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Microstructures

Using Optimal Transport; we can generate models of the
microstructure of polycrystalline materials.

In particular, steel.
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Microstructures

At the atomic level atoms in steel form lattices:

Figure: A Face-Centered Cubic lattice.
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Microstructures

If we zoom out, the lattices are arranged in grains:

The grains are regions of constant orientation and crystal
structure.

The size and orientation of these grains is a result of its
composition and the way in which its made.

This geometry has a large affect on the steels mechanical
properties.
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Representing Microstructures Mathematically

Given a domain Ω ⊂ Rd and a set of seeds and weights,
(x,w) = {xi ,wi}ni=1 we define a Laguerre Tessellation of Ω
generated by (x,w) to be the collection {Li (x,w)}ni=1 where:

Li (x,w) = {x ∈ Ω : |x − xi |2 − wi ≤ |x − xj |2 − wj for all j}

( , )iix m

iUΩ

Figure: Laguerre Tessellation
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Goals

Goals: Improve steel grades (alloys) and steel-forming processes by
controlling the size and geometry of the grains.

1 Geometric modelling: Use Laguerre Tessellations to model the
structure of steel.

2 Computational Homogenisation: Assign mechanical properties
to each grain. Simulate standard mechanical tests (uni-axial
load, shear).

Today we will be concerned with the first goal.
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Goals

Create models of steel (Laguerre Tessellations) with desirable
properties such as:

Volume Distribution.

Spatial Distribution.

Aspect ratio.
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Goal 1

Goal (Objective)

Find (x,w) such that,

Li (x,w) = vi ,

where vi > 0 is the desired volume of the ith cell.

Question: When is this possible?

Answer Thankfully always! We just need to solve the transport
problem between two suitably chosen measures.
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Link to Semi-Discrete Optimal Transport

Link to Semi-Discrete Optimal
Transport
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Fitting the volumes

The OT problem can be solved (for any collection x = (xi )
n
i=1!)

furthermore the optimal map T can be expressed as following form:

T (x) = argmin |x − xi |2 − w∗
i .

for some w∗ = (w∗
i )

n
i=1 ∈ Rn . The solution is a Laguerre

Tesselation with the desired volumes.

The weights can be found by maximising the dual function:

K(w1, ...,wn) =
n∑

i=1

∫
Li

|x − xi |2 − wi dx +
n∑

i=1

wivi

This is usually done using a damped Newton method. [Kitigawa,
Mergiot, Thibert, 2017]
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Selecting the seeds: LLoyds Algorithm

The problem then becomes how do we choose the seeds? One
approach is to use Lloyd’s algorithm which produces regularised
Laguerre Tessellations:

1 Chose or randomise x
(0)
1 , ..., x

(0)
1

2 Initialisation: Let x
(k)
i be the centroid of the previous

Laguerre cell:

x
(k)
i =

1

L(L(k−1)
i )

∫
L
(k−1)
i

x dx

3 Optimisation: Find w1, ...,wn which maximise K (up to a
tolerance).

Repeat (2)+(3) until k = K .
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Lloyd’s Algorithm
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Figure: Initial Tesselation
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Figure: 20 Iterations
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Lloyd’s Algorithm

Figure: Initial Tesselation Figure: 20 Iterations
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Goals

Create models of steel (Laguerre Tessellations) with desirable
properties such as:

Volume Distribution.

Spatial Distribution.

Aspect ratio.
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Spatial Distribution

Goal (Objective)

Given D = {v,b} where v = (vi )
n
i=1 ∈ Rn

+ and b = (bi )
n
i=1 ∈ Ωn

such that:

n∑
i=1

vi = vΩ,

n∑
i=1

vibi = vΩbΩ,

find

x ∈ argmin
n∑

i=1

|vi (ci (x v)− bi )|2

Which is a non-linear-least-squares problem. Thankfully this
problem is linked to a concave optimisation problem.
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From NLLS to concave optimisation

If we define,

H(x; v) =
1

2
W 2

2 (Ld
Ω, ν(x; v))−

1

2

n∑
i=1

vi |xi |2+
n∑

i=1

vixi ·bi−
1

2

∫
Ω
|x |2 dx .

It can be shown that if xi ̸= xj for distinct i , j then,

∂H

∂xi
= vi (bi − ci (x)) for all i

Therefore we can recast our problem as

find x such that,

xi ̸= xj if i ̸= j ,

x ∈ argmin |∇H(x)|2,
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Spatial Distribution

The objective function H has some useful properties:

Theorem (Properties of H)

Let H be defined as above then the following hold:

H is concave.

H ∈ C1(D) where
D = {x = (x1, ..., xn) ∈ (Rd)n : xi ̸= xj for all i ̸= j}.
The gradient of H is given by,

∇H = vi (bi − ci (x; v))
n
i=1.

If x ∈ D then,

H(x) =
n∑

i=1

vi (bi − ci (x, v)) · xi

If x ∈ D is such that H(x) = 0 then ci (x; v) = bi for all i .
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Issues

Therefore instead we hope solving:

argmax
x∈Rnd

H(x)

is equivalent to the NLLS problem.

What if there does not exist a diagram which fits our data
exactly, is this approach still sensible? In paticular is the
maximum in D
H(0) = 0.

If there exists a tessellation which fits our data, is it unique?

Is the maximum unique?

What conditions can we impose on the data for there to exist
a diagram?
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∄ a diagram case

Lemma (Meyron, 2019)

Given a Laguerre Tesselation with seeds and weights C = {xi ,wi}
if x∗i = λxi + t for λ > 0 and t ∈ Rd then there exists
C ∗ = (x∗i ,w

∗
i ) such that,

Li (C ) = Li (C
∗) for all i .

Applying the above to H we find,

H(λx) = λH(x).

We therefore need to restrict x to a compact set in which H will
see every diagram, since if H(·) > 0 it is unbounded.
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Uniqueness

Theorem (Uniqueness of the Tessellation)

Suppose x, y ∈ D are such that,

ci (x; v) = ci (y; v) for all i ,

Then
Li (x; v) = Li (y; v) for all i .

Proof.

Let T be the optimal transport map between Ld
Ω and ν(x; v).

Define a map S given by,

S(x) = xi if x ∈ Li (y; v)

then since Ld
Ω(S

−1(xi )) = Ld
Ω(Li (Y ; v)) = vi S is admissible for

the transport problem between Ld
Ω and ν(X ; v). Moreover,
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Proof

M(S) =

∫
Ω
|x − S(x)|2 dx

=

∫
Ω
|x |2 dx +

n∑
i=1

∫
L(Y ;v)

|xi |2 − 2x · xi dx

=

∫
Ω
|x |2dx +

n∑
i=1

vi |xi |2 − 2vici (y; v)

=

∫
Ω
|x |2dx +

n∑
i=1

vi |xi |2 − 2vici (x; v) (by assumption)

=

∫
Ω
|x |2dx +

n∑
i=1

∫
L(x)

|xi |2 − 2x · xi dx

=

∫
Ω
|x − T (x)|2 dx = M(T ).
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Theorem

Let g : Rn → R be convex. Suppose that there exists x0 ∈ Rn such
that, for all λ > 0, x ∈ Rn,

g(λ(x − x0) + x0) = λg(x).

(If x0 = 0, then g is 1-positively homogeneous.) Assume that g is
continuously differentiable on Rn \ {x0}. Let R > 0 and
BR = {x ∈ Rn : ∥x − x0∥ ≤ R}. Assume that the global minimum
of g on BR is achieved at a point x∗ ∈ ∂BR . Moreover, assume
that g is 3-times continuously differentiable in a neighbourhood of
x∗ and ker(D2g(x∗)) = spanR{x∗ − x0}. Then x∗ is a local
minimiser of |∇g | on
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Numerical Results

Real Data:

Figure: Data (EBSD) Figure: Model

Figure: Data vs Model, Blue: Target Centroids, Red: Realised Centroids
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Numerical Results

Figure: Simulated Data vs Model
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∄ a diagram case

Figure: Contour plot of H.
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∄ a diagram case

Figure: Contour plot of H.
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Thanks for listening!
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