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CRYSTAL STRUCTURES AND CLUSTER SHAPES

Example: min{x1,...,xN}
∑

i̸=j V(|xi − xj|), Lennard-Jones V(r) = 1
r12 − 1

r6 .

Numerics:

Local structure: triangular lattice.
Global shape: hexagon.

Tóth 1956, Heitmann-Radin 1980: sticky disk model.
Schmidt 2013: fluctuations around hexagon.
Theil 2006: triangular lattice crystallization

Bétermin-De Luca-Petrache 2019: crystal can be Z2 for soft sticky
disc model (robust in V, limit N → ∞). Octagon shape.



WHAT OTHER SHAPES? FOR WHICH BOND GRAPHS?



ISOPERIMETRIC INEQUALITIES

Find H ⊂ Rd such that:
Area(∂H)d

Vol(H)d−1 = min
Ω⊂Rd

Area(∂Ω)d

Vol(Ω)d−1

▶ (Find best CH > 0 such that Area(∂Ω)d ≤ CH Vol(Ω)d−1.)

▶ Extended notion of “area”, depending on norm g on normal
vectors:

Areag(Ω) :=

∫
∂Ω

g(ν(x))dS(x).

Theorem (Wulff 1901)
For Vol as usual and Areag as above, optimizer is

H = {x ∈ Rd : ∀ν, x · ν < g(ν)},

up to dilation/rotation.



DISCRETE SHARP ISOPERIMETRIC INEQUALITY

Setup:

▶ V ⊂ Rd discrete set (allowed atom positions).

▶ G = (V,E) undirected graph (bond graph).

▶ g : E → [0,+∞) weight (boundary bond energies).

Looking for edge-isoperimetric inequalities of the form

∀Ω ⊂ V finite, (♯Ω)d−1 ≤ C(♯g∂Ω)
d := C

 ∑
(x,y)∈

−→
∂Ω

g(x, y)


d

.

▶ “Sharp inequality”: Equality actually achieved for some Ω ⊂ V.

▶ “Interesting case”: Equality achieved for ∞-many values of ♯Ω.



CONTINUUM ISOPERIMETRIC PROOF – 1/3

Strategy 1: PDE + convexity

(Cabré-Ros Oton-Serra 2013, Trudinger 1994) ∆u(x) = Areag(Ω)

Vol(Ω) x ∈ Ω,

∂u
∂ν (x) = g(ν(x)) x ∈ ∂Ω.

Solution exists, is regular and unique up to constant summand.

Γu := {x ∈ Ω : u(y) ≥ u(x) +∇u(x) · (y − x) y ∈ Ω}.

(set of x such that tg. plane to graph(u|Ω) at x supports graph(u|Ω).)



CONTINUUM PROOFS – 2/3

Claim: H ⊂ ∇u(Γu).

▶ p ∈ H
(def .)⇔ p · ν < g(ν) whenever |ν| = 1.

▶ Let x ∈ Ω minimum of u(y)− p · y.

▶ If x ∈ ∂Ω then ∂(u(y)−p·y)
∂ν ≤ 0..

..that is, ∂u
∂ν (x) ≤ p · ν. Contradiction!

▶ So x is interior. It follows:

▶ p = ∇u(x) (critical point),
▶ u(y) ≥ u(x) + p · (y − x), ∀y ∈ Ω

Therefore p ∈ ∇u(Γu), proving the claim.

We get Vol(H) ≤ Vol(∇u(Γu)) =

∫
∇u(Γu)

dp ≤
∫
Γu

det[D2u(x)]dx



CONTINUUM PROOFS – 3/3
Linear algebra: λ1 ≤ λ2 ≤ · · · ≤ λd eigenvalues of D2u(x), then

det[D2u(x)] =
d∏

j=1

λj ≤

1
d

d∑
j=1

λj

d

=

(
tr[D2u(x)]

d

)d

=

(
∆u(x)

d

)d

.

We get Vol(H) ≤ Vol(Γu)
(

∆u(x)
d

)d
, and then we have:

Vol(Γu) ≤ Vol(Ω),
(
∆u(x)

d

)d

=

(
Areag(Ω)

d · Vol(Ω)

)d

.

We get

ddVol(H) ≤
Areag(Ω)

d

Vol(Ω)d−1 .

Use that g(ν(x)) = x · ν(x) on ∂H and divergence theorem:

Areag(H) =

∫
∂H

g(ν(x))dS ∗
=

∫
∂H

x · ν(x)dS =

∫
H

div(x)dx = dVol(H).



THE DISCRETE RESULT

▶ Auxiliary laplacian: ∆u(x) :=
∑

y:{x,y}∈E(u(x)− u(y)).

▶ Solve discrete PDI (discrete PDE not solvable in general)

 ∆u(x) ≤ ♯g
−→
∂Ω

♯Ω for x ∈ Ω

u(y)− u(x) = g(x, y) for (x, y) ∈
−→
∂Ω.

▶ Subdifferential, proximal subdifferential, dual (Wulff) shape:

∂u(x) := {p ∈ Rd : (∀ z ∈ Ω), u(x) ≤ u(z) + p · (x − z)},
∂proxu(x) := {p ∈ Rd : (∀ z : {x, z} ∈ E), u(x) ≤ u(z) + p · (x − z)},

Hg :=
{

p ∈ Rd : (∀(x, y) ∈
−→
∂Ω), p · (y − x) ≤ g(x, y)

}
.



THE DISCRETE RESULT (GOMEZ-PETRACHE, ARXIV)

Vol(Hg)
(a)
≤ Vol

(⋃
x∈Ω

∂u(x)

)
(b)
=
∑
x∈Ω

Vol(∂u(x))
(c)
≤
∑
x∈Ω

Vol(∂proxu(x))

(d)
≤

∑
x∈Ω

cx (∆Au(x))d (e)
≤
(
max
x∈Ω

cx

) (
♯g
−→
∂Ω
)d

(♯Ω)d−1 .

Crucial: “Minkowski” arithmetic-geometric inequality

cx := max

{
Vol

(⋂
v∈V

Hv(cv)

)
:
∑
v∈V

cv = 1

}
,

where

 V = {y − x : {x, y} ∈ E},

cv =
u(y)−u(x)
∆u(x) .

Then we get: Vol(∂proxu(x)) ≤ cx(∆u(x))d.

We can add weights: ∆Wu(x) :=
∑

y∼x W(x, y)(u(y)− u(x)).



THEOREM:
Necessary conditions on u,W,Ω for equality:

▶ (Minkowski constants) (cx)x∈Ω all equal,

▶ (Subdifferential tiling) ∂proxu(x), x ∈ Ω equal volume partition of ∂u(Ω),

▶ (Bond graph shape) G|Ω reciprocal to the above partition,

▶ (Convexity of Ω) Our PDI achieves equality.

Sufficient conditions on G,Ω for equality. (assume Ω ⊂ V connected in G).

▶ The complex made of vertices and edges of G|Ω ∪
−→
∂Ω is reciprocal to the

collection of d- and (d − 1)-cells of an equal-volume Voronoi tessellation of a
convex polyhedron H .

▶ ∃W : E → (0,+∞) symmetric weight, such that W2(x,y)|y−x|
Area(Fx,y)

takes the same

value for all edges {x, y} ∈ E, where Fx,y=facet dual to {x, y}.

Link to optimal transport (Aleksandrov solutions):

▶ u achieves equality ⇔ u = λuAlek + ℓ

for some λ > 0, ℓ : Rd → R affine, and

∂uAlek =

[
Opt. Transp. of

∑
x∈Ω δx
♯Ω

to Ld|H
Vol(H)

, under cost |x − y|2
]

.



EXAMPLES:

▶ Hexagons in Honeycomb graph, and deformations.

▶ Rhombic dodecahedra for skeleton of BCC.



THEOREM (CONSTRUCTION OF EXAMPLES):

▶ (tiling) Assume that we have an equal-volume tiling of Rd by
convex sets.

▶ (alignment) The tiling is obtained by cutting Rd by hyperplanes.

▶ (reciprocal graph) Take the graph G = (V,E) that is reciprocal to
that tiling.

▶ Then we can find weight W : E → (0,+∞) such that for an
infinite family of Ω’s in G the previous criterion shows that they
are isoperimetric shapes.

(Examples: Coxeter hyperplane arrangements.)



PAST RESULTS, UNEXPLORED DIRECTIONS:

▶ Hamamuki 2014: Zd product graph with nearest-neighbor
edges, constant g (cubes optimize).

▶ Gomez-Petrache 2020 sample applications:

▶ Honeycomb graph – hexagons optimize.
▶ The triangular lattice (with g = 1) does not have a sharp

inequality as above, the sharp inequality is:

(♯
−→
∂Ω− 6)2

4♯Ω− ♯
−→
∂Ω+ 2

≥ 12,

optimized only by “perfect hexagons”
(follows by duality with honeycomb graph).



IF YOU WANT TO THINK ABOUT THE PROBLEM:

▶ Aurenhammer 1987, Rybnikov 1999: translation between
liftings, weighted Voronoi tessellations, reciprocal graphs.

▶ Mérigot 2013, Benamou-Froese 2017: link of the above to
semidiscrete optimal transport.

▶ Trudinger 1994: further continuum isoperimetric inequalities
(higher order operators / quermassintegrals).

▶ Isoperimetric constant in graphs: link to new(?) discrete
laplacians in Gomez-Petrache 2020, general Cheeger type
bounds to be explored.

▶ Exotic forms of optimal inequalites in periodic graphs do exist
Continuum limit gives just leading order behavior
(♯Ω)d−1 ≤ C(♯g∂Ω)

d.
Mystery: algebra behind the triangle graph case!


	

