous or l.s.c.), the
Optimal Transport (OT) problem is defined as follows

OT0 := inf

{∫
X
c(x1, x2)dγ(x1, x2) | γ ∈ Π(µ1, µ2)

}
(1)

where Π(µ1, µ2) denotes the set of couplings γ(x1, x2) ∈ P(X ) having µ1 and µ2 as marginals.
• Solution à la Monge the transport plan γ is deterministic (or à la Monge) if γ = (Id ,T )♯µ where
T♯µ1 = µ2.

• Duality:

sup {J(ϕ1, ϕ2) | (ϕ1, ϕ2) ∈ K} . (2)

where

J(ϕ1, ϕ2) :=

∫
X1

ϕ1dµ1 +

∫
X2

ϕ2dµ2

and K is the set of bounded and continuous functions
(ϕ1, ϕ2) such that ϕ1(x1) + ϕ(x2) ≤ c(x1, x2).

1/15



The Multi-Marginal Optimal Transportation

Take (1) m probability measures µi ∈ P(Xi ); (2) c a cost function. Then the multi-marginal OT
problem reads as:

Multi-Marginal Optimal Transport problem
It reads as:

MOT0 := inf
γ∈Π(µ1,...,µm)

∫
X
c(x1, . . . , xm)dγ(x1, . . . , xm) (3)

where Π(µ1, . . . , µm) denotes the set of couplings γ(x1, . . . , xm) having µi as marginals.
• Solution à la Monge: γ = (Id ,T2, . . . ,Tm)♯µ1 where Ti♯µ1 = µi .
• Duality: Both 2 and m marginal OT problems admit a useful dual formulation

Why is it a difficult problem to treat?
Example: m = 3, d = 1, µi = L[0,1] ∀i and c(x1, x2, x3) = |x1 + x2 + x3|2.

• Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);

• ∃ Ti optimal, are not differentiable at any point and they are fractal maps ibid., Thm 4.6
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Why are we interested in MOT?

• The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and
G. Carlier 2011)): statistics, machine learning, image processing;

• Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.

• In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and
Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan γ(x1, . . . , xm) returns the
probability of finding electrons at position x1, . . . , xm;

• Incompressible Euler Equations (Brenier 1989) : γ(ω) gives “the mass of fluid” which follows a
path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).

• Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);

• Risk measures (Ennaji, Mérigot, Luca Nenna, and Pass 2022)

• Martingale transport (JD’s talk), etc
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Entropic Multi-Marginal Optimal
Transport



Definition of the problem

Consider (1) m probability measures µi on Xi ⊆ Rd of dimension di ; (2) a cost function c : X → R+

(e.g. continuous or lsc) where X := ×m
i Xi ;

Entropic Multi-Marginal Optimal Transport problem
It reads as:

MOTε := inf
γ∈Π(µ1,...,µm)

{∫
X
c(x1, . . . , xm) dγ(x1, . . . , xm) + εEnt(γ | ⊗m

i=1 µi )

}
,

where the infimum is taken among all couplings γ having µi as marginals (γ ∈ Π(µ1, . . . , µm)), and
ε > 0 is a small temperature parameter.
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Some remarks:

• m = 2. Classical Entropic Optimal Transport.

• ε = 0 and m = 2. Classical Monge-Kantorovich problem with value MOT0: convex problem, but
may have several solutions γ, Ent(γ | ⊗m

i=1 µi ) may be finite or not!

• ε > 0. Strictly convex cost =⇒ unique solution γε = e−c/ε∏∏∏m
i=1 eϕi/ε with finite entropy

where the ϕi are the optimal dual variables.

• Asymptotics as ε → 0

Theorem ((Luca Nenna and Pegon 2023))

Let µi be compactly supported measures over Xi with L∞ densities. Assume that c ∈ C2(X) and
satisfying a signature condition on second mixed derivatives. Then

MOTε = MOT0 +
1
2

(
m∑
i=1

di −max
i

di

)
ε log(1/ε) + O(ε).
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What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.

Main steps of the work:

1. Introduce a suitable one parameter family of cost functions cη, interpolating between the original
multi-marginal problem and a simpler one whose complexity scales linearly in the number of
marginals;

2. Differentiate the optimality condition of the dual MOTε := supϕ Φ̃(ϕ, η) with respect to η (ε is
now fixed);

3. The solution of the original multi-marginal problem can be now recovered by solving an ordinary
differential equation (ODE) whose initial condition is the solution to the simpler problem;

dϕ
dη

(η) = −[D2
ϕ,ϕΦ̃(ϕ(η), η)]

−1 ∂

∂η
∇ϕΦ̃(ϕ(η), η),

ϕ(0) = ϕw ,

Remark: This method is actually inspired by the one introduced in (G. Carlier, Galichon, and
Santambrogio 2009/10) to compute the Monge solution of the two marginal problem, starting
from the Knothe-Rosenblatt rearrangement.
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The ODE



How to derive the differential equation

Some assumptions to make it simple:

1. (Equal marginals and discrete set) All the marginals are equal µi = ρ =
∑

x∈X ρxδx , where X is a
finite subset.

2. (Pair-wise cost) cη(x1, . . . , xm) := η
∑m

i=2
∑m

j=i+1 w(xi , xj) +
∑∑∑m

i=2 w(x1, xi ).

3. (Symmetric cost) The two body cost w is symmetric w(x , y) = w(x , y).

4. (Finite cost) The two body cost function w : X × X → R is everywhere real-valued.

Step 1: Consider the dual problem (it is convex!);

inf
ϕ

{
Φ̃(ϕ, η)

}
, (4)

where

Φ̃(ϕ, η) := −(m − 1)
∫
X

ϕdρ+ ε

∫
X

log

(∫
Xm−1

exp

(∑m
i=2 ϕ− cη

ε

)
d ⊗m−1 ρ

)
︸ ︷︷ ︸

Log-Sum-Exp

dρ.
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ϕ

{
Φ̃(ϕ, η)

}
, (4)

where

Φ̃(ϕ, η) := −(m − 1)
∫
X

ϕdρ+ ε

∫
X

log

(∫
Xm−1

exp

(∑m
i=2 ϕ− cη

ε

)
d ⊗m−1 ρ

)
︸ ︷︷ ︸

Log-Sum-Exp

dρ.
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Step 2: Thanks to convexity we have that the minimizers are characterized by ∇ϕΦ̃(ϕ, η) = 0. Then, by
differentiate w.r.t. η we obtain

dϕ
dη

(η) = −[D2
ϕ,ϕΦ̃(ϕ(η), η)]

−1 ∂

∂η
∇ϕΦ̃(ϕ(η), η).

Step 3: The following well-posedness theorem then holds.

Theorem

Let ϕ(η) be the solution to the dual problem above for all η ∈ [0, 1]. Then η 7→ ϕ(η) is C1 and is the
unique solution to the Cauchy problem with ϕ(0) = ϕw .

Sketch of the proof:

• The pure second derivatives with respect to ϕ as well as the mixed second derivatives with respect to
ϕ and η exist and are Lipschitz;

• The Hessian with respect to ϕ is invertible: since the cost is bounded then the potentials are bounded
too ((Guillaume Carlier 2021)). So one can restrict the study of the well-posedness of the ODE on
the set

U := {ϕ | ϕx0 = 0, ||ϕ||∞ ≤ C}.
On this set the functional Φ̃ is now strongly convex.
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The algorithm and some numerical
results



The algorithm to compute the ODE solution

• Algorithm to compute the ϕ via explicit Euler method takes the following form:

Require: ϕ(0) = ϕw

1: while ||ϕ(k+1) − ϕ(k)|| <tol do
2: D(k) := D2

ϕ,ϕΦ̃(ϕ
(k), kh)

3: b(k) := − ∂

∂ϵ
∇ϕΦ̃(ϕ

(k), kh)

4: Solve D(k)z = b(k)

5: ϕ(k+1) = ϕ(k) + hz

6: end while

Remarks:

• The Euler scheme converges linearly and the uniform error between the discretized solution
obtained via the scheme and the solution to the ODE is O(h);

• Thanks to the regularity of the RHS of the ODE one can apply high order methods.

• At each step k we obtaine the solution of the entropic multi-marginal problem with cost ckh!
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Comparison with Sinkhorn

Consider ε = 0.006, m = 3, the uniform measure on [0, 1] uniformily discretized with 400 gridpoints,
the pairwise interaction w(x , y) = − log(0.1 + |x − y |) and a reference solution ϕε computed via a
gradient descent algorithm. Then we have the following comparison between the ODE approach and
Sinkhorn in terms of performances

3rd RK 5th RK 8th RK Sinkhorn
relative error 1.47 × 10−5 7.8 × 10−6 7.62 × 10−6 5.46 × 10−6

iterations 87 87 87 820
CPU time (sec) 72.39 158.9 385.1 102.8
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Some numerical results

• Log cost and support of the coupling γη
1,2.

η = 0 η = 0.25 η = 0.75 η = 1

11/15



Generalized solutions to incompressible Euler Equations

• Brenier’s relaxed formulation consists in finding a probability measure over absolutely continuous
paths which minimizes the average kinetic energy.

• The incompressibility at each time t, the distribution of position need be uniform.

• If we consider a uniform discretization of [0,T ] (where T is the final time) with m steps in time,
we recover a multi-marginal formulation of the Brenier principle with the specific cost function

c(x1, . . . , xm) =
m2

2T 2

m−1∑
i=1

|xi+1 − xi |2 + β|F (x1)− xm|2,

where β > 0 is a penalization parameter in order to enforce the initial-final constraint.

• If we consider now the ODE setting, we have now to deal with a non symmetric case and so to
solve a system, still well posed, of ODEs. In particular we consider the following cη cost

cη(x1, . . . , xm) =
m2

2T 2 |x2 − x1|2 + η

(
m2

2T 2

m−1∑
i=2

|xi+1 − xi |2
)
+ β|F (x1)− xm|2.
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At η = 1 we plot the coupling γ1,i giving the probability of finding a generalized particle initially at x1

to be at xi at time i .

• F (x) = 1 − x

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

• F (x) = (x + 1/2) mod 1

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1
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An extension to general (entropic)
multi-marginal problem



Extension to general multi-marginal problems
(joint work with B. Pass and J. Zoen-Git Hiew )

Consider the following "1st" generalization

MOTε := inf
γ∈Π(µ1,...,µm)

{∫
X
c(η, x1, . . . , xm) dγ(x1, . . . , xm) + εEnt(γ | ⊗m

i=1 µi )

}
,

where the cost function is not anymore symmetric but such that c(0, x1, . . . , xm) give a MOT easy to
solve:

1. c(0, x1, . . . , xm) = 0;

2. c(η, x1, . . . , xm) is the Euler cost;

3. c(η, x1, z , x2) = (1 − η)|x1 − z |2 + η|z − x3|2, γ is a 3 marginals coupling with only two fixed
marginals, µ1 and µ2. Then the z−marginal of γ gives the Wasserstein geodesic at time η.

4. c(η, x1, . . . , xm, z) =
∑m

i=1 λi (η)|xi − z |2 such that
∑m

i=1 λi (η) = 1 for every η and γ is an m + 1
coupling with m fixed marginals. Then at for every η the z−marginal of γ is the Wasserstein
barycenter with weights λi (η).
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Extension to general multi-marginal problems
(joint work with B. Pass and J. Zoen-Git Hiew )

Consider the following "2nd" generalization

MOTε := inf
γ∈ΠQ(µ1,...,µm)

{∫
X
c(η, x1, . . . , xm) dγ(x1, . . . , xm) + εEnt(γ | ⊗m

i=1 µi )

}
,

where ΠQ(µ1, . . . , µm) is the set of coupling having µ1, . . . , µm as marginals and satisfying an
additional constraint

∫
qdγ = 0 for all q ∈ Q where Q be a set of bounded continuous function on X .

• Classical case: Q = {0};

• Generalized Euler solution: force γ1,m = (Id ,F )♯L ;
• Martingale OT: ΠQ(µ1, µ2) with extra constraint∫

q(x1)(x2 − x1)dγ = 0, ∀q ∈ Cb(X1).

• Multi-period martingale OT: e.g. 3−period ΠQ(µ1, µ2, µ3) with extra constraint∫
[q(x1)(x2 − x1) + h(x1, x2)(x3 − x2)]dγ = 0, ∀q ∈ Cb(X1), ∀h ∈ Cb(X1 × X2).
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Conclusion

Take-home messages:

• An ODE to characterize entropic multi-marginal optimal transport;

• It works for symmetric and non symmetric cost;

• Regularity allows to use high order methods;

• It allows to interpolate between different costs and for each η ∈ [0, 1] it returns the solution to the
corresponding multi-marginal problems.

• Wasserstein geodesics, Barycenter problem and Martingale transport;

Thank You!!
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