Analysing necessary optimality conditions for time optimal

control problems in Wasserstein spaces.
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Example: Competitive Lotka-Volterra

Imagine we have a tank with 2 species of fishes that are fed with the same pellet forcing them
to compete. The growth rate of the first specie can be modelled as

qa(t)=x(ol r(tu(®) = (alt.pe)) xe(t)] st x(0) = pf

inherit growth rate  effect of specie 2

where u(t) is the amount of food at time t. We would like to to reach (in average) a certain
amount of each specie in minimal time but also spending as less as possible in food.
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Formally, the previous problem can be modelled as the following

min

T . -
T+ / u(t) <t { Orpry + d'VX1,X2(f(t> Ut, [y, )Nt) =0
uel, T>0 0

p(0) = pf ® p3,

/x;uT(-,x;) > n; Vi=1,2, and /(Xl +x)pr(x1, %) <N
R R

~
Expected population i at final time capacity of the tank

But this problem enters in a more general setting...
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Bolza free time problem

T
min T+ A / L(t, u(
u(-)eU, T>0 0
Oepu(t )+d'V( (t, p(t), u(t), ) ()) 0, (Pep)
st. q p(0) = pP,
M(T) € QT7

where A : Z(RY) — R, u® € 2.(R?) and the minimisation is taken over
U:={u:[0,T] - Us.t. u(-)is Z-measurable },

where (U, dy) is a compact metric space, and the set of final-point constraints Q1 is defined
by functional inequalities of the form

Qr = {u c P, (Rd> s.t. W) <0 forallie{l,.. .,n}}

where every V; : &, (Rd) — R.
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A bit about existence for the continuity equation in [0, T]|

Hypotheses (CE): For every compact set K C R?:

(i) fis £ -measurable in time and for £!-almost every t and any (u,x) € 2 (RY) x R,

(£, 1, )| < m(t) (1 + |x| + Ma(u)) for some m(-) € L* ([0, T],R+)
(i) fis Lipschitz in x and also in p with Lipschitz constants in L! ([0, T], R} ):

|f(tnu7X) - f(taﬂvy)’ < IK(t)|X *.y| and
|f(t,H,X) - f(tu v, X)| < LK(t)WP(:U’u V)'

With this hypotheses on the dynamic and when 1° € Z.(R9) we have existence and
uniqueness of the dynamical system (For instance in [BonnetFrankowska2021] but many
others).
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Strategy for obtaining optimality conditions

The idea (as in more classical settings) is to work in a fixed time setting by introducing a new
state variable (in our case ¢) and a new control (for us v) by doing the following:

Change of variables

Let v € V := 2°°([0, 1], V) such that fol v(t)dt = T and we introduce t = ¢(s) = [ v(7)dT.

So our steps will be:
1. We check that both formulations are equivalent

2. We write optimality conditions for the new fixed time problem

3. We go back to our original problem.
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Step 1: Fixed time problem

After the change of variables we get:

;

1
o [ )+ Lols). ule)ds+ )
0s7vs + divy (v(s)f(p(s), -, vs, us)ys) =0 s € [0,1], (BT)
o 1 (0)=p°
o o(s) =v(s) se[0,1] and ¢(0) = 0.
(1) € Q,

Equivalence
Admissible solutions for both problems are equivalent.
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Step 1: Fixed time problem

After the change of variables we get:

1
‘E% /0 v(s)(1+ L(p(s), u(s)))ds + A(v1)

{ 85’75 + divy (V(s)f(@(5)7 EMET US)/VS) =0 se [07 1]a (BT)
s.t

(

7(0) = p°
o(s) =v(s) se€[0,1] and ©(0) = do.
V(1) € Q,
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Step 1: Fixed time problem

After the change of variables we get:

(

1
Jg% /0 v(s)(1+ L(p(s), u(s)))ds + A(v1)

0+ dive (VIS)F(£(5), - 7 1e)3e) =0 s € [0,1], (6T)
o 1 (0 =p°

o(s) =v(s) se€[0,1] and ©(0) = do.

\ 7(1) € Q,

An admissible (v*(+), u*(+), v*(+)) is a strong local minimiser for (BT) if exists ¢ > 0 that

T

.
/O V()L + L(#"(8), u*(2))dt + ¢ (v*(1)) < /0 v(t)(1 + L((2), u(t)))dt + ¢(7(1))

for every other admissible tuple (y(-), u(-), v(*)) satisfying sup.co1) Wi (v*(t), ¥(t)) <e.
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Step 2: Optimality conditions for the fixed time problem

Now that we have transform our problem we can apply the optimality conditions in the form of
a Pontryagin maximum principle for Bolza problems in [BonnetFrankowska2021-PMP].

But before moving on to step 2 we need to say something about the differentiability with
respect to measures...
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Subdifferential calculus in Wasserstein spaces

Let ¢ : Zc (RY) — R and p € P (RY), we define the localised sudifferential 8], (1) as the
set of all £ € L? (RY,RY; 1)

Pp(v) — d(p) > inf (€(x),y — x)dy(x,y) + or (Wa(p,v)),
vEMo(p,v) JR2d

for every R > 0 and any v € & (B,(R))

Analogously, ¢ € L? (Rd,Rd;u) belongs to the
localised superdifferential 9, _&(y) if

(=€) € O (=0) (1)

BuR) = |
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The space (7, (R?), W5) can be endowed with a pseudo-Riemannian structure. Given an
element p € 92 (Rd) the analytical tangent space to %% (Rd) at p is defined in this context
as

Tan, 2, (R?) == {VE() st. € € C (RT)JV

It can be shown that 9;;_ ¢(n) N O;5

loc @(14) contains at most one element, which also belongs
to Tan, 2, (RY).

Definition: Locally differentiable functional

A functional ¢ : 2 (R?) — R is locally differentiable at y € 2. (RY) if there exists a map
V(n) € Tan, 2, (RY) - called the Wasserstein gradient of ¢(-) at u-, such that

alocgf)( ) loc (M) {Vqs(#)}

For example:

p € P(RY) — V(x)du(x) with V continuously differentiable
Rd
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(back to) Step 2: some assumptions to be considered..

Hypotheses for the control u
® Hypotheses (CE) with constants independent of u € U.

® The map u € U+ f(t, 1, u)(x) € R? is continuous for .#*-a.e t and any
(1,x) € Pc (RY) x RY and also u € U+ L(t, u) is continuous for £1-a.e t

Regularity assumptions for the cost and constraints
For every R > 0, assume that the following holds with K := B(0, R).

(i) The final cost A(-) and the constraint functionals {W;(-)};;, are Lipschitz continuous in
the Wi-metric over #(K) and locally differentiable over &2, (Rd). Moreover, the maps

x € RY— VA(u)(x) € R and x e RY— VW, (u)(x) € RY,

are continuous for every i € {1,...,n}.
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Conditions for the minimal time problem

There exists non-trivial multipliers (Ao, A1,...,An) € {0,1} x R7 and a curve of measures
7* € AC([0, T*], Z.(R?9*1)) that solves

057 + divyr.g(V(s, 7 (5))5*(s)) = 0
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Conditions for the minimal time problem

There exists non-trivial multipliers (Ao, A1, .
7* € AC([0, T*], Z.(R?9*1)) that solves

.., An) € {0,1} x R7 and a curve of measures

057 + divyr.g(V(s, 7 (5))5*(s)) = 0

with V(s, 7*(s), u*(s)) =

f(s,u*(s), u*(s
—Dyf (s, u*(s), " (s), x) r — [pea Dpf (s, u*

)
(

7X)
s), 1 (s),y) (x) " p d*(s)(y, p, ) )

dsf(s u*(s) 17 (), x) " r

which implies that the (7, ..., 79).0*(s) = u*(s)
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Conditions for the minimal time problem

There exists non-trivial multipliers (Ao, A1, . .

.»An) € {0,1} x R’} and a curve of measures
7* € AC([0, T*], Z.(R?9*1)) that solves

0s; +divy rq(V(s,7"(s))0"(s)) =0
with V(s, 7*(s), u*(s)) =

f(S u*(s), n*(s), x)
—Duf (5,07(5), 1*(5), X) 1 = Jzaa Dpf (5,0%(5), 1*(5),¥) (x) ' p A7 () (v P, )
sf(S u*(s), (), %) " r
which implies that the (71, ..., 79)47*(s) = u*(s) and also we will have by the construction
of U* that
(et ), (T7) = ( Mo VA (1%( ZA VY, ( )) p (T (1)
#
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(ii) forevery i=1,...,n,
Ai /Rd Vi (x)dp*(T)(x) =0,
(i) There exists a continuous function = : s — [, Q(s, g)ddT+(q) such that,
H(s, 7*(s), u™(s)) = =(s) a.ese€[0, T,
where
H(s, 7" (607 (6) = [ (P50 ($(9)- ) 47 (9)0cera) = Nol(s,°(5)
and Q(s, q) is the backward flow of
{ as) = —0sf (5.15°(5), 0 (), ¥ (%)) a(5), (2)

and finally
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