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Motivation: why evolution PDEs on graphs?

® Social networks: polarisation and formation of echo chambers
F. Baumann, P. Lorenz-Spreen, |. M. Sokolov, M. Starnini., Phys. Rev. Lett, 2020
A. Benatti, H. F. de Arruda, F. N. Silva, C. H. Comin, L. da Fontoura Costa, Journal of
Statistical Mechanics: Theory and Experiment, 2020

® Transportation Newtorks: gravity interactions
K. Tamura, H. Takayasu, M. Takayasu, Scientific Reports, 2018
H. Koike, H. Takayasu, and M. Takayasu, Journal of Statistical Physics, 2022

® Data Science/Machine Learning: data representation as point clouds for
clustering and classification
M. Belkin, P. Niyogi, Neural Comput., 2002
R. R. Coifman, S. Lafon, Appl. Comput. Harmon. Anal., 2006
K. Craig, N. Garcia-Trillos, N. Garcia, D. Slepcev, Springer International Publishing, 2022.
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QOutline

Dynamics on graphs: well-posedness, gradient flow structure, and graph
limit

Localising the graph

Co-evolving graphs
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Outline

Dynamics on graphs: well-posedness, gradient flow structure, and graph
limit
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Notation

® X = {x,x,...,x,} random sample i.i.d. according to u € M*(R)
= empirical measure p" = 137" 4,
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Notation

® X = {x,x,...,x,} random sample i.i.d. according to u € M*(R)
= empirical measure p" = 137" 4,

® a symmetric weight function 7 : D — [0, c0) with
D :=(R? xR\ {x =y}
= (u",n) defines an undirected discrete weighted graph
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Example: dynamics driven by interaction energies on graphs

-08 -06 -04 -0.2 0 02 04 06 08 -08 -06 -04 -02 0 0.2 04 06 08

m Valparaiso, 12/01/24 Numerics and evolution PDEs on graphs




Example: dynamics driven by interaction energies on graphs

1
Er) = LS Ko )
xeX yeX
On R?: Xi = — ZPJVXK(XHXJ) (2)
j=1
On finite graphs d
==Y Jen(x.y) (3)
yex
jx,y: é(waoy) Vx,y (4)
Vxy = = sz(Ky,z — Kx.2)- (5)
zeX

CHOICE IS NOT CANONICAL!

Goals
® Define gradient flow of interaction energy on graph (u,n)
® Dynamics stable under graph limit n — oo (discrete-to-continuum)

® Dynamics stable for local limit: = Leb(R?), n°(x,y) = e~ ?n (:2¥)
= limit ¢ — 0 should give 8:p = V - (pVK x* p)
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Example: dynamics driven by interaction energies on graphs

General framework

R? set of possible vertices, R? x R\ {x = y} set of possible edges

n:RY xR\ {x =y} = [0, 00) symmetric weight function
G :={RY x RY\ {x = y}|n(x,y) > 0} set of edges

p € MH(RY) set of vertices
p € P(R?) distribution of mass
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Example: dynamics driven by interaction energies on graphs

General framework
® R? set of possible vertices, R? x R \ {x = y} set of possible edges

® 1:RIxRI\ {x =y} — [0,00) symmetric weight function
® G:={RYxRI\ {x = y}n(x,y) > 0} set of edges

® € MF(RY) set of vertices

® p € P(RY) distribution of mass

Evolution of interest

Gradient descent of the energy & : P(R?) — R given by
£(p) = / [, Ky dot) dioty).

where K: RY x RY — R is symmetric.
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Example: dynamics driven by interaction energies on graphs

General framework
® R? set of possible vertices, R? x R \ {x = y} set of possible edges

® 1:RIxRI\ {x =y} — [0,00) symmetric weight function
® G:={RYxRI\ {x = y}n(x,y) > 0} set of edges

® € MF(RY) set of vertices

® p € P(RY) distribution of mass

Evolution of interest

Gradient descent of the energy & : P(R?) — R given by
£(p) = / [, Ky dot) dioty).

where K: RY x RY — R is symmetric.

Continuum (local) setting: NLIE
Otp =V - (pVK * p) is a Wasserstein gradient flow for €2

2J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, D. Slepéev - Duke Math. J.
156 (2011)
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Example: dynamics driven by interaction energies on graphs

General framework
® R? set of possible vertices, R? x R \ {x = y} set of possible edges

® 1:RIxRI\ {x =y} — [0,00) symmetric weight function
® G:={RYxRI\ {x = y}n(x,y) > 0} set of edges

® € MF(RY) set of vertices

® p € P(RY) distribution of mass

Evolution of interest

Gradient descent of the energy & : P(R?) — R given by
£(p) = / [, Ky dot) dioty).

where K: RY x RY — R is symmetric.

Continuum (local) setting: NLIE

Otp =V - (pVK * p) is a Wasserstein gradient flow for €2

2J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, D. Slepéev - Duke Math. J.
156 (2011)

What is the analogue of the NLIE on a graph?
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Nonlocal continuity equation
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Nonlocal continuity equation

Continuity equation
Oipt +V - jr =0 where Je(%) = pe(X)ve(x)
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Nonlocal continuity equation

Continuity equation
Oipt +V - jr =0 where Je(%) = pe(X)ve(x)

On Graphs
0epe() + (V500 = 0epe() + | ey ) dy = 0

Je(x, ¥) = 0 (pe(x), pe(y)) ve(x,y)
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Nonlocal continuity equation

Continuity equation
Oipt +V - jr =0 where Je(%) = pe(X)ve(x)

On Graphs
0epe() + (V500 = 0epe() + | ey ) dy = 0

Je(x, ¥) = 0 (pe(x), pe(y)) ve(x,y)

4

E.g. ¢(r,s) = (r—s)/(Inr—Ins) = not reasonable for the resulting dynamich
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Nonlocal continuity equation

Continuity equation

Oipt +V - jr =0 where Je(%) = pe(X)ve(x)

On Graphs
0epe() + (V500 = 0epe() + | ey ) dy = 0

Je(x, ¥) = 0 (pe(x), pe(y)) ve(x,y)

E.g. ¢(r,s) = (r—s)/(Inr—Ins) = not reasonable for the resulting dynamich

Upwind interpolation: density along edges = density at the source

Je(x,y) = pO)ve(x, y)+ — py)ve(x, y) - J
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Nonlocal continuity equation

Continuity equation

Oipt +V - jr =0 where Je(%) = pe(X)ve(x)

On Graphs
0epe() + (V500 = 0epe() + | ey ) dy = 0

Je(x,y) = d(pe(x), pe(y)) ve(x, y)

E.g. ¢(r,s) = (r—s)/(Inr—Ins) = not reasonable for the resulting dynamich

Upwind interpolation: density along edges = density at the source

Je(x,¥) = p(x)ve(x, ¥)+ — p(y)ve(x, y) -

Nonlocal continuity equation (p: < 1)
Fepe(x) + /Rd (Pe(Ive(x, ¥)+ = pe(y)ve(x, ¥)-) n(x,y) du(y) =0 (NCE)

Nonlocal interaction equation on graphs: NL?IE

(NCE) with v := —V‘;—f, =-VK % p;
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General interpolations

Oip+V - FOlp; pe,ve] =0 (NCE)J

Definition (Admissible flux interpolation)

A measurable function ®: R® — R is called an admissible flux interpolation
provided that the following conditions hold:

(i) @ satisfies
®(0,0;v) =P(a,b;0) =0, forall a,b,veR, (1)

(ii) @ is argument-wise Lipschitz in the sense that, for some Lo > 0, any
a,b,c,d,v,w € R, it holds

[®(a, b w) — ®(a, b; v)| < Lo(|a| + [ b])|w — v]; (2)
[®(a, b v) — D(c, div)| < Lo(la—c| +b—d)lvl;  (2b)

(iii) ® is positively one-homogeneous in its first and second argument, that is,
for all & > 0 and (a, b, w) € R?, it holds

d(aa, ab; w) = ad(a, b; w).

Valparaiso, 12/01/24 Numerics and evolution PDEs on graphs 7




General interpolations: examples

® Upwind interpolation. One important case is given by the upwind
interpolation ®,pwina defined as

Pupwind(a, b; w) = awy — bw_ for (a, b, w) € R, 3)

® Mean multipliers. Another case is product interpolation ®p.04, which is of
the form

bproa(a, by w) = ¢(a, b)w for (a, b, w) € R?,
with ¢: R? — R any measurable function satisfying, for some Lo > 0,

|¢(a, b)| <lLe max{‘a|7 |b|}7

|¢(av b) - ¢(C7 d)| < I—¢(|3 —cl+1[b— d|):
¢(aa, ab) = ag(a, b),

¢(a7 b) = ¢(b7 3)7

for all &« > 0 and a, b, c,d € R. Common choices for ¢ are as below:

> Arithmetic mean. ¢panm(a, b) := %b;

» Maximal mean. ¢max(a, b) := max{a, b}.
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Admissible fluxes and Nonlocal conservation laws

Definition (Admissible flux)

Let ® be an admissible flux interpolation, and let p € My (R9) and

w € V25(G) :={v: G = R: v(x,y) = —v(y, x)}. Furthermore, take A € M*(R29)
such that p @ p, u® p K A (e.g., A= |p| ® u+ p ® |p|). Then, the admissible flux
F®u; p, w] € M(G) at (p, w) is defined by

dF‘b[u;p, W]:(D(W,w;w) dX. (4)
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Admissible fluxes and Nonlocal conservation laws

Definition (Admissible flux)

Let ® be an admissible flux interpolation, and let p € My (R9) and
w € V25(G) :={v: G = R: v(x,y) = —v(y, x)}. Furthermore, take A € M*(R29)
such that p @ p, u® p K A (e.g., A= |p| ® u+ p ® |p|). Then, the admissible flux
F®u; p, w] € M(G) at (p, w) is defined by
dlp®@u) d(u®p)
dF®[u; p,w] = [ =520 222 ) do, 4
R R ()

Definition (Measure-valued solution to the NCL)

Given ® and a measurable V: [0, T] x My (R?) — V25(G), a curve
p: [0, T] = Mrv(R?) is a measure-valued solution to the NCL, denoted as

Oep+V - F®luip, Ve(p)] = 0, (NCL)
provided that, for any A € 3(Rd), it holds that
(i) p € ACs;

(ii) t= V- F®lu; pe, Ve(pe)]IA] € LX([0, T]):;
(iii) p satisfies

pt[A] + /Otﬁ- F®[u; ps, Vs(ps)][Alds = po[A] for a.e. t € [0, T]. (5)
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Theorem (A. E., F. S. Patacchini, A. Schlichting, EJAM '23)
Let V: [0, T] x M!‘F/’V R9) — V25(G) and suppose there are constants Cy/,Ly > 0 so
that, for all t € [0, T] and all p,o € MM, (R9),

sup [ Vel )intx,y)daty) < Cu,
xerd JRI\ {x}

sup [ [Vilpl(xiy) = ValolGxo)ln(e)duly) < Lyllo = allrv.
xeRd Rd\{x}

Then, there exists a unique measure solution p to (NCL) such that py = p°.
Proof via Banach Fixed-Point Theorem

Corollary (Well-posedness for NL2IE)

Assume that 7 satisfies
sup [ FGxy)nlxy)duy) < oo (6)
xeRd JRA

for some nonnegative measurable function f: RY x RY — R. Let K: RY x RY = R
and P: RY — R be such that there exist constants L, Lp > 0 for which

[K(y,z) = K(x,2)| < Lkf(x,y), |P(y) = P(x)| < Lpf(x,y), (7
for all x,y,z € R. Then, NL?IE has a unique measure solution p such that pg = p°.

Valparaiso, 12/01/24 Numerics and evolution PDEs on graphs
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Wasserstein-like gradient flow structure

® [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12]
Diffusion on graphs as gradient flows of the entropy
= Wassertein metric on a finite graph
Maas JFA '11
Je(x,y) = ¢ (pe(x), pe(y)) ve(x,y)

o(r,s)=(r—s)/(Inr—1Ins)
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Wasserstein-like gradient flow structure

® [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12]
Diffusion on graphs as gradient flows of the entropy
= Wassertein metric on a finite graph
Maas JFA '11
Je(x,¥) = ¢(pe(x), pe(y)) ve(x, y)

o(r,s)=(r—s)/(Inr—1Ins)

® [Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure
for McKean-Vlasov on discrete spaces

® [Heinze, Schmidtchen, Pietschmann '22, 23] Systems on graphs

® [D. Slepcev, A. Warren '22] nonlocal wasserstein distance
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Wasserstein-like gradient flow structure

® [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12]
Diffusion on graphs as gradient flows of the entropy
= Wassertein metric on a finite graph

Maas JFA '11
Je(x:y) = ¢(pe(x), pe(y)) ve(x, ¥)
o(r,s)=(r—s)/(Inr—1Ins)

® [Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure
for McKean-Vlasov on discrete spaces

® [Heinze, Schmidtchen, Pietschmann '22, 23] Systems on graphs
® [D. Slepcev, A. Warren '22] nonlocal wasserstein distance

Gradient flows for free energies/(relative) entroples

(0) = [ plx)loga(x)dx-+ 5 [ [ Kixy) dotx) dp(y)
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Wasserstein-like gradient flow structure

® [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12]
Diffusion on graphs as gradient flows of the entropy
= Wassertein metric on a finite graph

Maas JFA '11
Je(x,y) = 6 (pe(x), pe(¥)) ve(x, y)
o(r,s)=(r—s)/(Inr—1Ins)

® [Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure
for McKean-Vlasov on discrete spaces

® [Heinze, Schmidtchen, Pietschmann '22, 23] Systems on graphs
® [D. Slepcev, A. Warren '22] nonlocal wasserstein distance

Gradient flows for free energies/(relative) entroples

(0) = [ plx)loga(x)dx-+ 5 [ [ Kixy) dotx) dp(y)

What if 0 = 07
o — 0: nonlocal metrics above do not have a clear/well-defined limit!

What is a suitable metric for gradient structure of interaction energies?
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Upwind transportation “metric”

Valparaiso, 12/01/24

Numerics and evolution PDEs on graphs
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Upwind transportation “metric”

Nonlocal continuity equation (p: < 1)

Oepr(x) + /Rd (pe(X)ve(x, )+ — pe(y)ve(x, ¥) =) n(x,y) dpu(y) =0 (NCE)

v

Benamou-Brenier

1
W2 (00, p1) = inf{% [ L wtoRo axat | (peve) € CE<po,m)}
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Upwind transportation “metric”

Nonlocal continuity equation (p: < 1)

Oepr(x) + /Rd (pe(X)ve(x, )+ — pe(y)ve(x, ¥) =) n(x,y) dpu(y) =0 (NCE)

v

Benamou-Brenier

1
W2 (00, p1) = inf{% [ L wtoRo axat | (peve) € CE<po,p1)}

Upwind nonlocal transportation “metric”: Benamou-Brenier

, 1t
e {5 L0 o0 + ) Borts) e, ) ) dy) e |

Note that:

v

® p might contain atoms, even if u is Lebesgue!
= measure valued framework

® Benamou-Brenier functional is not jointly convex in (p¢, v¢)
= flux variables
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Action

Definition
For u € M+(R9), p € P(R?) and j € M(G), consider A\ € M(G) such that
P @, b ® p, il < |A]l. We define

Ao =5 [ (o (dﬁ\ d(zﬁwu))*“(‘%’%))”d“" ®

Hereby, the lower semicontinuous, convex, and positively one-homogeneous function
a: R xRy — Ry U{oo} is defined, for all j € R and r > 0, by

22
@ if r >0,

a(j,r):=40 if j<0and r=0, (9)
[e's) if j>0and r =0,

with j;+ = max{0, j}. If the measure p is clear from the context, we write A(p, j) for
A p, §)-

Valparaiso, 12/01/24 Numerics and evolution PDEs on graphs
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Action

Definition
For u € M+(R9), p € P(R?) and j € M(G), consider A\ € M(G) such that
P @, b ® p, il < |A]l. We define

Ao =5 [ (o (in| d(zﬁwu))”(‘%’%))”d“" ®

Hereby, the lower semicontinuous, convex, and positively one-homogeneous function
a: R xRy — Ry U{oo} is defined, for all j € R and r > 0, by
2 \2
@ if r >0,
a(j,r):=40 if j<0and r=0, (9)

[e's) if j>0and r =0,
with j;+ = max{0, j}. If the measure p is clear from the context, we write A(p, j) for
A p, §)-

fp<KLpand j K< p®@p

Ay; p.J) // ((J X))’ (j(xf;(};))f)Q)n(X,y) dp(x) du(y)
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Nonlocal upwind transportation quasi-metric

Definition

For ;1 € M™(R?) satisfying moment bound and local blow-up control, and

po, p1 € TP2(Rd), the nonlocal upwind transportation cost between po and p1 is
defined by

Tulpo. )t =int { [ AGuipej ot s (0J) € NCE.p) }. - (10)
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Nonlocal upwind transportation quasi-metric

Definition
For ;1 € M™(R?) satisfying moment bound and local blow-up control, and
po, p1 € ng(Rd), the nonlocal upwind transportation cost between po and p1 is

defined by
1

Tu(po, p1)° = inf{/ A(p; peydie) dt = (p,J) € NCE(po,m)}- (10)
0

Properties
® The infimum is attained for (p,j) € NCE(po, p1) with
A(p; pe,de) = Tulpo, pr)?
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Nonlocal upwind transportation quasi-metric

Definition
For ;1 € M™(R?) satisfying moment bound and local blow-up control, and
po, p1 € TP2(Rd), the nonlocal upwind transportation cost between po and p1 is

defined by
1
Tu(po, p1)° = inf{/ A(p; peydie) dt = (p,J) € NCE(po,m)}- (10)
0

Properties
® The infimum is attained for (p,j) € NCE(po, p1) with
A(p; pesde) = Tulpo, p1)°
e Comparison with Wasserstein Wi (p°, p*) < +/2C,+/T(0°, p*)

= topology is stronger than W;
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Nonlocal upwind transportation quasi-metric

Definition
For ;1 € M™(R?) satisfying moment bound and local blow-up control, and
po, p1 € TP2(Rd), the nonlocal upwind transportation cost between po and p1 is

defined by
1

Tu(po, p1)° = inf{/ A(p; peydie) dt = (p,J) € NCE(po,m)}- (10)
0

Properties
® The infimum is attained for (p,j) € NCE(po, p1) with
A(p; pesde) = Tulpo, p1)°
e Comparison with Wasserstein Wi (p°, p*) < +/2C,+/T(0°, p*)

= topology is stronger than W;

® T, is narrowly lower semicontinuous

m Valparaiso, 12/01/24 Numerics and evolution PDEs on graphs

14



Nonlocal upwind transportation quasi-metric

Definition

For ;1 € M™(R?) satisfying moment bound and local blow-up control, and

po, p1 € TP2(Rd), the nonlocal upwind transportation cost between po and p1 is
defined by

Tulpo. )t =int { [ AGuipej ot s (0J) € NCE.p) }. - (10)

Properties
® The infimum is attained for (p,j) € NCE(po, p1) with
A(p; pesde) = Tulpo, p1)°
e Comparison with Wasserstein Wi (p°, p*) < +/2C,+/T(0°, p*)

= topology is stronger than W;
® T, is narrowly lower semicontinuous

® T is a quasi-metric on P»(R?): non-symmetric!
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Nonlocal upwind transportation quasi-metric

Definition

For ;1 € M™(R?) satisfying moment bound and local blow-up control, and

po, p1 € TP2(Rd), the nonlocal upwind transportation cost between po and p1 is
defined by

Tulpo. )t =int { [ AGuipej ot s (0J) € NCE.p) }. - (10)

Properties
® The infimum is attained for (p,j) € NCE(po, p1) with
A(p; pesde) = Tulpo, p1)°
e Comparison with Wasserstein Wi (p°, p*) < +/2C,+/T(0°, p*)

= topology is stronger than W;
® T, is narrowly lower semicontinuous
® T is a quasi-metric on P»(R?): non-symmetric!
{pe}eepo,m € AC([0, T]; (P2(RY), T,.)) iff 3 (je)eepo, ) Such that

(p,j) € CEt and fOT VA(u; pr, Ji) dt < 0o

D. Slepcev, A. Warren, Nonlocal wasserstein distance: metric and asymptotic
properties - CVPDE '23

Valparaiso, 12/01/24 Numerics and evolution PDEs on graphs
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
Jj € TpP2(RY), we define an inner product g, j: T,P2(RY) x T,P2(RY) — R by
o1 . . x>0y (¥) | Xg<op(x:¥)
8p.jl1:02) = *// Jl(X,y)Jz(X,y)n(Xﬁy)( 0 R
2/J/e p(x) py)

) du(x)dpy)
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by
o1 . . x>0y (¥) | Xg<op(x:¥)
8p,ili 2) = *// Jl(Xa}’)J2(X,}’)77(X7Y)< L bt
2/Je p(x) py)

) du(x)dpy)

Goal: direction of steepest discent from p!
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product

Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by

stk = 3 [ ) et (K82 L XU g, )

Goal: direction of steepest discent from p!

Gradient vector: Diff, E[j] = g, grad £ () (grad €(p), ) for all j € T,P2(RY) J
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product

Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by

stk = 3 [ ) et (K82 L XU g, )

Goal: direction of steepest discent from p!

Gradient vector: Diff, E[j] = g, grad £ () (grad €(p), ) for all j € T,P2(RY)

Direction steepest descent is in general NOT — grad £(p)

It is the tangent flux denoted by grad™ €(p) s. t.

— Diffy Ej] = &, grad— £(p) (8rad ™ E(p),J) Vi € T,P2(RY)
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]
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Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by

stk = 3 [ ) et (K82 L XU g, )

Goal: direction of steepest discent from p!

Gradient vector: Diff, E[j] = g, grad £ () (grad €(p), ) for all j € T,P2(RY)

Direction steepest descent is in general NOT — grad £(p)

It is the tangent flux denoted by grad™ €(p) s. t.

— Diffy Ej] = &, grad— £(p) (8rad ™ E(p),J) Vi € T,P2(RY)

Gradient flows in (P2(RY), T): 8¢pr = V - grad™ &(p)
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product

Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by

o1 . . x>0y (¥) | Xg<op(x:¥)

ensin k) = 3 [ ey ket y) (X029 U= d() ()
2JJe p(x) p(y)
Goal: direction of steepest discent from p!
Gradient vector: Diff, E[j] = g, grad £ () (grad €(p), ) for all j € T,P2(RY) J
Direction steepest descent is in general NOT — grad £(p)
It is the tangent flux denoted by grad™ €(p) s. t.
— Diffy Ej] = &, grad— £(p) (8rad ™ E(p),J) Vi € T,P2(RY)

Gradient flows in (P2(RY), T): 8¢pr = V - grad™ &(p) J

Nonlocal interaction energy J

grad™ £(p)(x, y) ==V(Kx*p)(x,y) (p(X)x{,w*,»o} (6 ¥) + )X —Frapoy (X5 y))
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Variational characterisation of (NL?IE)

Theorem

A curve (pt)iep, 1] C P5(R?) is a weak solution to (NL2IE) if and only if p belongs to
AC([0, TT; (P2(R9),T)) and is a curve of maximal slope for & with respect to v/D, that

is, satisfies
St(p)=0.

Local slope & De Giorgi Functional

For any p € AC([0, T]; (P2(R?),T)), the De Giorgi functional at p is defined as

1 T
§7(6) 1= E(pr) — E(m) + 5 [ (D(or) + |61 ) dr > 0,
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Variational characterisation of (NL?IE)

Theorem

A curve (pt)iep, 1] C P5(R?) is a weak solution to (NL2IE) if and only if p belongs to

AC([0, TT; (P2(R9),T)) and is a curve of maximal slope for & with respect to v/D, that
is, satisfies

Sr(p) =0.

Local slope & De Giorgi Functional

For any p € AC([0, T]; (P2(R?),T)), the De Giorgi functional at p is defined as
1 T
§7(6) 1= E(pr) — E(en) + 5 [ (Do) + It ) dr > 0
=0 =0E
D =2 < vV—=,-V
(0):=8, Vs ( 5p 5/1)

n(x,y) dp(x) du(y)
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Stability with respect to graph approximations

Stability of gradient flows

Let ("), € M*(RY) and suppose that (1"), narrowly converges to u. Suppose
that p" is a gradient flow of € with respect to u" for all n € N, that is,

Gr(u";p") =0 forall neN,

such that (pg)s satisfies sup,c Ma2(pg) < oo and pf — p: as n — oo for all t €
[0, T] for some curve (p)eepo,1] C P2(RY). Then, p € AC([0, T]; (P2(RY), T,.))
and p is a gradient flow of € with respect to u, that is,

Sr(uip) = 0.
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Stability with respect to graph approximations

Stability of gradient flows

Let ("), € M*(RY) and suppose that (1"), narrowly converges to u. Suppose
that p" is a gradient flow of € with respect to u" for all n € N, that is,

Gr(u";p") =0 forall neN,

such that (pg), satisfies sup,y M2(pg) < oo and pf — pr as n — oo for all t €
[0, T] for some curve (p)eepo,1] C P2(RY). Then, p € AC([0, T]; (P2(RY), T,.))
and p is a gradient flow of € with respect to u, that is,

S7(pip) = 0.

Corollary

Existence of weak solution to (NL?IE) via finite-dimensional approximation.

A. E., F. S. Patacchini, A. Schlichting, D. Slepcev, Nonlocal-interaction equation on
graphs: gradient flow structure and continuum limit - ARMA (2021).
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Outline

Localising the graph
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Graph-to-local limit

Consider a localising graph (u,n°), for

e _ 1 gx+y x—y
0 0)+ [ TR 7)) () (x)euy)
® (NL2IE.)
= [ K < )k ()i ) = 0
R
l‘f—’O (NLIET)
Orpr = div(p: T(VK x pt))
The tensor T : RY — RI*9 s of the form
= 1du
T(x) == 5 de(x) /]Rd\{o} w@w d(x, w)dw. (T)

® S. Lisini - ESAIM Control Optim. Calc. Var. (2009) diffusion
® D. Forkert, J. Maas, and L. Portinale - SIMA (2022) Evolutionary -convergence for FP
® A. Hraivoronska, O.Tse - SIMA (2023) limiting behaviour of random walks on tessellations
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Linking nonlocal and local continuity equation

Proposition (Local flux)
Let j € M(R?') satisfy the integrability condition
ffR2d|x yln(x, y)ljl(x,y) < co. Then there exists 5 € M(RY; R?) such that

1/ ﬁgondjz/ Ve-dj,  forallp e CHRY). (11)
2 R}d Rd

In particular, if (p,j) € NCEt such that A(u,n; p,j) < oo, then there exists
(J¢)tepp, 1] € M(RY; RY) such that (p,3) € CEr.
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Linking nonlocal and local continuity equation

Proposition (Local flux)

Let j € M(Rfd) satisfy the integrability condition

[ frzalx = yIn(x, y)ljl(x,y) < 00. Then there exists j € M(R?; R?) such that
v

1 // Veondi = / Ve-dj,  forallp e CHRY). (11)
2 J Jred Rd
Y
In particular, if (p,j) € NCEt such that A(u,n; p,j) < oo, then there exists
(Ge)eepp.r) € M(R?;R?) such that (p, ) € CE7.

Idea of the proof.

|ly—x]|
o) — p(x) = / NCCREZDRAEY R FORB0

= [ 9el6) s @) (12)

oy [Al=FHHAN[Ix, v]]) with [[x,y]]:= {(l—s)x +syeR?:selo, 1]}.
O
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Linking nonlocal and local continuity equation

Proposition (Local flux)
Let j € M(R?') satisfy the integrability condition
ffR2d|x y|n(x, y)ljl(x,y) < co. Then there exists 5 € M(RY; R?) such that

1 // Vondj = / V- dj, for all p € C}(RY). (11)
2 R}d Rd

In particular, if (p,j) € NCEt such that A(u,n; p,j) < co, then there exists
(J¢)tepp, 1] € M(RY; RY) such that (p,3) € CEr.

Proposition (Compactness)

Let (u%)e>0 € MT(RY) and (n°)e>o identify localising graphs, uniformly in €.
Let (p°,j)e>0 C NCE7 be such that sup, o A(u®,n°%; p°,j°) < oo and let §°
be associated to j° as in Proposition above. Then there exists a (not relabeled)
subsequence of pairs (p©,3°) € CEr and a pair (p,j) € CEt such that p; — p:
narrowly in P(RY) for a.e. t € [0, T] and such that [ 75dt = [ jdt weakly-x in
M((0, T) x RY; R9).
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Limiting tensor structure

Space of tangent velocities
ToPo(RY) = {v LGSR vid(p®p) — vod(u®p) € ijPz(]Rd)} (12)
{Vo:pe CZ(RY)} is dense in 7’;932(]1%‘/) wrt “L%-norm”

Tangent-to-cotangent mapping

T2 TEPo(RY) — (TS P2(RY))", for a fixed v € T5Po(RY)

Fwl =[] wnldos m - vd(us o) (13)

FEAT = [ (T ey Tty )" (<))
3 ] Tetx )Tl (x, )do)du(y) + o)
G €

— / V() - T () Ve (x)dp(x) + o(1)

T = [, DB ),
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Limiting tensor structure

Theorem (Limiting inner product)
The tangent-to-cotangent mapping7§ : ?;?Q(Rd) — (7';?2(Rd))* defined
in (13) satisfies

i T (Vo)(Tul = [ Ve TVvdp Ve e CR),

with the tensor T € C(Rd; Rdx") obtained as limit of (T)sy><>0. The limiting
tensor, given by

T(x) = %ﬁ(x) /R gy W W), (T)

is bounded and uniformly continuous.
Furthermore, the tensor T is uniformly elliptic, i.e. there exist ¢, C > 0 such
that for any x,& € R? we have

clél’ < €-T(x)e < Cl¢f.

Finally, for any x € R the matrix T(x) is symmetric.
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Variational graph-to-local limit

Theorem (Graph-to-local limit)
Let (u,m®) be a localising graph. For any € > 0 suppose that p° is a gradient flow of
& in (P2(R9),T2)), that is,
1 T
£(07) = £(68) + 5 [ (Du(6) + |6 R2)dr =0 for any e >0
with (p5)e C P2(RY) be such that sup..o Ma(p§) < oo. Then there exists

p € AC%([0, T]; (P2(R2), Wr)) such that p§ — pt ase — 0 for all t € [0, T] and p is
a gradient flow of € in (P2(R4), Wr)), that is,

,
S(pr)*ﬁ(po)Jr%/o (Dr(pr) + |0, 13)dr = 0,

- (oL o

Wa(an, 1) = nf { / [, {7 20, (x)>dp(x)dt (p.J) € CE(eo. 1) |

A. E., G. Heinze, A. Schlichting, Graph-to-local limit for the nonlocal interaction
equation, preprint arXiv:2306.03475.

where the metric slope is
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Outline

Co-evolving graphs
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Co-evolving graphs

depe = =V - F®[u,me; pe, Velpell,

(Co-NCL)
O = wlpt] — e,

dF(b[Mﬂ??ﬁ% wl = (M M; W) ndA.

dx 7 dx
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Co-evolving graphs

depe = =V - F®[u,me; pe, Velpell, (Co-NCL)
O = wlpt] — e,

dlp@p) dkep)
AF®[u,mpw] = (| =22 B2, dAi.
(s m; o, W] ( Y W)

Definition (Solution to (Co-NCL))
Given an admissible ®, a V' : [0, T] x My (RY) x R}d — Vas(]Rfd), and function
w1 [0, T] x My (RY) x R2? — R, a pair (p,n) : [0, T] = Mrpv(RY) x Cp(R2?) is a
solution to the initial value problem (Co-NCL) if, for any ¢ € Co(RY),

L p e AC([0, T], Moy (R?)), n € AC([0, T], Cp(R29));

2. the maps t — (p, V - F®[u, ne; pr, Ve[pe]]) and t = wlpe] — ne € L1([0, T]);

3. forae. t €0, T], every (x,y) € R2?, for any ¢ € Go(R?), it holds

1t _
/ wdpr:/ sodpo+f/ // VedF®[u,ms, ps; Vs[psllds  (14)
Rd Rd 2 0 Rid

t
mey) = mlxy) + [ (@l xy) = ns(e.y) ds. (15)
A.E., L. Mikolas, On evolution PDEs on co-evolving graphs, preprint arXiv:2310.10350.
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Different time-scales

Graph slower: 7 = ¢t
Oepe = =V - F®lu,me; pe, Velpi]]

Oene = e(w[pe] — ne) (Co—NCLs)
po € MY, (RY), mo € Co(R2) ,

Graph faster: 7 = t/e

{atpf ==V F®[u,ne; pe, Velpe]]

Eatnt(Xay) = _T]t(X,y) + W[p](hx,y), (CO_NCLF)

Oepe = =V - F[u,wlpe]; pr, Vilpe]-
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Take-home messages

® Evolution (nonlocal) PDEs on graphs (static and co-evolving)
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® Graph-to-local limit for the nonlocal interaction equation

® Connect Finslerian and Riemannian structures
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Graph-to-local limit for the nonlocal interaction equation
® Connect Finslerian and Riemannian structures

® Graphs: space-discretisation
= nonlocal deterministic approximation for transport type equations
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Take-home messages

® Evolution (nonlocal) PDEs on graphs (static and co-evolving)

® Graph-to-local limit for the nonlocal interaction equation

® Connect Finslerian and Riemannian structures

® Graphs: space-discretisation
= nonlocal deterministic approximation for transport type equations

® A. E., F. S. Patacchini, A. Schlichting, D. Slepcev, Nonlocal-interaction
equation on graphs: gradient flow structure and continuum limit - ARMA (2021).

® A. E, F. S. Patacchini, A. Schlichting, On a Class of Nonlocal Continuity
Equations on Graphs, EJAM (2023).

® A. E., G. Heinze, A. Schlichting, Graph-to-local limit for the nonlocal
interaction equation, preprint arXiv:2306.03475.

® A.E., L. Mikolas, On evolution PDEs on co-evolving graphs, preprint
arXiv:2310.10350.
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Take-home messages

® Evolution (nonlocal) PDEs on graphs (static and co-evolving)
® Graph-to-local limit for the nonlocal interaction equation

® Connect Finslerian and Riemannian structures

® Graphs: space-discretisation

= nonlocal deterministic approximation for transport type equations

® A. E., F. S. Patacchini, A. Schlichting, D. Slepéev, Nonlocal-interaction
equation on graphs: gradient flow structure and continuum limit - ARMA (2021).

® A.E, F. S. Patacchini, A. Schlichting, On a Class of Nonlocal Continuity
Equations on Graphs, EJAM (2023).

® A. E., G. Heinze, A. Schlichting, Graph-to-local limit for the nonlocal
interaction equation, preprint arXiv:2306.03475.

® A.E., L. Mikolas, On evolution PDEs on co-evolving graphs, preprint
arXiv:2310.10350.

Thank you for your attention!
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