From micro to macro: mean field, hydrodynamic and graph limits

Emmanuel Trélat

Work with Thierry Paul

Numerical methods for optimal transport problems, mean field games, and multi-agent dynamics, Valparaiso, Jan. 2024

Objective

Credits: https://david.li

Understand the relationships between finite particle systems with N agents (usually called microscopic scale models) and their various limits as $N \rightarrow+\infty$:

- kinetic / mean field limit: Vlasov equation (usually called mesoscopic scale)
- probabilistic lift: Liouville equation
- hydrodynamic / graph limit: Euler equation (usually called macroscopic scale)

As a surprising consequence: any (quasi)linear PDE can be obtained as the graph limit of a family of finite particle systems.
specific $\rho(0)$

specific $\rho(0)$

Microscopic particle system

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} G_{i j}^{N}\left(t, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right), \quad i=1, \ldots, N
$$

$\xi_{i}^{N}(t) \in \mathbb{R}^{d}$
$G_{i j}^{N}: \mathbf{R} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbf{R}^{d}$: interaction between the particles i and j

Microscopic particle system

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} G_{i j}^{N}\left(t, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right), \quad i=1, \ldots, N
$$

$\xi_{i}^{N}(t) \in \mathbb{R}^{d}$
$G_{i j}^{N}: \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbf{R}^{d}$: interaction between the particles i and j

Examples:

- Hegselmann-Krause first-order consensus (opinion propagation) model:

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} \sigma_{i j}^{N}\left(\xi_{j}^{N}(t)-\xi_{i}^{N}(t)\right) \quad \sigma_{i j}^{N} \geqslant 0
$$

- Cucker-Smale:

$$
\dot{q}_{i}^{N}(t)=p_{i}^{N}(t), \quad \dot{p}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} a\left(\left\|q_{i}^{N}(t)-q_{j}^{N}(t)\right\|\right)\left(p_{j}^{N}(t)-p_{i}^{N}(t)\right)
$$

- Hamiltonian systems with

$$
H^{N}\left(q_{1}, p_{1}, \ldots, q_{N}, p_{N}\right)=\sum_{j=1}^{N} h_{j}^{N}\left(q_{j}, p_{j}\right)+\frac{1}{N} \sum_{j, k=1}^{N} h_{j k}^{N}\left(q_{j}, p_{j}, q_{k}, p_{k}\right)
$$

Microscopic particle system

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} G_{i j}^{N}\left(t, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right), \quad i=1, \ldots, N
$$

$\xi_{i}^{N}(t) \in \mathbb{R}^{d}$
$G_{i j}^{N}: \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbf{R}^{d}$: interaction between the particles i and j
We make the following crucial assumption:
(G) There exist a complete metric space (Ω, d_{Ω}) and a continuous mapping

$$
\begin{array}{rll}
G: \mathbf{R} \times \Omega \times \Omega \times \mathbf{R}^{d} \times \mathbf{R}^{d} & \rightarrow & \mathbf{R}^{d} \\
\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right) & \mapsto & G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right),
\end{array}
$$

loc. Lip. wrt (ξ, ξ^{\prime}) uniformly wrt (t, x, x^{\prime}) on compact sets, and $\forall N \in \mathbf{N}^{*} \quad \exists x_{1}, \ldots, x_{N} \in \Omega$ s.t.

$$
G\left(t, x_{i}, x_{j}, \xi, \xi^{\prime}\right)=G_{i j}^{N}\left(t, \xi, \xi^{\prime}\right) \quad \forall t \in \mathbb{R} \quad \forall \xi, \xi^{\prime} \in \mathbb{R}^{d} \quad \forall i, j \in\{1, \ldots, N\}
$$

(kind of continuous interpolation)

Microscopic particle system

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} G_{i j}^{N}\left(t, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right), \quad i=1, \ldots, N
$$

$\xi_{i}^{N}(t) \in \mathbb{R}^{d}$
$G_{i j}^{N}: \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbf{R}^{d}$: interaction between the particles i and j
Under (G), the particle system is equivalently written as

$$
\begin{aligned}
\dot{x}_{i}^{N}(t) & =0 \\
\dot{\xi}_{i}^{N}(t) & =\frac{1}{N} \sum_{j=1}^{N} G\left(t, x_{i}^{N}, x_{j}^{N}, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right), \quad i=1, \ldots, N
\end{aligned}
$$

i.e., setting $X^{N}=\left(x_{1}^{N}, \ldots, x_{N}^{N}\right) \in \Omega^{N}$ and $\Xi^{N}(t)=\left(\xi_{1}^{N}(t), \ldots, \xi_{N}^{N}(t)\right)$,

$$
\dot{\Xi}^{N}(t)=Y^{N}\left(t, X^{N}, \Xi^{N}(t)\right)
$$

where $Y^{N}(t, X, \cdot)=\left(Y_{1}^{N}(t, X, \cdot), \ldots, Y_{N}^{N}(t, X, \cdot)\right)$ and $Y_{i}^{N}(t, X, \equiv)=\frac{1}{N} \sum_{j=1}^{N} G\left(t, x_{i}, x_{j}, \xi_{i}, \xi_{j}\right)$ (time-dependent vector field defined on $\left(\mathbf{R}^{d}\right)^{N}$)

Microscopic particle system

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} G_{i j}^{N}\left(t, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right), \quad i=1, \ldots, N
$$

$\xi_{i}^{N}(t) \in \mathbb{R}^{d}$
$G_{i j}^{N}: \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbf{R}^{d}$: interaction between the particles i and j

Let $\left(\Phi^{N}(t, X, \cdot)\right)_{t \in I}(I \subset \mathbb{R})$ be the local-in-time flow of diffeomorphisms of $\mathbb{R}^{d N}$ (particle flow) generated by the time-dependent vector field $Y^{N}(t, X, \cdot)$.

Lemma (uniform maximal time)

$\forall K \subset \Omega \times \mathbb{R}^{d}$ compact, $\quad \exists T_{\max }(K) \in(0,+\infty]$ s.t. $\forall N \in \mathbf{N}^{*}, \forall(X, \equiv(0)) \in K^{N}$, the particle solution $t \mapsto \Phi^{N}(t, X, \equiv(0))$ is well defined on $\left[0, T_{\max }(K)\right)$.
Moreover, $\forall T \in\left[0, T_{\max }(K)\right)$, the set $\Phi^{N}\left([0, T] \times K^{N}\right)$ is contained in a compact subset of \mathbb{R}^{d} depending on T but not on N.

Microscopic particle system

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} G_{i j}^{N}\left(t, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right), \quad i=1, \ldots, N
$$

$\xi_{i}^{N}(t) \in \mathbb{R}^{d}$
$G_{i j}^{N}: \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbf{R}^{d}$: interaction between the particles i and j

Example: for the Hegselmann Krause opinion propagation model:

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} \sigma_{i j}^{N}\left(\xi_{j}^{N}(t)-\xi_{i}^{N}(t)\right)=\frac{1}{N} \sum_{j=1}^{N} \sigma\left(x_{i}^{N}, x_{j}^{N}\right)\left(\xi_{j}^{N}(t)-\xi_{i}^{N}(t)\right)
$$

Assumption (G) requires that:
$\exists \Omega$ and $\sigma \in \mathscr{C}^{0}\left(\Omega^{2}\right)$ s.t. $\forall N \in \mathbf{N}^{*}, \exists x_{1}^{N}, \ldots, x_{N}^{N} \in \Omega$ s.t. $\sigma\left(x_{i}^{N}, x_{j}^{N}\right)=\sigma_{i j}^{N}(\geqslant 0)$.
We have then $G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right)=\sigma\left(x, x^{\prime}\right)\left(\xi^{\prime}-\xi\right)$, and $T_{\max }(K)=+\infty$.

At the end: graph limit

Two points of view

Particle system: $\quad \dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} G\left(t, x_{i}^{N}, x_{j}^{N}, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right), \quad i=1, \ldots, N \rightarrow+\infty$

- Riemann sum limit $\xi_{i}^{N}(t) \simeq y\left(t, x_{i}^{N}\right)$ (graph limit)

$$
\begin{aligned}
& \text { one (deterministic) opinion assigned to each agent } i \\
& \rightsquigarrow \partial_{t} y(t, x)=A(t, y(t, x))=\int_{\Omega} G\left(t, x, x^{\prime}, y(t, x), y\left(t, x^{\prime}\right)\right) d \nu\left(x^{\prime}\right)
\end{aligned}
$$

- Liouville paradigm
random opinion assigned to each agent i
then take marginals (\rightsquigarrow mean field limit)
then take hydrodynamic limit \rightsquigarrow same equation

GRAPH LIMIT $=$ EULER
specific $\rho(0)$

From micro (particle) to macro (Euler): graph limit

Notion of graph limit: introduced by [Medvedev, SIMA 2014] and used recently by:
[Biccari Ko Zuazua, M3AS 2019], [Esposito Patacchini Schlichting Slepcev, ARMA 2021],
[Ayi Pouradier Duteil, JDE 2021], [Boudin Salvarani Trélat, SIMA 2022], [Bonnet Pouradier Duteil Sigalotti, M3AS 2022]

Tagged partition associated with $\nu \in \mathcal{P}(\Omega)$

$\forall N \in \mathbf{N}^{*}$, we say that $\left(\mathcal{A}^{N}, X^{N}\right)$ is a tagged partition of Ω associated with ν if

- $\mathcal{A}^{N}=\left(\Omega_{1}^{N}, \ldots, \Omega_{N}^{N}\right)$ with disjoint subsets $\Omega_{i}^{N} \subset \Omega$ s.t.

$$
\Omega=\bigcup_{i=1}^{N} \Omega_{i}^{N} \quad \text { with } \quad \nu\left(\Omega_{i}^{N}\right)=\frac{1}{N} \quad \text { and } \quad \operatorname{diam}\left(\Omega_{i}^{N}\right) \leqslant \frac{C_{\Omega}}{N^{r}} \quad \forall i
$$

for some $C_{\Omega}>0$ and $r>0$ not depending on N.

- $x^{N}=\left(x_{1}^{N}, \ldots, x_{N}^{N}\right)$ with $x_{i}^{N} \in \Omega_{i}^{N}$.

Riemann sum convergence theorem:

$$
\forall f \nu \text {-Riemann integrable, } \quad \int_{\Omega} f d \nu=\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}^{N}\right)+o(1)
$$

as $N \rightarrow+\infty$.

From micro (particle) to macro (Euler): graph limit

The graph limit (i.e., taking the limit of the Riemann sum) of the particle system

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} G\left(t, x_{i}^{N}, x_{j}^{N}, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right), \quad i=1, \ldots, N
$$

as $N \rightarrow+\infty$ is the

Euler equation

$$
\partial_{t} y(t, x)=A(t, y(t, x))=\int_{\Omega} G\left(t, x, x^{\prime}, y(t, x), y\left(t, x^{\prime}\right)\right) d \nu\left(x^{\prime}\right)
$$

Proposition

Assume Ω compact. Let $\nu \in \mathcal{P}(\Omega)$ and $y^{0} \in L_{\nu}^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$. Set $K=\Omega \times \operatorname{ess} . i m\left(y^{0}\right)$.
The Euler equation has a unique solution on $\left[0, T_{\max }(K)\right)$ such that $y(0, \cdot)=y^{0}(\cdot)$.
(will follow from the next results)

Example: for the Hegselmann-Krause opinion propagation model:

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} \sigma\left(x_{i}^{N}, x_{j}^{N}\right)\left(\xi_{j}^{N}(t)-\xi_{i}^{N}(t)\right)
$$

we have $G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right)=\sigma\left(x, x^{\prime}\right)\left(\xi^{\prime}-\xi\right)$, and the Euler equation (graph limit) is

$$
\partial_{t} y(t, x)=A y(t, x)=\int_{\Omega} \sigma\left(x, x^{\prime}\right)\left(y\left(t, x^{\prime}\right)-y(t, x)\right) d x^{\prime}
$$

Spectral properties of the bounded operator A studied in [Boudin Salvarani Trélat, SIMA 2022]
\Rightarrow consensus results.
specific $\rho(0)$
Liouville
$\partial_{t} \rho+\operatorname{div}_{\Xi}(Y \rho)=0$

From micro to macro: graph limit

Theorem (start with y^{0})

Let $y^{0} \in L_{\nu}^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ and let y solution of Euler s.t. $y(0, \cdot)=y^{0}(\cdot)$.
For any $N \in \mathbf{N}^{*}$, set

$$
y^{N}(t, x)=\sum_{i=1}^{N} \xi_{i}^{N}(t) \mathbb{1}_{\Omega_{i}^{N}}(x)
$$

where $\left(\xi_{1}^{N}(t), \ldots, \xi_{N}^{N}(t)\right)$ solution of the particle system s.t. $\xi_{i}^{N}(0)=y^{0}\left(x_{i}^{N}\right) \quad \forall i$.

- If y^{0} is ν-Riemann integrable then

$$
\left\|y(t, \cdot)-y^{N}(t, \cdot)\right\|_{L^{\infty}\left(\Omega, \mathrm{R}^{d}\right)}=\mathrm{o}(1)
$$

as $N \rightarrow+\infty$, uniformly on compact intervals.

- If G is loc. Lipschitz / $\left(x, x^{\prime}, \xi, \xi^{\prime}\right)$ and y^{0} is Lipschitz then

$$
\left\|y(t, \cdot)-y^{N}(t, \cdot)\right\|_{L^{\infty}\left(\Omega, \mathrm{R}^{d}\right)} \leqslant 2 \frac{C_{\Omega}}{N^{r}}\left(1+\operatorname{Lip}\left(y^{0}\right)\right) e^{2 t \operatorname{Lip}(G)}
$$

From micro to macro: graph limit

A second result is:

Theorem (start with \bar{E}_{0})

$\forall N \in \mathbf{N}^{*}$, let $\equiv_{0}^{N} \in \mathbb{R}^{d N}$ and let $t \mapsto \Xi^{N}(t)=\left(\xi_{1}^{N}(t), \ldots, \xi_{N}^{N}(t)\right) \in \mathbb{R}^{d N}$ solution of the particle system s.t. $\Xi^{N}(0)=\Xi_{0}^{N}$. We set as before

$$
y^{N}(t, x)=\sum_{i=1}^{N} \xi_{i}^{N}(t) \mathbb{1}_{\Omega_{i}^{N}}(x) .
$$

Let y_{N} solution of Euler s.t. $y_{N}(0, \cdot)=y^{N}(0, \cdot)$ (i.e., $y_{N}(0, x)=\xi_{i}^{N}(0)$ if $\left.x \in \Omega_{i}^{N}\right)$. Then:

$$
\left\|y^{N}(t, \cdot)-y_{N}(t, \cdot)\right\|_{L^{\infty}\left(\Omega, \mathrm{R}^{d}\right)}=\mathrm{o}(1)
$$

as $N \rightarrow+\infty$, uniformly on compact intervals.
If moreover G is loc. Lipschitz / $\left(x, x^{\prime}, \xi, \xi^{\prime}\right)$ then

$$
\left\|y^{N}(t, \cdot)-y_{N}(t, \cdot)\right\|_{L^{\infty}\left(\Omega, \mathrm{R}^{d}\right)} \leqslant 2 \frac{C_{\Omega}}{N^{r}} e^{2 t \operatorname{Lip}(G)}
$$

From micro to macro: graph limit

Sketch of proof of the first theorem in the Lipschitz case:
By definition, $\partial_{t} y(t, z)=\int_{\Omega} G\left(t, z, x^{\prime \prime}, y(t, z), y\left(t, x^{\prime \prime}\right)\right) d \nu\left(x^{\prime \prime}\right)$, hence

$$
\begin{aligned}
\partial_{t} y(t, x)-\partial_{t} y\left(t, x^{\prime}\right) & =\int_{\Omega} G\left(t, x, x^{\prime \prime}, y(t, x), y\left(t, x^{\prime \prime}\right)\right) d \nu\left(x^{\prime \prime}\right)-\int_{\Omega} G\left(t, x^{\prime}, x^{\prime \prime}, y(t, x), y\left(t, x^{\prime \prime}\right)\right) d \nu\left(x^{\prime \prime}\right) \\
& +\int_{\Omega} G\left(t, x^{\prime}, x^{\prime \prime}, y(t, x), y\left(t, x^{\prime \prime}\right)\right) d \nu\left(x^{\prime \prime}\right)-\int_{\Omega} G\left(t, x^{\prime}, x^{\prime \prime}, y\left(t, x^{\prime}\right), y\left(t, x^{\prime \prime}\right)\right) d \nu\left(x^{\prime \prime}\right)
\end{aligned}
$$

hence

$$
\left\|\partial_{t}\left(y(t, x)-y\left(t, x^{\prime}\right)\right)\right\| \leqslant L\left(\mathrm{~d}_{\Omega}\left(x, x^{\prime}\right)+\left\|y(t, x)-y\left(t, x^{\prime}\right)\right\|\right)
$$

and therefore

$$
\left\|y(t, x)-y\left(t, x^{\prime}\right)\right\| \leqslant e^{t L}\left(\left\|y^{0}(x)-y^{0}\left(x^{\prime}\right)\right\|+\mathrm{d}_{\Omega}\left(x, x^{\prime}\right)\right)
$$

Hence $y(t)$ has the same regularity (continuity or Lipschitz) as y^{0} and

$$
\operatorname{Lip}(y(t, \cdot)) \leqslant e^{t L}(1+\operatorname{Lip}(y(0, \cdot)))
$$

From micro to macro: graph limit

Set $r_{i}^{N}(t)=y\left(t, x_{i}^{N}\right)-\xi_{i}^{N}(t)$, for $i=1, \ldots, N$. We have
$\dot{r}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N}\left(G\left(t, x_{i}^{N}, x_{j}^{N}, y\left(t, x_{i}^{N}\right), y\left(t, x_{j}^{N}\right)\right)-G\left(t, x_{i}^{N}, x_{j}^{N}, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right)\right)+\epsilon_{i}^{N}(t)$
$r_{i}^{N}(0)=0$, with
$\epsilon_{i}^{N}(t)=\int_{\Omega} G\left(t, x_{i}^{N}, x^{\prime}, y\left(t, x_{i}^{N}\right), y\left(t, x^{\prime}\right)\right) d \nu\left(x^{\prime}\right)-\frac{1}{N} \sum_{j=1}^{N} G\left(t, x_{i}^{N}, x_{j}^{N}, y\left(t, x_{i}^{N}\right), y\left(t, x_{j}^{N}\right)\right)$
discrepancy between integral and Riemann sum, estimated by

$$
\left\|\epsilon_{i}^{N}(t)\right\| \leqslant \frac{C_{\Omega}}{N^{r}} \operatorname{Lip}\left(x^{\prime} \mapsto G\left(t, x_{i}^{N}, x^{\prime}, y\left(t, x_{i}^{N}\right), y\left(t, x^{\prime}\right)\right)\right)
$$

Finally, setting $R^{N}(t)=\left(r_{1}^{N}(t), \ldots, r_{N}^{N}(t)\right)$, we get

$$
\frac{d}{d t}\left\|R^{N}(t)\right\|_{\infty} \leqslant\left\|\dot{R}^{N}(t)\right\|_{\infty} \leqslant L\left(2\left\|R^{N}(t)\right\|_{\infty}+\frac{C_{\Omega}}{N^{r}}\left(1+e^{t L}\left(\operatorname{Lip}\left(y^{0}\right)+1\right)\right)\right)
$$

and the theorem easily follows.
specific $\rho(0)$
Liouville
$\partial_{t} \rho+\operatorname{div}_{\Xi}(Y \rho)=0$

For measures on \mathbb{R}^{d} :
Wasserstein distance:
$\forall \mu_{1}, \mu_{2} \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \quad W_{1}\left(\mu_{1}, \mu_{2}\right)=\sup \left\{\int_{\mathbf{R}^{d}} f d\left(\mu_{1}-\mu_{2}\right) \mid f \in \operatorname{Lip}\left(\mathbb{R}^{d}\right), \operatorname{Lip}(f) \leqslant 1\right\}$
and more generally $W_{p}\left(\mu_{1}, \mu_{2}\right)$ defined with couplings, for every $p \geqslant 1$.

$$
W_{p}\left(\mu_{1}, \mu_{2}\right)=\inf \left\{\left(\int_{E^{2}} \mathrm{~d}_{E}\left(y_{1}, y_{2}\right)^{p} d \Pi\left(y_{1}, y_{2}\right)\right)^{1 / p} \mid \Pi \in \mathcal{P}\left(E^{2}\right),\left(\pi_{1}\right)_{*} \Pi=\mu_{1},\left(\pi_{2}\right)_{*} \Pi=\mu_{2}\right\}
$$

where $\pi_{1}: E^{2} \rightarrow E$ and $\pi_{2}: E^{2} \rightarrow E$ are the canonical projections defined by $\pi_{1}\left(y_{1}, y_{2}\right)=y_{1}$ and $\pi_{2}\left(y_{1}, y_{2}\right)=y_{2}$ for all $\left(y_{1}, y_{2}\right) \in E \times E$. Equivalently,

$$
W_{p}\left(\mu_{1}, \mu_{2}\right)=\inf \left\{\left(\mathbb{E} \mathrm{d}_{\mathbb{E}}\left(Y_{1}, Y_{2}\right)^{p}\right)^{1 / p} \mid \operatorname{law}\left(Y_{1}\right)=\mu_{1}, \operatorname{law}\left(Y_{2}\right)=\mu_{2}\right\}
$$

where the infimum is taken over all possible random variables Y_{1} and Y_{2} (defined on a same probability space, with values in E) having the laws μ_{1} and μ_{2} respectively.

For measures on \mathbb{R}^{d} :
Wasserstein distance:
$\forall \mu_{1}, \mu_{2} \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \quad W_{1}\left(\mu_{1}, \mu_{2}\right)=\sup \left\{\int_{\mathbf{R}^{d}} f d\left(\mu_{1}-\mu_{2}\right) \mid f \in \operatorname{Lip}\left(\mathbb{R}^{d}\right), \operatorname{Lip}(f) \leqslant 1\right\}$
and more generally $W_{p}\left(\mu_{1}, \mu_{2}\right)$ defined with couplings, for every $p \geqslant 1$.

For measures on $\Omega \times \mathbb{R}^{d}$:
Marginal: $\forall \mu \in \mathcal{P}\left(\Omega \times \mathbb{R}^{d}\right)$, its marginal $\nu \in \mathcal{P}(\Omega)$ on Ω is

$$
\nu=\pi_{*} \mu=\mu \circ \pi^{-1} \quad \text { where } \quad \pi: \Omega \times \mathbf{R}^{d} \rightarrow \Omega
$$

$\underline{\text { Disintegration of } \mu \text { wrt } \nu: \quad \mu=\int_{\Omega} \mu_{x} d \nu(x) \quad \text { where } \mu_{x} \in \mathcal{P}\left(\mathbf{R}^{d}\right), ~(x)}$
$L_{\nu}^{1} W_{p}$ distance: $\forall \mu^{1}, \mu^{2} \in \mathcal{P}_{p}\left(\Omega \times \mathbf{R}^{d}\right)$ having the same marginal ν on Ω, we define

$$
\left(W_{p}\left(\mu^{1}, \mu^{2}\right) \leqslant\right) \quad L_{\nu}^{1} W_{p}\left(\mu^{1}, \mu^{2}\right)=\int_{\Omega} W_{p}\left(\mu_{x}^{1}, \mu_{x}^{2}\right) d \nu(x)
$$

Lagrangian viewpoint: mean field limit and Vlasov equation

Mean field

$$
\begin{aligned}
\mathcal{X}[\mu](t, x, \xi) & =\int_{\Omega \times \mathbf{R}^{d}} G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right) d \mu\left(x^{\prime}, \xi^{\prime}\right) \\
& =\int_{\Omega} \int_{\mathbf{R}^{d}} G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right) d \mu_{x^{\prime}}\left(\xi^{\prime}\right) d \nu\left(x^{\prime}\right) \quad \forall(t, x, \xi) \in \mathbf{R} \times \Omega \times \mathbb{R}^{d}
\end{aligned}
$$

Examples:

Hegselmann-Krause model

$$
\mathcal{X}[\mu](t, x, \xi)=\int_{\Omega \times \mathbf{R}^{d}} \sigma\left(x, x^{\prime}\right)\left(\xi^{\prime}-\xi\right) d \mu\left(x^{\prime}, \xi^{\prime}\right)
$$

Cucker-Smale model

$$
\mathcal{X}[\mu](t, x, \xi)=\binom{p}{\int_{\Omega \times \mathbf{R}^{r} \times \mathbf{R}^{r}} a\left(\left\|q-q^{\prime}\right\|\right)\left(p^{\prime}-p\right) d \mu\left(x^{\prime}, \xi^{\prime}\right)}
$$

Lagrangian viewpoint: mean field limit and Vlasov equation

Mean field

$$
\begin{aligned}
\mathcal{X}[\mu](t, x, \xi) & =\int_{\Omega \times \mathbf{R}^{d}} G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right) d \mu\left(x^{\prime}, \xi^{\prime}\right) \\
& =\int_{\Omega} \int_{\mathbf{R}^{d}} G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right) d \mu_{x^{\prime}}\left(\xi^{\prime}\right) d \nu\left(x^{\prime}\right) \quad \forall(t, x, \xi) \in \mathbf{R} \times \Omega \times \mathbb{R}^{d}
\end{aligned}
$$

Vlasov equation

$$
\partial_{t} \mu+\operatorname{div}_{\xi}(\mathcal{X}[\mu] \mu)=0
$$

Equivalently, disintegrating $\mu_{t}=\mu(t)$ as $\mu_{t}=\int_{\Omega} \mu_{t, x} d \nu(x)$:

$$
\partial_{t} \mu_{t, x}+\operatorname{div}_{\xi}\left(\mathcal{X}\left[\mu_{t}\right](t, x, \cdot) \mu_{t, x}\right)=0 \quad \text { for } \nu \text {-almost every } x \in \Omega
$$

Recall that $\operatorname{div}(\mathcal{X} \mu)=L_{\mathcal{X}} \mu$ (Lie derivative of the measure μ) is the measure defined by

$$
\left\langle L_{\mathcal{X}} \mu, f\right\rangle=-\left\langle\mu, L_{\mathcal{X}} f\right\rangle=-\int_{\mathbf{R}^{d}} \mathcal{X} . \nabla f d \mu \quad \forall f \in \mathscr{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right) .
$$

Lagrangian viewpoint: mean field limit and Vlasov equation

Mean field

$$
\begin{aligned}
\mathcal{X}[\mu](t, x, \xi) & =\int_{\Omega \times \mathbf{R}^{d}} G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right) d \mu\left(x^{\prime}, \xi^{\prime}\right) \\
& =\int_{\Omega} \int_{\mathbf{R}^{d}} G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right) d \mu_{x^{\prime}}\left(\xi^{\prime}\right) d \nu\left(x^{\prime}\right) \quad \forall(t, x, \xi) \in \mathbf{R} \times \Omega \times \mathbb{R}^{d}
\end{aligned}
$$

Vlasov equation

$$
\partial_{t} \mu+\operatorname{div}_{\xi}(\mathcal{X}[\mu] \mu)=0
$$

Concept of solution:

- $\mathscr{C}_{\text {comp }}^{0}\left([0, T), \mathcal{P}_{c}\left(\Omega \times \mathbf{R}^{d}\right)\right)=$ set of $\mu \in \mathscr{C}^{0}\left([0, T), \mathcal{P}_{c}\left(\Omega \times \mathbf{R}^{d}\right)\right)$ that are equi-compactly supported on any compact interval of $[0, T)$, i.e.:

$$
\forall t_{1} \in(0, T) \quad \exists K \subset \Omega \times \mathbb{R}^{d} \quad \mid \quad \operatorname{supp}(\mu(t)) \subset K \quad \forall t \in\left[0, t_{1}\right] .
$$

- A solution $t \mapsto \mu(t)$ of Vlasov on $[0, T)$ such that $\mu(0)=\mu_{0} \in \mathcal{P}_{c}\left(\Omega \times \mathbf{R}^{d}\right)$ is a $\mu \in \mathscr{C}_{\text {comp }}^{0}\left([0, T), \mathcal{P}_{c}\left(\Omega \times \mathbf{R}^{d}\right)\right)$ s.t. $\quad \forall g \in C_{c}^{\infty}\left(\Omega \times \mathbf{R}^{d}\right), \quad t \mapsto \int g d \mu_{t}$ is AC on $[0, T)$ and

$$
\int_{\Omega \times \mathrm{R}^{d}} g d \mu_{t}=\int_{\Omega \times \mathrm{R}^{d}} g d \mu_{0}+\int_{0}^{t} \int_{\left(\Omega \times \mathrm{R}^{d}\right)^{2}}\left\langle\nabla_{\xi} g(x, \xi), G\left(\tau, x, x^{\prime}, \xi, \xi^{\prime}\right)\right\rangle d \mu_{\tau}\left(x^{\prime}, \xi^{\prime}\right) d \mu_{\tau}(x, \xi) d \tau
$$

specific $\rho(0)$
Liouville
$\partial_{t} \rho+\operatorname{div}_{\Xi}(Y \rho)=0$

Lagrangian viewpoint: mean field limit and Vlasov equation

Theorem: existence, uniqueness and stability for Vlasov

1. $\forall \mu_{0} \in \mathcal{P}_{c}\left(\Omega \times \mathbf{R}^{d}\right) \exists!\mu \in \mathscr{C}^{0}\left(\left[0, T_{0}\right), \mathcal{P}_{c}\left(\Omega \times \mathbb{R}^{d}\right)\right)$ (with $\left.T_{0}=T_{\max }\left(\operatorname{supp}\left(\mu_{0}\right)\right)\right)$ solution of Vlasov s.t. $\mu(0)=\mu_{0}$, locally Lipschitz / t for the distance W_{p}.

We have

$$
\mu(t)=\varphi_{\mu_{0}}(t)_{*} \mu_{0}
$$

meaning that $\mu_{t, x}=\varphi_{\mu_{0}}(t, x, \cdot)_{*} \mu_{0, x} \quad \forall t \in\left[0, T_{0}\right)$ and ν-a.e. $x \in \Omega$, where $t \mapsto \varphi_{\mu_{0}}(t, x, \cdot)$ is the unique solution (Vlasov flow) of

$$
\begin{aligned}
\partial_{t} \varphi_{\mu_{0}}(t, x, \cdot) & =\mathcal{X}[\mu(t)](t, x, \cdot) \circ \varphi_{\mu_{0}}(t, x, \cdot) \\
\varphi_{\mu_{0}}(0, x, \cdot) & =\operatorname{id}_{\mathrm{R}^{d}} \quad \text { for } \nu \text {-a.e. } x \in \Omega .
\end{aligned}
$$

Moreover, if $\mu_{0} \in \mathcal{P}_{c}^{a c}\left(\Omega \times \mathbf{R}^{d}\right)$ then $\mu(t) \in \mathcal{P}_{c}^{a c}\left(\Omega \times \mathbf{R}^{d}\right)$ for every $t \in\left[0, T_{0}\right)$.

Lagrangian viewpoint: mean field limit and Vlasov equation

Theorem: existence, uniqueness and stability for Vlasov

1. $\forall \mu_{0} \in \mathcal{P}_{c}\left(\Omega \times \mathbf{R}^{d}\right) \exists!\mu \in \mathscr{C}^{0}\left(\left[0, T_{0}\right), \mathcal{P}_{c}\left(\Omega \times \mathbb{R}^{d}\right)\right)$ (with $\left.T_{0}=T_{\max }\left(\operatorname{supp}\left(\mu_{0}\right)\right)\right)$ solution of Vlasov s.t. $\mu(0)=\mu_{0}$, locally Lipschitz / t for the distance W_{p}.

Moreover:
1.1. For equi-compactly supported sequences:

$$
W_{p}\left(\mu^{k}(0), \mu(0)\right) \rightarrow 0 \Rightarrow W_{p}\left(\mu^{k}(t), \mu(t)\right) \rightarrow 0 .
$$

1.2. For all solutions μ^{1}, μ^{2} on $[0, T]$ of Vlasov having the same marginal ν,

$$
L_{\nu}^{1} W_{p}\left(\mu^{1}(t), \mu^{2}(t)\right) \leqslant C e^{t \operatorname{Lip}} \xi_{, \xi^{\prime}}(G) L_{\nu}^{1} W_{p}\left(\mu^{1}(0), \mu^{2}(0)\right) \quad \forall t \in[0, T]
$$

2. If G is locally Lipschitz / $\left(x, x^{\prime}, \xi, \xi^{\prime}\right)$ then for all solutions μ^{1}, μ^{2} of Vlasov,

$$
W_{p}\left(\mu^{1}(t), \mu^{2}(t)\right) \leqslant C e^{t L i_{x, x^{\prime}} \xi, \xi^{\prime}(G)} W_{p}\left(\mu^{1}(0), \mu^{2}(0)\right) \quad \forall t \in[0, T]
$$

(classical Dobrushin estimate)

Lagrangian viewpoint: mean field limit and Vlasov equation

Relation between Vlasov and the particle system: as usual with empirical measures

$$
\mu_{\left(X^{N}, \equiv N\right)}^{e}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}^{N}} \otimes \delta_{\xi_{i}^{N}}
$$

with $X^{N}=\left(x_{1}^{N}, \ldots, x_{N}^{N}\right) \in \Omega^{N} \quad$ and $\quad \Xi^{N}=\left(\xi_{1}^{N}, \ldots, \xi_{N}^{N}\right) \in \mathbf{R}^{d N}$.

Proposition

$t \mapsto \Xi^{N}(t)$ with $X^{N} \in \Omega^{N}$ solution of the particle system $\Rightarrow t \mapsto \mu_{\left(X^{N}, \Xi^{N}(t)\right)}^{e}$ solution of Vlasov. Converse true if all x_{i}^{N} and all $\xi_{i}^{N}(t)$ are distinct.

Corollary

$$
W_{p}\left(\mu_{\left(X^{N}, \equiv_{0}^{N}\right)}^{e}, \mu_{0}\right) \rightarrow 0 \text { as } N \rightarrow+\infty \Rightarrow W_{p}\left(\mu_{\left(X^{N}, \Xi^{N}(t)\right)}^{e}, \mu(t)\right) \rightarrow 0 \text { as } N \rightarrow+\infty .
$$

(with estimates if G is locally Lipschitz with respect to $\left(x, x^{\prime}, \xi, \xi^{\prime}\right)$)
specific $\rho(0)$

Lagrangian viewpoint: mean field limit and Vlasov equation

Sketch of proof of the theorem:
Given $\mu_{0} \in \mathcal{P}_{c}\left(\Omega \times \mathbf{R}^{d}\right)$, consider a sequence of empirical measures

$$
\mu_{\left(X^{N}, \equiv_{0}^{N}\right)}^{e}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}^{N}} \otimes \delta_{\xi_{0, i}^{N}} \rightharpoonup \mu_{0} \quad \text { as } N \rightarrow+\infty
$$

with $\left(X^{N}, \Xi_{0}^{N}\right) \in\left(\operatorname{supp}\left(\mu_{0}\right)\right)^{N}$, where $X^{N}=\left(x_{1}^{N}, \ldots, x_{N}^{N}\right)$ and $\Xi_{0}^{N}=\left(\xi_{1}^{N}, \ldots, \xi_{N}^{N}\right)$.
Let $\Xi^{N}(t)=\left(\xi_{1}^{N}(t), \ldots, \xi_{N}^{N}(t)\right)$ be the solution of the particle system s.t. $\Xi^{N}(0)=\Xi_{0}^{N}$. It is defined on $[0, T]$ for every $T \in\left(0, T_{\max }\left(\operatorname{supp}\left(\mu_{0}\right)\right)\right)$. Then

$$
\mu_{\left(X^{N}, \equiv^{N}(t)\right)}^{e}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}^{N}} \otimes \delta_{\xi_{i}^{N}(t)}
$$

is solution on $[0, T]$ of Vlasov $\partial_{t} \mu+L_{\mathcal{X}[\mu]} \mu=0$, and

$$
\exists K \subset \Omega \times \mathbb{R}^{d} \text { compact s.t. } \quad \operatorname{supp}\left(\mu_{\left(X^{N}, \equiv N(t)\right)}^{e}\right) \subset K \quad \forall t \in[0, T] \quad \forall N \in \mathbf{N}^{*}
$$

Up to subsequence: $\mu_{\left(X^{N}, \equiv^{N}(\cdot)\right)}^{e} \rightharpoonup \mu \in L^{\infty}\left([0, T], \mathcal{M}^{1}\left(\Omega \times \mathbf{R}^{d}\right)\right)$ in weak star topology.

Lagrangian viewpoint: mean field limit and Vlasov equation

By classical functional analysis arguments:

Lemma

Let $K \subset \Omega \times \mathbb{R}^{d}$ compact, $\mu_{0} \in \mathcal{P}_{c}(K)$ and $T>0$. Consider a sequence of solutions $\mu^{k} \in \mathscr{C}^{0}\left([0, T], \mathcal{P}_{c}(K)\right)$ of Vlasov $\partial_{t} \mu^{k}+L_{\mathcal{X}\left[\mu^{k}\right]} \mu^{k}=0$ such that, as $k \rightarrow+\infty$:

- $\mu^{k}(0)$ converges weakly to μ_{0},
- μ^{k} converges to $\mu \in L^{\infty}\left([0, T], \mathcal{M}^{1}\left(\Omega \times \mathbb{R}^{d}\right)\right)$ for the weak star topology.

Then $\mu \in C^{0}\left([0, T], \mathcal{P}_{c}(K)\right)$ and $t \mapsto \mu(t)$ is Lipschitz in W_{p} distance and is the solution of Vlasov $\partial_{t} \mu+L_{\mathcal{X}[\mu]} \mu=0$ s.t. $\mu(0)=\mu_{0}$.
Moreover, $W_{p}\left(\mu^{k}(t), \mu(t)\right) \rightarrow 0$ uniformly wrt $t \in[0, T]$.

Therefore: we conclude existence (not yet uniqueness).

Lagrangian viewpoint: mean field limit and Vlasov equation

Uniqueness follows from Gronwall type arguments using that:

- On the one part, for all $\mu^{1}, \mu^{2} \in \mathcal{P}_{c}\left(\Omega \times \mathbb{R}^{d}\right)$

$$
\begin{aligned}
\left\|\mathcal{X}\left[\mu^{1}\right](t, x, \xi)-\mathcal{X}\left[\mu^{2}\right](t, x, \xi)\right\| & =\left\|\int_{\Omega \times \mathbf{R}^{d}} G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right) d\left(\mu^{1}\left(x^{\prime}, \xi^{\prime}\right)-\mu^{2}\left(x^{\prime}, \xi^{\prime}\right)\right)\right\| \\
\leqslant & \operatorname{Lip}\left(G(t, x, \cdot, \xi, \cdot)_{\mid S}\right) W_{1}\left(\mu^{1}, \mu^{2}\right) \\
& \quad \text { where } S=\operatorname{supp}\left(\mu^{1}\right) \cup \operatorname{supp}\left(\mu^{2}\right) \text { (compact set). }
\end{aligned}
$$

And for all $\mu^{1}, \mu^{2} \in \mathcal{P}_{c}\left(\Omega \times \mathbb{R}^{d}\right)$ having the same marginal $\nu \in \mathcal{P}_{c}(\Omega)$ on Ω,

$$
\begin{aligned}
\left\|\mathcal{X}\left[\mu^{1}\right](t, x, \xi)-\mathcal{X}\left[\mu^{2}\right](t, x, \xi)\right\| & =\left\|\int_{\Omega} \int_{\mathbf{R}^{d}} G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right) d\left(\mu_{x^{\prime}}^{1}\left(\xi^{\prime}\right)-\mu_{x^{\prime}}^{2}\left(\xi^{\prime}\right)\right) d \nu\left(x^{\prime}\right)\right\| \\
& \leqslant \max _{x^{\prime} \in \operatorname{supp}(\nu)} \operatorname{Lip}\left(G\left(t, x, x^{\prime}, \xi, \cdot\right)_{\mid S_{x^{\prime}}}\right) L_{\nu}^{1} W_{1}\left(\mu^{1}, \mu^{2}\right)
\end{aligned}
$$

where $S_{x^{\prime}}=\operatorname{supp}\left(\mu_{x^{\prime}}^{1}\right) \cup \operatorname{supp}\left(\mu_{x^{\prime}}^{2}\right)$ (compact) and $L_{\nu}^{1} W_{1}\left(\mu^{1}, \mu^{2}\right)=\int_{\Omega} W_{1}\left(\mu_{x^{\prime}}^{1}, \mu_{x^{\prime}}^{2}\right) d \nu\left(x^{\prime}\right)$.

Lagrangian viewpoint: mean field limit and Vlasov equation

- On the other part:

Lemma (Propagation)

For $i=1,2$, let $Y^{i}(t, \lambda, \cdot)$ be a continuous time-varying vector field on E (Banach), depending on the parameter $\lambda \in \Lambda$ (Polish space), locally Lipschitz with respect to $(\lambda, y) \in \Lambda \times E$ uniformly with respect to t on any compact interval, generating a flow:

$$
\begin{aligned}
\partial_{t} \Phi^{i}\left(t, t_{0}, \lambda, y\right) & =Y^{i}\left(t, \lambda, \Phi^{i}\left(t, t_{0}, \lambda, y\right)\right) \\
\Phi^{i}\left(t_{0}, t_{0}, \lambda, y\right) & =y \quad \forall t_{0} \in \mathbf{R}, y \in E, \lambda \in \Lambda .
\end{aligned}
$$

Given any $\mu^{1}\left(t_{0}\right), \mu^{2}\left(t_{0}\right) \in \mathcal{P}_{c}(\Lambda \times E)$, set $\mu_{t}^{i}=\mu^{i}(t)=\Phi^{i}\left(t, t_{0}\right) * \mu^{i}\left(t_{0}\right)$. Then:

$$
W_{p}\left(\mu^{1}(t), \mu^{2}(t)\right) \leqslant e^{\left(t-t_{0}\right) L\left(\left[t_{0}, t\right]\right)} W_{p}\left(\mu^{1}\left(t_{0}\right), \mu^{2}\left(t_{0}\right)\right)+M\left(\left[t_{0}, t\right]\right) \frac{e^{\left(t-t_{0}\right) L\left(\left[t_{0}, t\right]\right)}-1}{L\left(\left[t_{0}, t\right]\right)}
$$

where $L\left(\left[t_{0}, t\right]\right)=\max _{t_{0} \leqslant \tau \leqslant t} \operatorname{Lip}\left(Y^{1}(\tau, \cdot, \cdot)_{\mid S(\tau)}\right)$,

$$
\begin{aligned}
& S(t)=\left(\operatorname{supp}\left(\nu^{1}\right) \cup \operatorname{supp}\left(\nu^{2}\right)\right) \times \Phi^{1}\left(t, t_{0}, \operatorname{supp}\left(\mu^{1}\left(t_{0}\right)\right) \cup \operatorname{supp}\left(\mu^{2}\left(t_{0}\right)\right)\right) \cup \operatorname{supp}\left(\mu^{2}(t)\right), \\
& M\left(\left[t_{0}, t\right]\right)=\max \left\{\left\|Y^{1}(\tau, \lambda, y)-Y^{2}(\tau, \lambda, y)\right\|_{E} \mid t_{0} \leqslant \tau \leqslant t,(\lambda, y) \in \operatorname{supp}\left(\mu^{2}(\tau)\right)\right\} .
\end{aligned}
$$

specific $\rho(0)$

Eulerian viewpoint: Liouville equation

Recall that the particle system

$$
\dot{\xi}_{i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} G\left(t, x_{i}^{N}, x_{j}^{N}, \xi_{i}^{N}(t), \xi_{j}^{N}(t)\right), \quad i=1, \ldots, N
$$

is equivalently written as

$$
\dot{\Xi}^{N}(t)=Y^{N}\left(t, X^{N}, \Xi^{N}(t)\right)=\left(Y_{1}^{N}\left(t, X^{N}, \Xi^{N}(t)\right), \ldots, Y_{N}^{N}\left(t, X^{N}, \Xi^{N}(t)\right)\right)
$$

with

$$
\begin{gathered}
X^{N}=\left(x_{1}^{N}, \ldots, x_{N}^{N}\right), \quad \Xi^{N}(t)=\left(\xi_{1}^{N}(t), \ldots, \xi_{N}^{N}(t)\right) \\
Y_{i}^{N}(t, X, \equiv)=\frac{1}{N} \sum_{j=1}^{N} G\left(t, x_{i}, x_{j}, \xi_{i}, \xi_{j}\right)
\end{gathered}
$$

Recall that the particle flow $\left(\Phi^{N}(t, X, \cdot)\right)_{t \in I}(I \subset \mathbb{R})$ is the local-in-time flow of diffeomorphisms of $\mathbf{R}^{d N}$ generated by the time-dependent vector field $Y^{N}(t, X, \cdot)$.

Eulerian viewpoint: Liouville equation

Proposition

Solutions $\rho \in \mathscr{C}^{0}\left([0, T], \mathcal{P}_{c}\left(\Omega^{N} \times \mathbf{R}^{d N}\right)\right)$ of the (N-body) Liouville equation

$$
\partial_{t} \rho+\operatorname{div}_{\equiv}(Y \rho)=0
$$

(usual transport equation on $\mathbf{R}^{d N}$) are given by pushforward under the particle flow:

$$
\rho(t)=\Phi(t)_{*} \rho(0)
$$

Embedding particles to Liouville

$t \mapsto \Xi^{N}(t)$ solution of the particle system $\Leftrightarrow t \mapsto \rho^{N}(t)=\delta_{X^{N}} \otimes \delta_{\Xi^{N}(t)}$ solution of Liouville.

Probabilistic interpretation: while $\Xi^{N}(t)$ (particle) is deterministic, $\rho_{t}^{N}(X, \equiv)$ is the probability that at time t each particle i be at $\left(x_{i}, \xi_{i}\right), i=1, \ldots, N$. Here: $\rho_{t}^{N}=$ probability on the big space $\left(\Omega \times \mathbb{R}^{d}\right)^{N}$.
\neq mean field limit $\left(\mu(t)=\right.$ probability measure on $\left.\Omega \times \mathbb{R}^{d}\right)$ in which we take the limit of the average over all particles but one.

Recovering Vlasov from Liouville by taking marginals

Objective: search for a relationship between $\mu(t)$ and $\rho^{N}(t)$ by taking marginals of $\rho^{N}(t)$. (cf Jabin 2014 and Golse Mouhot Paul 2016 in quantum mechanics)

Let $\mu_{0}=\int_{\Omega} \mu_{0, x} d \nu(x) \in \mathcal{P}_{c}\left(\Omega \times \mathbf{R}^{d}\right)$. We take
(i) either $\rho_{0}^{N}=\delta_{X^{N}} \otimes \delta_{\Xi_{0}^{N}}$ (Dirac) s.t. $\mu_{\left(X^{N}, \equiv_{0}^{N}\right)}^{e} \rightharpoonup \mu_{0}$,
(ii) or $\rho_{0}^{N}=\delta_{x_{1}^{N}} \otimes \cdots \delta_{x_{N}^{N}} \otimes \mu_{0, x_{1}^{N}} \otimes \cdots \otimes \mu_{0, x_{N}^{N}}$ (semi-Dirac) assuming that $x \mapsto \mu_{0, x}$ is ν-a.e. continuous for W_{1}.

Let $\rho^{N}(t)_{N: k}^{S}$ be the $k^{\text {th }}$-order marginal of the symmetrization of $\rho^{N}(t)$.

Theorem (propagation of chaos)

1. $\forall k \in \mathbf{N}^{*} \quad W_{p}\left(\rho(t)_{N: k}^{S}, \mu(t)^{\otimes k}\right) \rightarrow 0 \quad$ as $N \rightarrow+\infty$.
2. If moreover G is locally Lipschitz / $\left(x, x^{\prime}, \xi, \xi^{\prime}\right)$ and, in case (ii), $x \mapsto \mu_{0, x}$ is Lipschitz then

$$
W_{p}\left(\rho(t)_{N: k}^{S}, \mu(t)^{\otimes k}\right) \leqslant C e^{t \operatorname{Lip}(G)} \frac{1}{N^{r / p}} \quad \forall k \in\left\{1, \ldots, N^{(1-r) / 2}\right\}
$$

with $r=1 /(n+d)$ if Ω is a n-dimensional manifold
(Lipschitz constant estimated on the supports)
The proof uses some combinatorial arguments combined with Wasserstein estimates.

From Vlasov to Euler: hydrodynamic limit

Hydrodynamic limit: (see Spohn 1991)
Given any $\mu=\int_{\Omega} \mu_{x} d \nu(x) \in \mathcal{P}\left(\Omega \times \mathbb{R}^{d}\right)$, the three macroscopic quantities that are usually considered in the hydrodynamic limit procedure are the three first moments of the measure μ with respect to ξ :

- (order 0) total mass $\rho(x) \geqslant 0$ of μ_{x} :

$$
\rho(x)=\int_{\mathbf{R}^{d}} d \mu_{x}(\xi)=\mu_{x}\left(\mathbb{R}^{d}\right)=1 \quad \text { for } \nu \text {-a.e. } x \in \Omega
$$

(uninteresting here)

- (order 1) "speed" $y(x) \in \mathbf{R}^{d}$:

$$
\rho(x) y(x)=\int_{\mathrm{R}^{d}} \xi d \mu_{x}(\xi)
$$

(expectation of any random law of probability distribution μ_{X})

- (order 2) "temperature" $T(x) \geqslant 0$:

$$
d \rho(x) T(x)=\int_{\mathbf{R}^{d}}\|\xi-y(x)\|^{2} d \mu_{x}(\xi)
$$

(variance)

From Vlasov to Euler: hydrodynamic limit

Given any solution $\mu(\cdot)$ of Vlasov, we define its moment of order 1 ("speed") by

$$
y(t, x)=\int_{\mathbf{R}^{d}} \xi d \mu_{t, x}(\xi)
$$

Using the Vlasov equation, we have

$$
\begin{aligned}
\partial_{t} y(t, x) & =\left\langle\partial_{t} \mu_{t, x}, \xi \mapsto \xi\right\rangle \\
& =\left\langle\mu_{t, x}, L_{\mathcal{X}}\left[\mu_{t}\right](t, x, \cdot)\right. \\
& =\int_{\mathbf{R}^{d}} \mathcal{X}\left[\mu_{t}\right](t, x, \xi) d \mu_{t, x}(\xi) \\
& =\int_{\mathbf{R}^{d}} \int_{\Omega \times \mathbf{R}^{d}} G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right) d \mu_{t}\left(x^{\prime}, \xi^{\prime}\right) d \mu_{t, x}(\xi) .
\end{aligned}
$$

(kind of "mean" mean field, since the mean field is now averaged under $\mu_{t, x}$)

From Vlasov to Euler: hydrodynamic limit

Given any solution $\mu(\cdot)$ of Vlasov, we define its moment of order 1 ("speed") by

$$
y(t, x)=\int_{\mathbf{R}^{d}} \xi d \mu_{t, x}(\xi)
$$

Consequence:

Hegselmann-Krause model: linear Euler equation

When $G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right)=\sigma\left(x, x^{\prime}\right)\left(\xi^{\prime}-\xi\right)$ we have the Euler equation

$$
\partial_{t} y(t, x)=A y(t, x)=\int_{\Omega} \sigma\left(x, x^{\prime}\right)\left(y\left(t, x^{\prime}\right)-y(t, x)\right) d \nu\left(x^{\prime}\right)
$$

Proof:

$$
\begin{aligned}
\partial_{t} y(t, x)= & \underbrace{\int_{\mathbf{R}^{d}} d \mu_{t, x}(\xi)}_{=1} \int_{\Omega} \sigma\left(x, x^{\prime}\right) \underbrace{\int_{\mathbf{R}^{d}} \xi^{\prime} d \mu_{t, x^{\prime}}\left(\xi^{\prime}\right)}_{=y\left(t, x^{\prime}\right)} d \nu\left(x^{\prime}\right) \\
& -\underbrace{\int_{\mathbf{R}^{d}} \xi d \mu_{t, x}(\xi)}_{=y(t, x)} \int_{\Omega} \sigma\left(x, x^{\prime}\right) \underbrace{\int_{\mathbf{R}^{d}} d \mu_{t, x^{\prime}}\left(\xi^{\prime}\right)}_{=1} d \nu\left(x^{\prime}\right)
\end{aligned}
$$

From Vlasov to Euler: hydrodynamic limit

Given any solution $\mu(\cdot)$ of Vlasov, we define its moment of order 1 ("speed") by

$$
y(t, x)=\int_{\mathbf{R}^{d}} \xi d \mu_{t, x}(\xi)
$$

In the general case, no closed equation (hierarchy of coupled moments).
Given ν, we define the ν-monokinetic measure

$$
\mu_{y}^{\nu}=\nu \otimes \delta_{y(\cdot)}
$$

Monokinetic case

$$
t \mapsto \mu(t)=\mu_{y(t, \cdot)}^{\nu} \in \mathcal{P}_{c}\left(\Omega \times \mathbb{R}^{d}\right) \text { is solution of Vlasov }
$$

$\Leftrightarrow t \mapsto y(t, \cdot) \in L_{\nu}^{\infty}\left(\Omega, \mathbf{R}^{d}\right)$ is solution of the (nonlinear) Euler equation

$$
\partial_{t} y(t, x)=A(t, y(t, x))=\int_{\Omega} G\left(t, x, x^{\prime}, y(t, x), y\left(t, x^{\prime}\right)\right) d \nu\left(x^{\prime}\right)
$$

Indeed, when $\mu_{t}=\mu_{y(t, \cdot)}^{\nu}$, we have $\mathcal{X}\left[\mu_{t}\right](t, x, \xi)=\int_{\Omega} G\left(t, x, x^{\prime}, \xi, y\left(t, x^{\prime}\right)\right) d \nu\left(x^{\prime}\right)$.
specific $\rho(0)$

From Vlasov to Euler: hydrodynamic limit

Moment of order 2 ("temperature"):

$$
T(t, x)=\frac{1}{d} \int_{\mathbf{R}^{d}}\|\xi-y(t, x)\|^{2} d \mu_{t, x}(\xi) \quad \forall x \in \Omega
$$

Assume that $\|\cdot\|$ is Euclidean.

$$
\begin{aligned}
\partial_{t} T(t, x) & =\frac{1}{d}\left\langle\partial_{t} \mu_{t, x}, \xi \mapsto\|\xi-y(t, x)\|^{2}\right\rangle-\underbrace{\frac{2}{d}\left\langle\mu_{t, x},\left\langle\xi-y(t, x), \partial_{t} y(t, x)\right\rangle_{\mathbf{R}^{d}}\right\rangle}_{=0} \\
& =\frac{2}{d}\left\langle\mu_{t, x}, \xi \mapsto\left\langle\xi-y(t, x), \mathcal{X}\left[\mu_{t}\right](t, x, \xi)\right\rangle_{\mathbf{R}^{d}}\right\rangle \\
& =\frac{2}{d} \int_{\mathbf{R}^{d}}\left\langle\xi-y(t, x), \mathcal{X}\left[\mu_{t}\right](t, x, \xi)\right\rangle_{\mathbf{R}^{d}} d \mu_{t, x}(\xi)
\end{aligned}
$$

From Vlasov to Euler: hydrodynamic limit

Moment of order 2 ("temperature"):

$$
T(t, x)=\frac{1}{d} \int_{\mathbf{R}^{d}}\|\xi-y(t, x)\|^{2} d \mu_{t, x}(\xi) \quad \forall x \in \Omega
$$

Assume that $\|\cdot\|$ is Euclidean.

$$
\partial_{t} T(t, x)=\frac{2}{d} \int_{\mathbf{R}^{d}}\left\langle\xi-y(t, x), \mathcal{X}\left[\mu_{t}\right](t, x, \xi)\right\rangle_{\mathbf{R}^{d}} d \mu_{t, x}(\xi)
$$

In the Hegselmann-Krause model, setting $S(x)=\int_{\Omega} \sigma\left(x, x^{\prime}\right) d \nu\left(x^{\prime}\right)$:

$$
\begin{aligned}
\mathcal{X}\left[\mu_{t}\right](t, x, \xi)= & \int_{\Omega} \int_{\mathbf{R}^{d}} \sigma\left(x, x^{\prime}\right)\left(\xi^{\prime}-\xi\right) d \mu_{t, x^{\prime}}\left(\xi^{\prime}\right) d \nu\left(x^{\prime}\right) \\
= & -\int_{\Omega} \int_{\mathbf{R}^{d}} \sigma\left(x, x^{\prime}\right)(\xi-y(t, x)) d \mu_{t, x^{\prime}}\left(\xi^{\prime}\right) d \nu\left(x^{\prime}\right) \\
& \quad+\int_{\Omega} \int_{\mathbf{R}^{d}} \sigma\left(x, x^{\prime}\right)\left(\xi^{\prime}-y(t, x)\right) d \mu_{t, x^{\prime}}\left(\xi^{\prime}\right) d \nu\left(x^{\prime}\right) \\
= & -S(x) \int_{\mathbf{R}^{d}}(\xi-y(t, x)) d \mu_{t, x^{\prime}}\left(\xi^{\prime}\right)+F(t, x) \text { not depending on } \xi
\end{aligned}
$$

Hence:

From Vlasov to Euler: hydrodynamic limit

Moment of order 2 ("temperature"):

$$
T(t, x)=\frac{1}{d} \int_{\mathbf{R}^{d}}\|\xi-y(t, x)\|^{2} d \mu_{t, x}(\xi) \quad \forall x \in \Omega
$$

Assume that $\|\cdot\|$ is Euclidean.

Hegselmann-Krause model

In the Hegselmann-Krause model $G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right)=\sigma\left(x, x^{\prime}\right)\left(\xi^{\prime}-\xi\right)$ we have

$$
\partial_{t} T(t, x)=-2 S(x) T(t, x) \quad \text { where } \quad S(x)=\int_{\Omega} \sigma\left(x, x^{\prime}\right) d \nu\left(x^{\prime}\right)
$$

Hence $t \mapsto T(t, x)=T(0, x) e^{-2 t S(x)}$ decreases exponentially to 0 as $t \rightarrow+\infty$ for ν-almost every $x \in \Omega$ such that $S(x)>0$.

Actually: same result for all moments of order $\geqslant 2$.
\Rightarrow slight generalization of [Boudin Salvarani Trélat, SIMA 2022] (convergence to consensus).
In general: open problem of how to close the coupled moment equations.

A surprising consequence:
finite particle approximation of quasilinear PDEs

Particle approximation of any linear PDE: main idea

$$
\partial_{t} y=A y
$$

with $A: D(A) \rightarrow L^{2}(\Omega)$ generating a C_{0}-semigroup. Two steps:
(1) Approximate A with a bounded operator A_{ε}, given by $\left(A_{\varepsilon} f\right)(x)=\int_{\Omega} \sigma_{\varepsilon}\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}$ (e.g.: Yosida approximation, or convolution), so that

$$
\partial_{t} y_{\varepsilon}=A_{\varepsilon} y_{\varepsilon}, \quad y_{\varepsilon}(0)=y(0) \quad \Rightarrow \quad\left\|y(t)-y_{\varepsilon}(t)\right\|_{L \infty}=\mathrm{O}(\varepsilon)
$$

(2) Particle approximation: $\int_{\Omega} \sigma_{\varepsilon}\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime} \simeq \frac{1}{N} \sum_{j=1}^{N} \sigma_{\varepsilon}\left(x, x_{j}^{N}\right) f\left(x_{j}^{N}\right)$ leading to the particle system:

$$
\dot{\xi}_{i}(t)=\frac{1}{N} \sum_{j=1}^{N} \sigma_{\varepsilon}\left(x_{i}^{N}, x_{j}^{N}\right) \xi_{j}^{N}(t) \quad \rightarrow 2 \text { parameters } \varepsilon \rightarrow 0 \text { and } N \rightarrow+\infty
$$

The estimates of the previous results lead to $\left\|y(t, \cdot)-\sum_{i=1}^{N} \xi_{\varepsilon, i}^{N}(t) \mathbb{1}_{\Omega_{i}^{N}}(\cdot)\right\|_{L^{2}} \lesssim \frac{1}{\ln \ln N}$.

Particle approximations of PDEs

Assumptions:
$\left(O_{1}\right)$ Either $\Omega \subset \mathbb{R}^{n}$ compact Lipschitz domain, d_{Ω} Euclidean distance, ν Lebesgue;
$\left(O_{2}\right)$ or Ω smooth compact Riemannian manifold of dimension n, d_{Ω} Riemannian distance, ν is the canonical Riemannian measure;
and moreover assume that $\nu(\Omega)=1$.

General quasilinear PDE: $\quad p \in \mathbf{N}^{*}, \quad a_{\alpha} \in L^{\infty}\left(\mathbb{R} \times \Omega \times \mathbb{R}^{d}\right)$,

$$
\begin{equation*}
\partial_{t} y(t, x)=\sum_{|\alpha| \leqslant p} a_{\alpha}(t, x, y(t, x)) D^{\alpha} y(t, x)=A(t, y(t, x)) y(t, x) \tag{PDE}
\end{equation*}
$$

with arbitrary conditions at the boundary of Ω in case $\left(O_{1}\right)$, assumed to be well-posed (semi-group, or evolution system).

Objective: design finite particle systems approximating the solutions of (PDE).

Particle approximations of PDEs

Idea: if $G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right)=\sigma\left(x, x^{\prime}\right) \xi^{\prime}$ then

$$
\mathcal{X}[\mu](x)=\int_{\Omega} \sigma\left(x, x^{\prime}\right) y\left(x^{\prime}\right) d \nu\left(x^{\prime}\right)=(A y)(x)
$$

\Rightarrow (Hilbert-Schmidt) operator A of kernel σ wrt ν, and Euler equation $\partial_{t} y=A y$.

Particle approximations of PDEs

Idea: if $G\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right)=\sigma\left(x, x^{\prime}\right) \xi^{\prime}$ then

$$
\mathcal{X}[\mu](x)=\int_{\Omega} \sigma\left(x, x^{\prime}\right) y\left(x^{\prime}\right) d \nu\left(x^{\prime}\right)=(A y)(x)
$$

\Rightarrow (Hilbert-Schmidt) operator A of kernel σ wrt ν, and Euler equation $\partial_{t} y=A y$.

Reminder: Schwartz kernel theorem
Any linear operator $A: \mathcal{D}(\Omega) \rightarrow \mathcal{D}^{\prime}(\Omega)$ has a distributional Schwartz kernel $[A]$:

$$
(A f)(x)=\langle[A](x, \cdot), f\rangle_{\mathcal{D}^{\prime}, \mathcal{D}}=\int_{\Omega}[A]\left(x, x^{\prime}\right) f\left(x^{\prime}\right) \quad \forall f \in \mathcal{D}(\Omega) \quad \forall x \in \Omega
$$

Example: $\Omega=\mathbf{R}, \quad A=\partial_{x}, \quad[A](x, y)=-\delta^{\prime}(x-y)$
\rightsquigarrow Idea: approximate the Schwartz kernel with a smooth function σ_{ε}.

Particle approximations of PDEs

Take any quasilinear operator

$$
A(t, \xi) y(x)=\int_{\Omega}[A]\left(t, x, x^{\prime}, \xi\right) y\left(x^{\prime}\right)
$$

of Schwartz kernel $[A](t, \cdot, \cdot, \xi)$.
One can design smooth functions σ_{ε} approximating $[A]$, and set

$$
G_{\varepsilon}\left(t, x, x^{\prime}, \xi, \xi^{\prime}\right)=\sigma_{\varepsilon}\left(t, x, x^{\prime}, \xi\right) \xi^{\prime} \quad \text { and } \quad A_{\varepsilon}(t, f)(x)=\int_{\Omega} G_{\varepsilon}\left(t, x, x^{\prime}, f(x), f\left(x^{\prime}\right)\right) d x^{\prime}
$$

\Rightarrow classical Euler equation

$$
\partial_{t} y_{\varepsilon}(t, x)=\int_{\Omega} \sigma_{\varepsilon}\left(t, x, x^{\prime}, y_{\varepsilon}(t, x)\right) y_{\varepsilon}\left(t, x^{\prime}\right) d x^{\prime}
$$

and particle system

$$
\dot{\xi}_{\varepsilon, i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} \sigma_{\varepsilon}\left(t, x_{i}^{N}, x_{j}^{N}, \xi_{\varepsilon, i}^{N}(t)\right) \xi_{\varepsilon, j}^{N}(t), \quad i=1, \ldots, N
$$

Particle approximations of PDEs

Theorem

Let $T>0$. Assume that:

- $a_{\alpha} \in W^{1, \infty}(\Omega)$ and that A generates a semigroup (or evolution system);
- $y \in L^{1}\left([0, T], W^{p+1, \infty}\left(\Omega, \mathbb{R}^{d}\right)\right)$ is a solution of (PDE) s.t. $y(0, \cdot) \in \operatorname{Lip}\left(\Omega, \mathbb{R}^{d}\right)$.
$\forall \varepsilon \in(0,1], \quad \forall N \in \mathbf{N}^{*}, \quad$ consider the solution of the particle system

$$
\dot{\xi}_{\varepsilon, i}^{N}(t)=\frac{1}{N} \sum_{j=1}^{N} \sigma_{\varepsilon}\left(t, x_{i}^{N}, x_{j}^{N}, \xi_{\varepsilon, i}^{N}(t)\right) \xi_{\varepsilon, j}^{N}(t), \quad \xi_{\varepsilon, i}^{N}(0)=y\left(0, x_{i}^{N}\right) .
$$

Then, there exists $C>0$ such that $\quad \forall N \in \mathbf{N}^{*} \quad \forall \varepsilon \in(0,1] \quad \forall t \in[0, T]$

$$
\|\underbrace{\sum_{i=1}^{N} \xi_{\varepsilon, i}^{N}(t) \mathbb{1}_{\Omega_{i}^{N}}(\cdot)}_{\text {particles }}-\underbrace{y(t, \cdot)}_{\text {Euler }}\|_{L^{2}\left(\Omega, \mathrm{R}^{d}\right)} \leqslant C\left(\varepsilon+\frac{1}{N^{1 / n}} \exp \left(\frac{C}{\varepsilon^{n+p+1}} \exp \left(\frac{C}{\varepsilon^{n+p}}\right)\right)\right) .
$$

Particle approximations of PDEs

Proof in the linear case:

Assume that $A: D(A) \rightarrow L^{2}\left(\Omega, \mathbb{R}^{d}\right)$ generates a C_{0} semigroup and that

- $\left\|e^{t A_{\varepsilon}}\right\|_{L\left(L^{2}\right)} \leqslant M e^{\beta t} \quad \forall t \geqslant 0 \quad \forall \varepsilon \in(0,1]$
- $\left\|\left(A_{\varepsilon}-A\right) y\right\|_{L^{2}} \lesssim \varepsilon\|y\|_{W^{p+1, \infty}} \quad \forall y \in W^{p+1, \infty}\left(\Omega, \mathbf{R}^{d}\right) \quad \forall \varepsilon \in(0,1]$
- $\left\|\sigma_{\varepsilon}\right\|_{L \infty} \lesssim \frac{1}{\varepsilon^{n+\rho}} \quad$ and $\quad \operatorname{Lip}\left(\sigma_{\varepsilon}\right) \lesssim \frac{1}{\varepsilon^{n+p+1}}$

First step: convergence of y_{ε} towards y. By the Duhamel formula:

$$
y_{\varepsilon}(t)-y(t)=\int_{0}^{t} e^{(t-\tau) A_{\varepsilon}}\left(A_{\varepsilon}-A\right) y(\tau) d \tau
$$

hence

$$
\begin{aligned}
\left\|y_{\varepsilon}(t)-y(t)\right\|_{L^{2}} & \leqslant \int_{0}^{t}\left\|e^{(t-\tau) A_{\varepsilon}}\left(A_{\varepsilon}-A\right) y(\tau)\right\|_{L^{2}} d \tau \\
& \leqslant \int_{0}^{t} M e^{\beta(t-\tau)}\left\|\left(A_{\varepsilon}-A\right) y(\tau)\right\|_{L^{2}} d \tau \\
& \lesssim \varepsilon\|y\|_{L^{1}\left([0, T], W^{p+1, \infty}\right)} \lesssim \varepsilon \quad \forall t \in[0, T]
\end{aligned}
$$

Particle approximations of PDEs

Proof in the linear case:

Assume that $A: D(A) \rightarrow L^{2}\left(\Omega, \mathbb{R}^{d}\right)$ generates a C_{0} semigroup and that

- $\left\|e^{t A_{\varepsilon}}\right\|_{L\left(L^{2}\right)} \leqslant M e^{\beta t} \quad \forall t \geqslant 0 \quad \forall \varepsilon \in(0,1]$
- $\left\|\left(A_{\varepsilon}-A\right) y\right\|_{L^{2}} \lesssim \varepsilon\|y\|_{W^{p+1, \infty}} \quad \forall y \in W^{p+1, \infty}\left(\Omega, \mathbf{R}^{d}\right) \quad \forall \varepsilon \in(0,1]$
- $\left\|\sigma_{\varepsilon}\right\|_{L \infty} \lesssim \frac{1}{\varepsilon^{n+\rho}} \quad$ and $\quad \operatorname{Lip}\left(\sigma_{\varepsilon}\right) \lesssim \frac{1}{\varepsilon^{n+p+1}}$

Second step: particle approximation. By Gronwall:

$$
\max \left(\left\|\Xi_{\varepsilon}^{N}(t)\right\|_{\infty},\left\|y_{\varepsilon}(t)\right\|_{L^{\infty}\left(\Omega, \mathrm{R}^{d}\right)}\right) \leqslant e^{t\left\|\sigma_{\varepsilon}\right\|_{L^{\infty}}}\left\|y^{0}\right\|_{L^{\infty}\left(\Omega, \mathrm{R}^{d}\right)}
$$

By graph limit approximation:

$$
\left\|\sum_{i=1}^{N} \xi_{\varepsilon, i}^{N}(t) \mathbb{1}_{\Omega_{i}^{N}}(\cdot)-y_{\varepsilon}(t, \cdot)\right\|_{L^{\infty}\left(\Omega, \mathrm{R}^{d}\right)} \leqslant \frac{2 C_{\Omega}}{N^{1 / n}}\left(1+\operatorname{Lip}\left(y^{0}\right)\right) e^{2 t L_{\varepsilon}}
$$

with $L_{\varepsilon}=\frac{1}{\varepsilon^{n+p+1}} \exp \left(\frac{1}{\varepsilon^{n+\rho}}\right) \quad$ (Lipschitz constant on the supports).

Particle approximations of PDEs

Proof in the linear case:

Assume that $A: D(A) \rightarrow L^{2}\left(\Omega, \mathbb{R}^{d}\right)$ generates a C_{0} semigroup and that

- $\left\|e^{t A_{\varepsilon}}\right\|_{L\left(L^{2}\right)} \leqslant M e^{\beta t} \quad \forall t \geqslant 0 \quad \forall \varepsilon \in(0,1]$
- $\left\|\left(A_{\varepsilon}-A\right) y\right\|_{L^{2}} \lesssim \varepsilon\|y\|_{W^{p+1, \infty}} \quad \forall y \in W^{p+1, \infty}\left(\Omega, \mathbf{R}^{d}\right) \quad \forall \varepsilon \in(0,1]$
- $\left\|\sigma_{\varepsilon}\right\|_{L \infty} \lesssim \frac{1}{\varepsilon^{n+\rho}} \quad$ and $\quad \operatorname{Lip}\left(\sigma_{\varepsilon}\right) \lesssim \frac{1}{\varepsilon^{n+p+1}}$

Conclusion: Up to some constant, by the triangular inequality:

$$
\begin{aligned}
\left\|\sum_{i=1}^{N} \xi_{\varepsilon, i}^{N}(t) \mathbb{1}_{\Omega_{i}^{N}}(\cdot)-y(t, \cdot)\right\|_{L^{2}} & \leqslant\left\|\sum_{i=1}^{N} \xi_{\varepsilon, i}^{N}(t) \mathbb{1}_{\Omega_{i}^{N}}(\cdot)-y(t, \cdot)\right\|_{L^{\infty}} \\
& \leqslant\left\|y_{\varepsilon}(t, \cdot)-y(t, \cdot)\right\|_{L^{\infty}}+\left\|\sum_{i=1}^{N} \xi_{\varepsilon, i}^{N}(t) \mathbb{1}_{\Omega_{i}^{N}}(\cdot)-y_{\varepsilon}(t, \cdot)\right\|_{L^{\infty}} \\
& \lesssim \varepsilon+\frac{1}{N^{1 / n}} \exp \left(\frac{C}{\varepsilon^{n+p+1}} \exp \left(\frac{C}{\varepsilon^{n+p}}\right)\right)
\end{aligned}
$$

Particle approximations of PDEs

Proof in the linear case:

Assume that $A: D(A) \rightarrow L^{2}\left(\Omega, \mathbb{R}^{d}\right)$ generates a C_{0} semigroup and that

- $\left\|e^{t A_{\varepsilon}}\right\|_{L\left(L^{2}\right)} \leqslant M e^{\beta t} \quad \forall t \geqslant 0 \quad \forall \varepsilon \in(0,1]$
- $\left\|\left(A_{\varepsilon}-A\right) y\right\|_{L^{2}} \lesssim \varepsilon\|y\|_{W^{p+1, \infty}} \quad \forall y \in W^{p+1, \infty}\left(\Omega, \mathbf{R}^{d}\right) \quad \forall \varepsilon \in(0,1]$
- $\left\|\sigma_{\varepsilon}\right\|_{L^{\infty}} \lesssim \frac{1}{\varepsilon^{n+p}} \quad$ and $\quad \operatorname{Lip}\left(\sigma_{\varepsilon}\right) \lesssim \frac{1}{\varepsilon^{n+p+1}}$

Explicit example of construction of σ_{ε} : (for $A=\sum a_{\alpha} D^{\alpha}$)
Let $\eta \in \mathscr{C}_{C}^{\infty}\left(\mathbf{R}^{n}\right)$ nonnegative symmetric s.t. $\int_{\mathbf{R}^{n}} \eta(x) d x=1$ and let $\eta_{\varepsilon}(x)=\frac{1}{\varepsilon^{n}} \eta\left(\frac{x}{\varepsilon}\right)$. Define

$$
\sigma_{\varepsilon}\left(x, x^{\prime}\right)=\int_{\Omega} \eta_{\varepsilon}(x-z) \sum_{|\alpha| \leqslant p} a_{\alpha}(z)\left(D^{\alpha} \eta_{\varepsilon}\right)\left(z-x^{\prime}\right) d z
$$

(double convolution restricted to Ω) so that

$$
A_{\varepsilon} f=\eta_{\varepsilon} \star_{\Omega} A\left(\eta_{\varepsilon} \star_{\Omega} f\right)=\left(\eta_{\varepsilon} \star\left(A\left(\eta_{\varepsilon} \star\left(f \mathbb{1}_{\Omega}\right)\right) \mathbb{1}_{\Omega}\right)\right)_{\mid \Omega}
$$

Crucial fact: Like the operator $A-\beta$ id, the operator $A_{\varepsilon}-\beta$ id is m-dissipative on $L^{2}\left(\Omega, \mathbf{R}^{d}\right)$ because

$$
\left\langle\left(A_{\varepsilon}-\beta \mathrm{id}\right) f, f\right\rangle_{L^{2}(\Omega)}=\left\langle\eta_{\varepsilon} \star_{\Omega}(A-\beta \mathrm{id})\left(\eta_{\varepsilon} \star_{\Omega} f\right), f\right\rangle_{L^{2}}=\left\langle(A-\beta \mathrm{id})\left(\eta_{\varepsilon} \star_{\Omega} f\right), \eta_{\varepsilon} \star_{\Omega} f\right\rangle_{L^{2}} \leqslant 0
$$

Particle approximations of PDEs

Proof in the quasilinear case:

Assume that $\forall z \in L^{2}\left(\Omega, \mathbb{R}^{d}\right), \quad A(t, z): D(A) \rightarrow L^{2}\left(\Omega, \mathbf{R}^{d}\right)$ generates an evolution system $U(t, s, z)$ and that

- $\left\|U_{\varepsilon}(t, s, z)\right\|_{L\left(L^{2}\right)} \leqslant M e^{\beta(t-s)} \quad \forall t \geqslant s \geqslant 0 \quad \forall \varepsilon \in(0,1]$
- $\left\|\left(A_{\varepsilon}(t, z)-A(t, z)\right) y\right\|_{L^{2}} \lesssim \varepsilon\|y\|_{W^{p, \infty}} \quad \forall y \in W^{p+1, \infty}\left(\Omega, \mathbb{R}^{d}\right) \quad \forall \varepsilon \in(0,1]$
- $\left\|\left(A_{\varepsilon}\left(t, z_{1}\right)-A_{\varepsilon}\left(t, z_{2}\right)\right) y\right\|_{L^{2}} \lesssim\left\|z_{1}-z_{2}\right\|_{L^{2}}\|y\|_{W^{p+1, \infty}} \quad \forall z, z_{1}, z_{2} \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)$
- $\left\|\sigma_{\varepsilon}\right\|_{L^{\infty}} \lesssim \frac{1}{\varepsilon^{n+\rho}} \quad$ and $\quad \operatorname{Lip}\left(\sigma_{\varepsilon}\right) \lesssim \frac{1}{\varepsilon^{n+p+1}}$

Quasilinear theory: Kato 1975 (short version in Pazy, Section 6.4), examples:

- Burgers
- KdV
- quasilinear symmetric hyperbolic systems
- Euler and Navier Stokes (incompressible) in \mathbb{R}^{3}
- coupled Maxwell-Dirac
- quasilinear waves
- magnetohydrodynamics (including compressible fluids)
- etc.

Particle approximations of PDEs

Proof in the quasilinear case:

Assume that $\forall z \in L^{2}\left(\Omega, \mathbb{R}^{d}\right), \quad A(t, z): D(A) \rightarrow L^{2}\left(\Omega, \mathbf{R}^{d}\right)$ generates an evolution system $U(t, s, z)$ and that

- $\left\|U_{\varepsilon}(t, s, z)\right\|_{L\left(L^{2}\right)} \leqslant M e^{\beta(t-s)} \quad \forall t \geqslant s \geqslant 0 \quad \forall \varepsilon \in(0,1]$
- $\left\|\left(A_{\varepsilon}(t, z)-A(t, z)\right) y\right\|_{L^{2}} \lesssim \varepsilon\|y\|_{W^{p, \infty}} \quad \forall y \in W^{p+1, \infty}\left(\Omega, \mathbf{R}^{d}\right) \quad \forall \varepsilon \in(0,1]$
- $\left\|\left(A_{\varepsilon}\left(t, z_{1}\right)-A_{\varepsilon}\left(t, z_{2}\right)\right) y\right\|_{L^{2}} \lesssim\left\|z_{1}-z_{2}\right\|_{L^{2}}\|y\|_{W^{p+1, \infty}} \quad \forall z, z_{1}, z_{2} \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)$
- $\left\|\sigma_{\varepsilon}\right\|_{L^{\infty}} \lesssim \frac{1}{\varepsilon^{n+\rho}} \quad$ and $\quad \operatorname{Lip}\left(\sigma_{\varepsilon}\right) \lesssim \frac{1}{\varepsilon^{n+p+1}}$

The only difference is in Step 1:
$\partial_{t}\left(y_{\varepsilon}-y\right)=A_{\varepsilon}\left(y_{\varepsilon}\right) y_{\varepsilon}-A(y) y=A_{\varepsilon}\left(y_{\varepsilon}\right)\left(y_{\varepsilon}-y\right)+\left(A_{\varepsilon}\left(y_{\varepsilon}\right)-A_{\varepsilon}(y)\right) y+\left(A_{\varepsilon}(y)-A(y)\right) y$
hence (Duhamel)
$y_{\varepsilon}(t)-y(t)=\int_{0}^{t} U_{\varepsilon}\left(t, s, y_{\varepsilon}(s)\right)\left(\left(A_{\varepsilon}\left(y_{\varepsilon}(s)\right)-A_{\varepsilon}(y(s))\right) y(s)+\left(A_{\varepsilon}(y(s))-A(y(s))\right) y(s)\right) d s$
thus

$$
\left\|y_{\varepsilon}(t)-y(t)\right\|_{L^{2}} \lesssim \int_{0}^{t}\left\|y_{\varepsilon}(s)-y(s)\right\|_{L^{2}} d s+\varepsilon \quad \stackrel{\text { Gronwall }}{\Longrightarrow}\left\|y_{\varepsilon}(t)-y(t)\right\|_{L^{2}} \lesssim \varepsilon
$$

Particle approximations of PDEs

Proof in the quasilinear case:

Assume that $\forall z \in L^{2}\left(\Omega, \mathbb{R}^{d}\right), \quad A(t, z): D(A) \rightarrow L^{2}\left(\Omega, \mathbf{R}^{d}\right)$ generates an evolution system $U(t, s, z)$ and that

- $\left\|U_{\varepsilon}(t, s, z)\right\|_{L\left(L^{2}\right)} \leqslant M e^{\beta(t-s)} \quad \forall t \geqslant s \geqslant 0 \quad \forall \varepsilon \in(0,1]$
- $\left\|\left(A_{\varepsilon}(t, z)-A(t, z)\right) y\right\|_{L^{2}} \lesssim \varepsilon\|y\|_{W^{p, \infty}} \quad \forall y \in W^{p+1, \infty}\left(\Omega, \mathbf{R}^{d}\right) \quad \forall \varepsilon \in(0,1]$
- $\left\|\left(A_{\varepsilon}\left(t, z_{1}\right)-A_{\varepsilon}\left(t, z_{2}\right)\right) y\right\|_{L^{2}} \lesssim\left\|z_{1}-z_{2}\right\|_{L^{2}}\|y\|_{W^{p+1, \infty}} \quad \forall z, z_{1}, z_{2} \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)$
- $\left\|\sigma_{\varepsilon}\right\|_{L^{\infty}} \lesssim \frac{1}{\varepsilon^{n+\rho}} \quad$ and $\quad \operatorname{Lip}\left(\sigma_{\varepsilon}\right) \lesssim \frac{1}{\varepsilon^{n+p+1}}$
$\underline{\text { Explicit example of construction of } \sigma_{\varepsilon}:} \quad\left(\right.$ for $\left.A(t, \xi)=\sum a_{\alpha}(t, x, \xi) D^{\alpha}\right)$

$$
\sigma_{\varepsilon}\left(t, x, x^{\prime}, \xi\right)=\int_{\Omega} \eta_{\varepsilon}(x-z) \sum_{|\alpha| \leqslant p} a_{\alpha}(t, z, \xi)\left(D^{\alpha} \eta_{\varepsilon}\right)\left(z-x^{\prime}\right) d z
$$

(double convolution restricted to Ω) so that $A_{\varepsilon}(t, \xi) f=\eta_{\varepsilon} \star_{\Omega} A(t, \xi)\left(\eta_{\varepsilon} \star_{\Omega} f\right.$)
All in all, we have obtained

$$
\|\underbrace{\sum_{i=1}^{N} \xi_{\varepsilon, i}^{N}(t) \mathbb{1}_{\Omega_{i}^{N}}(\cdot)}_{\text {particles }}-\underbrace{y(t, \cdot)}_{\text {Euler }}\|_{L^{2}\left(\Omega, \mathrm{R}^{d}\right)} \leqslant C\left(\varepsilon+\frac{1}{N^{1 / n}} \exp \left(\frac{C}{\varepsilon^{n+p+1}} \exp \left(\frac{C}{\varepsilon^{n+p}}\right)\right)\right)
$$

Particle approximations of PDEs

To take limits $N \rightarrow+\infty$ and $\varepsilon \rightarrow 0$, we must choose $\frac{1}{N^{1 / n}} \exp \left(\frac{C}{\varepsilon^{n+p+1}} \exp \left(\frac{C}{\varepsilon^{n+p}}\right)\right) \rightarrow 0$.
Optimizing leads to

$$
\varepsilon_{N} \sim\left(\frac{C}{\ln \ln N}\right)^{\frac{1}{n+p}}
$$

and then

$$
\|\underbrace{\sum_{i=1}^{N} \xi_{\varepsilon, i}^{N}(t) \mathbb{1}_{\Omega_{i}^{N}}(\cdot)}_{\text {particles }}-\underbrace{y(t, \cdot)}_{\text {Euler }}\|_{L^{2}\left(\Omega, \mathrm{R}^{d}\right)} \leqslant\left(\frac{C}{\ln \ln N}\right)^{\frac{1}{n+p}}
$$

Similar estimates have been obtained by:

- Bodineau Gallagher Saint-Raymond (linear Boltzmann to heat by hydrodynamic limit)
- Slepcev (Leçons Jacques-Louis Lions, 2021) for heat-like equations.

Here, we have a particle approximation for arbitrary (well-posed) quasilinear PDEs.

What does this result mean?

In statistical physics: Ω of volume 1 contains

$$
N \simeq 6.10^{23}
$$

particles (Avogadro number). But $\ln \ln N \simeq 4$!! Note that

$$
\log _{10} \log _{10} 10^{10}=1 \ldots
$$

Actually $\frac{1}{\ln \ln N}$ is a kind of physical barrier.

Perspectives

- Understand what the latter result implies.
- Investigate under which (physical?) assumptions the estimates can be improved, and investigate numerical consequences.
- Investigate more general nonlinear PDEs.
- How to close the hierarchy of equations for coupled moments? (BBGKY-like hierarchy) Maybe, introduce a small parameter ε.
- Consider particle dynamics with "triplewise" interactions:

$$
\dot{\xi}_{i}(t)=\frac{1}{N^{2}} \sum_{j, k=1}^{N} G\left(t, x_{i}, x_{j}, x_{k}, \xi_{i}(t), \xi_{j}(t), \xi_{k}(t)\right)
$$

and their various limits.

- Add some controls to all equations, and show how to perform the various passages to the limit, also in the control strategies.

