Interplay between numerical methods and evolution PDEs on graphs

Joint works with G. Heinze (WIAS Berlin), L. Mikolás (Oxford), F. S. Patacchini (IFPEN), A. Schlichting (WWU Münster), and D. Slepčev (CMU Pittsburgh)

Antonio Esposito

Mathematical Institute
University of Oxford
Workshop "Numerical methods for optimal transport problems, mean field games, and multi-agent dynamics" Universidad Técnica Federico Santa María Valparaíso, January -8-12,2024

Oxford
Mathematics

Motivation: why evolution PDEs on graphs?

- Social networks: polarisation and formation of echo chambers
F. Baumann, P. Lorenz-Spreen, I. M. Sokolov, M. Starnini., Phys. Rev. Lett, 2020
A. Benatti, H. F. de Arruda, F. N. Silva, C. H. Comin, L. da Fontoura Costa, Journal of Statistical Mechanics: Theory and Experiment, 2020
- Transportation Newtorks: gravity interactions
K. Tamura, H. Takayasu, M. Takayasu, Scientific Reports, 2018
H. Koike, H. Takayasu, and M. Takayasu, Journal of Statistical Physics, 2022
- Data Science/Machine Learning: data representation as point clouds for clustering and classification
M. Belkin, P. Niyogi, Neural Comput., 2002
R. R. Coifman, S. Lafon, Appl. Comput. Harmon. Anal., 2006
K. Craig, N. Garcia-Trillos, N. Garcia, D. Slepcev, Springer International Publishing, 2022.

Outline

Dynamics on graphs: well-posedness, gradient flow structure, and graph limit

Localising the graph

Co-evolving graphs

Dynamics on graphs: well-posedness, gradient flow structure, and graph limit

Localising the graph

Co-evolving graphs

Notation

- $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ random sample i.i.d. according to $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ \Rightarrow empirical measure $\mu^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$

- $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ random sample i.i.d. according to $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ \Rightarrow empirical measure $\mu^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$
- a symmetric weight function $\eta: D \rightarrow[0, \infty)$ with
$D:=\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \backslash\{x=y\}$
$\Rightarrow\left(\mu^{n}, \eta\right)$ defines an undirected discrete weighted graph

Example: dynamics driven by interaction energies on graphs

Example: dynamics driven by interaction energies on graphs

$$
\begin{gather*}
\mathcal{E}_{x}(\rho)=\frac{1}{2} \sum_{x \in X} \sum_{y \in X} K_{x, y} \rho_{x} \rho_{y} \tag{1}\\
\text { On } \mathbb{R}^{d}: \quad \dot{x}_{i}=-\sum_{j=1}^{n} \rho_{j} \nabla_{x} K\left(x_{i}, x_{j}\right) \tag{2}
\end{gather*}
$$

On finite graphs

$$
\begin{align*}
\frac{d \rho_{x}}{d t} & =-\sum_{y \in X} j_{x, y} \eta(x, y) \tag{3}\\
j_{x, y} & =\phi\left(\rho_{x}, \rho_{y}\right) v_{x, y} \tag{4}\\
v_{x, y} & =-\sum_{z \in X} \rho_{z}\left(K_{y, z}-K_{x, z}\right) . \tag{5}
\end{align*}
$$

CHOICE IS NOT CANONICAL!

Goals

- Define gradient flow of interaction energy on graph (μ, η)
- Dynamics stable under graph limit $n \rightarrow \infty$ (discrete-to-continuum)
- Dynamics stable for local limit: $\mu=\operatorname{Leb}\left(\mathbb{R}^{d}\right), \eta^{\varepsilon}(x, y)=\varepsilon^{-d-2} \eta\left(\frac{x-y}{\varepsilon}\right)$ \Rightarrow limit $\varepsilon \rightarrow 0$ should give $\partial_{t} \rho=\nabla \cdot(\rho \nabla K * \rho)$

Example: dynamics driven by interaction energies on graphs

General framework

- \mathbb{R}^{d} set of possible vertices, $\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\}$ set of possible edges
- $\eta: \mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \rightarrow[0, \infty)$ symmetric weight function
- $G:=\left\{\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \mid \eta(x, y)>0\right\}$ set of edges
- $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ set of vertices
- $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ distribution of mass

Example: dynamics driven by interaction energies on graphs

General framework

- \mathbb{R}^{d} set of possible vertices, $\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\}$ set of possible edges
- $\eta: \mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \rightarrow[0, \infty)$ symmetric weight function
- $G:=\left\{\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \mid \eta(x, y)>0\right\}$ set of edges
- $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ set of vertices
- $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ distribution of mass

Evolution of interest
Gradient descent of the energy $\mathcal{E}: \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x, y) d \rho(x) d \rho(y),
$$

where $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is symmetric.

Example: dynamics driven by interaction energies on graphs

General framework

- \mathbb{R}^{d} set of possible vertices, $\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\}$ set of possible edges
- $\eta: \mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \rightarrow[0, \infty)$ symmetric weight function
- $G:=\left\{\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \mid \eta(x, y)>0\right\}$ set of edges
- $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ set of vertices
- $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ distribution of mass

Evolution of interest
Gradient descent of the energy $\mathcal{E}: \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x, y) d \rho(x) d \rho(y)
$$

where $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is symmetric.
Continuum (local) setting: NLIE
$\partial_{t} \rho=\nabla \cdot(\rho \nabla K * \rho)$ is a Wasserstein gradient flow for \mathcal{E}^{a}
${ }^{\text {a J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, D. Slepčev - Duke Math. J. }}$ 156 (2011)

Example: dynamics driven by interaction energies on graphs

General framework

- \mathbb{R}^{d} set of possible vertices, $\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\}$ set of possible edges
- $\eta: \mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \rightarrow[0, \infty)$ symmetric weight function
- $G:=\left\{\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \mid \eta(x, y)>0\right\}$ set of edges
- $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ set of vertices
- $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ distribution of mass

Evolution of interest
Gradient descent of the energy $\mathcal{E}: \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x, y) d \rho(x) d \rho(y),
$$

where $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is symmetric.
Continuum (local) setting: NLIE
$\partial_{t} \rho=\nabla \cdot(\rho \nabla K * \rho)$ is a Wasserstein gradient flow for \mathcal{E}^{a}
${ }^{\text {a J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, D. Slepčev - Duke Math. J. }}$ 156 (2011)

What is the analogue of the NLIE on a graph?

Valparaíso, 12/01/24
Numerics and evolution PDEs on graphs

Nonlocal continuity equation

Valparaíso, 12/01/24
Numerics and evolution PDEs on graphs

Nonlocal continuity equation

Continuity equation

$$
\partial_{t} \rho_{t}+\nabla \cdot j_{t}=0 \quad \text { where } \quad j_{t}(x):=\rho_{t}(x) v_{t}(x)
$$

Nonlocal continuity equation

Continuity equation

$$
\partial_{t} \rho_{t}+\nabla \cdot j_{t}=0 \quad \text { where } \quad j_{t}(x):=\rho_{t}(x) v_{t}(x)
$$

On Graphs

$$
\begin{aligned}
\partial_{t} \rho_{t}(x)+\left(\bar{\nabla} \cdot j_{t}\right)(x) & =\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}} j_{t}(x, y) \eta(x, y) d y=0 \\
j_{t}(x, y) & =\phi\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y)
\end{aligned}
$$

Nonlocal continuity equation

Continuity equation

$$
\partial_{t} \rho_{t}+\nabla \cdot j_{t}=0 \quad \text { where } \quad j_{t}(x):=\rho_{t}(x) v_{t}(x)
$$

On Graphs

$$
\begin{aligned}
\partial_{t} \rho_{t}(x)+\left(\bar{\nabla} \cdot j_{t}\right)(x) & =\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}} j_{t}(x, y) \eta(x, y) d y=0 \\
j_{t}(x, y) & =\phi\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y)
\end{aligned}
$$

E. g. $\phi(r, s)=(r-s) /(\ln r-\ln s) \Rightarrow$ not reasonable for the resulting dynamics

Nonlocal continuity equation

Continuity equation

$$
\partial_{t} \rho_{t}+\nabla \cdot j_{t}=0 \quad \text { where } \quad j_{t}(x):=\rho_{t}(x) v_{t}(x)
$$

On Graphs

$$
\begin{aligned}
\partial_{t} \rho_{t}(x)+\left(\bar{\nabla} \cdot j_{t}\right)(x) & =\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}} j_{t}(x, y) \eta(x, y) d y=0 \\
j_{t}(x, y) & =\phi\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y)
\end{aligned}
$$

E. g. $\phi(r, s)=(r-s) /(\ln r-\ln s) \Rightarrow$ not reasonable for the resulting dynamics

Upwind interpolation: density along edges $=$ density at the source

$$
j_{t}(x, y)=\rho(x) v_{t}(x, y)_{+}-\rho(y) v_{t}(x, y)_{-}
$$

Nonlocal continuity equation

Continuity equation

$$
\partial_{t} \rho_{t}+\nabla \cdot j_{t}=0 \quad \text { where } \quad j_{t}(x):=\rho_{t}(x) v_{t}(x)
$$

On Graphs

$$
\begin{aligned}
\partial_{t} \rho_{t}(x)+\left(\bar{\nabla} \cdot j_{t}\right)(x) & =\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}} j_{t}(x, y) \eta(x, y) d y=0 \\
j_{t}(x, y) & =\phi\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y)
\end{aligned}
$$

E. g. $\phi(r, s)=(r-s) /(\ln r-\ln s) \Rightarrow$ not reasonable for the resulting dynamics

Upwind interpolation: density along edges $=$ density at the source

$$
j_{t}(x, y)=\rho(x) v_{t}(x, y)_{+}-\rho(y) v_{t}(x, y)_{-}
$$

Nonlocal continuity equation $\left(\rho_{t} \ll \mu\right)$

$$
\begin{equation*}
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) v_{t}(x, y)_{+}-\rho_{t}(y) v_{t}(x, y)_{-}\right) \eta(x, y) d \mu(y)=0 \tag{NCE}
\end{equation*}
$$

Nonlocal interaction equation on graphs: $\mathrm{NL}^{2} \mathrm{IE}$
(NCE) with $v_{t}^{\varepsilon}:=-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}=-\bar{\nabla} K * \rho_{t}$

General interpolations

$$
\begin{equation*}
\partial_{t} \rho+\bar{\nabla} \cdot F^{\Phi}\left[\mu ; \rho_{t}, v_{t}\right]=0 \tag{NCE}
\end{equation*}
$$

Definition (Admissible flux interpolation)
A measurable function $\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is called an admissible flux interpolation provided that the following conditions hold:
(i) Φ satisfies

$$
\begin{equation*}
\Phi(0,0 ; v)=\Phi(a, b ; 0)=0, \quad \text { for all } a, b, v \in \mathbb{R} \tag{1}
\end{equation*}
$$

(ii) Φ is argument-wise Lipschitz in the sense that, for some $L_{\Phi}>0$, any $a, b, c, d, v, w \in \mathbb{R}$, it holds

$$
\begin{align*}
|\Phi(a, b ; w)-\Phi(a, b ; v)| & \leq L_{\Phi}(|a|+|b|)|w-v| \tag{2a}\\
|\Phi(a, b ; v)-\Phi(c, d ; v)| & \leq L_{\Phi}(|a-c|+|b-d|)|v| \tag{2b}
\end{align*}
$$

(iii) Φ is positively one-homogeneous in its first and second argument, that is, for all $\alpha>0$ and $(a, b, w) \in \mathbb{R}^{3}$, it holds

$$
\Phi(\alpha a, \alpha b ; w)=\alpha \Phi(a, b ; w)
$$

General interpolations: examples

- Upwind interpolation. One important case is given by the upwind interpolation $\Phi_{\text {upwind }}$ defined as

$$
\begin{equation*}
\Phi_{\text {upwind }}(a, b ; w)=a w_{+}-b w_{-} \quad \text { for }(a, b, w) \in \mathbb{R}^{3} . \tag{3}
\end{equation*}
$$

- Mean multipliers. Another case is product interpolation $\Phi_{\text {prod }}$, which is of the form

$$
\Phi_{\operatorname{prod}}(a, b ; w)=\phi(a, b) w \quad \text { for }(a, b, w) \in \mathbb{R}^{3}
$$

with $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ any measurable function satisfying, for some $L_{\Phi}>0$,

$$
\begin{aligned}
& |\phi(a, b)| \leq L_{\Phi} \max \{|a|,|b|\} \\
& |\phi(a, b)-\phi(c, d)| \leq L_{\Phi}(|a-c|+|b-d|) \\
& \phi(\alpha a, \alpha b)=\alpha \phi(a, b) \\
& \phi(a, b)=\phi(b, a)
\end{aligned}
$$

for all $\alpha \geq 0$ and $a, b, c, d \in \mathbb{R}$. Common choices for ϕ are as below:

- Arithmetic mean. $\phi_{\mathrm{AM}}(a, b):=\frac{a+b}{2}$;
- Maximal mean. $\phi_{\max }(a, b):=\max \{a, b\}$.

Admissible fluxes and Nonlocal conservation laws

Definition (Admissible flux)
Let Φ be an admissible flux interpolation, and let $\rho \in \mathcal{M}_{\mathrm{TV}}\left(\mathbb{R}^{d}\right)$ and $w \in \mathcal{V}^{\text {as }}(G):=\{v: G \rightarrow \mathbb{R}: v(x, y)=-v(y, x)\}$. Furthermore, take $\lambda \in \mathcal{M}^{+}\left(\mathbb{R}^{2 d}\right)$ such that $\rho \otimes \mu, \mu \otimes \rho \ll \lambda$ (e.g., $\lambda=|\rho| \otimes \mu+\mu \otimes|\rho|$). Then, the admissible flux $F^{\Phi}[\mu ; \rho, w] \in \mathcal{M}(G)$ at (ρ, w) is defined by

$$
\begin{equation*}
\mathrm{d} F^{\phi}[\mu ; \rho, w]=\Phi\left(\frac{\mathrm{d}(\rho \otimes \mu)}{\mathrm{d} \lambda}, \frac{\mathrm{~d}(\mu \otimes \rho)}{\mathrm{d} \lambda} ; w\right) \mathrm{d} \lambda . \tag{4}
\end{equation*}
$$

Admissible fluxes and Nonlocal conservation laws

Definition (Admissible flux)
Let Φ be an admissible flux interpolation, and let $\rho \in \mathcal{M}_{\mathrm{TV}}\left(\mathbb{R}^{d}\right)$ and $w \in \mathcal{V}^{\text {as }}(G):=\{v: G \rightarrow \mathbb{R}: v(x, y)=-v(y, x)\}$. Furthermore, take $\lambda \in \mathcal{M}^{+}\left(\mathbb{R}^{2 d}\right)$ such that $\rho \otimes \mu, \mu \otimes \rho \ll \lambda$ (e.g., $\lambda=|\rho| \otimes \mu+\mu \otimes|\rho|$). Then, the admissible flux $F^{\Phi}[\mu ; \rho, w] \in \mathcal{M}(G)$ at (ρ, w) is defined by

$$
\begin{equation*}
\mathrm{d} F^{\Phi}[\mu ; \rho, w]=\Phi\left(\frac{\mathrm{d}(\rho \otimes \mu)}{\mathrm{d} \lambda}, \frac{\mathrm{~d}(\mu \otimes \rho)}{\mathrm{d} \lambda} ; w\right) \mathrm{d} \lambda . \tag{4}
\end{equation*}
$$

Definition (Measure-valued solution to the NCL)
Given Φ and a measurable $V:[0, T] \times \mathcal{M}_{\mathrm{TV}}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{V}^{\text {as }}(G)$, a curve $\rho:[0, T] \rightarrow \mathcal{M}_{\mathrm{TV}}\left(\mathbb{R}^{d}\right)$ is a measure-valued solution to the NCL, denoted as

$$
\begin{equation*}
\partial_{t} \rho+\bar{\nabla} \cdot F^{\Phi}\left[\mu ; \rho, V_{t}(\rho)\right]=0, \tag{NCL}
\end{equation*}
$$

provided that, for any $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$, it holds that
(i) $\rho \in \mathcal{A C}_{t}$;
(ii) $t \mapsto \bar{\nabla} \cdot F^{\Phi}\left[\mu ; \rho_{t}, V_{t}\left(\rho_{t}\right)\right][A] \in L^{1}([0, T])$;
(iii) ρ satisfies

$$
\begin{equation*}
\rho_{t}[A]+\int_{0}^{t} \bar{\nabla} \cdot F^{\Phi}\left[\mu ; \rho_{s}, V_{s}\left(\rho_{s}\right)\right][A] \mathrm{d} s=\rho_{0}[A] \quad \text { for a.e. } t \in[0, T] \tag{5}
\end{equation*}
$$

Theorem (A. E., F. S. Patacchini, A. Schlichting, EJAM '23)
Let $V:[0, T] \times \mathcal{M}_{\mathrm{TV}}^{M}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{V}^{\text {as }}(G)$ and suppose there are constants $C_{V}, L_{V}>0$ so that, for all $t \in[0, T]$ and all $\rho, \sigma \in \mathcal{M}_{\mathrm{TV}}^{M}\left(\mathbb{R}^{d}\right)$,

$$
\begin{gathered}
\sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d} \backslash\{x\}}\left|V_{t}[\rho](x, y)\right| \eta(x, y) d \mu(y) \leq C_{V}, \\
\sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d} \backslash\{x\}}\left|V_{t}[\rho](x, y)-V_{t}[\sigma](x, y)\right| \eta(x, y) d \mu(y) \leq L_{V}\|\rho-\sigma\|_{T V} .
\end{gathered}
$$

Then, there exists a unique measure solution ρ to (NCL) such that $\rho_{0}=\rho^{0}$.

Proof via Banach Fixed-Point Theorem

Corollary (Well-posedness for NL^{2} IE)
Assume that η satisfies

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(x, y) \eta(x, y) d \mu(y)<\infty \tag{6}
\end{equation*}
$$

for some nonnegative measurable function $f: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$. Let $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $P: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be such that there exist constants $L_{K}, L_{P}>0$ for which

$$
\begin{equation*}
|K(y, z)-K(x, z)| \leq L_{K} f(x, y), \quad|P(y)-P(x)| \leq L_{P} f(x, y) \tag{7}
\end{equation*}
$$

for all $x, y, z \in \mathbb{R}^{d}$. Then, NL ${ }^{2} I E$ has a unique measure solution ρ such that $\rho_{0}=\rho^{0}$.

Wasserstein-like gradient flow structure

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12] Diffusion on graphs as gradient flows of the entropy \Rightarrow Wassertein metric on a finite graph
Maas JFA '11

$$
\begin{aligned}
j_{t}(x, y) & =\phi\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y) \\
\phi(r, s) & =(r-s) /(\ln r-\ln s)
\end{aligned}
$$

Wasserstein-like gradient flow structure

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12] Diffusion on graphs as gradient flows of the entropy \Rightarrow Wassertein metric on a finite graph
Maas JFA '11

$$
\begin{aligned}
j_{t}(x, y) & =\phi\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y) \\
\phi(r, s) & =(r-s) /(\ln r-\ln s)
\end{aligned}
$$

- [Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure for McKean-Vlasov on discrete spaces
- [Heinze, Schmidtchen, Pietschmann '22, '23] Systems on graphs
- [D. Slepčev, A. Warren '22] nonlocal wasserstein distance

Wasserstein-like gradient flow structure

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12] Diffusion on graphs as gradient flows of the entropy \Rightarrow Wassertein metric on a finite graph
Maas JFA '11

$$
\begin{aligned}
j_{t}(x, y) & =\phi\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y) \\
\phi(r, s) & =(r-s) /(\ln r-\ln s)
\end{aligned}
$$

- [Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure for McKean-Vlasov on discrete spaces
- [Heinze, Schmidtchen, Pietschmann '22, '23] Systems on graphs
- [D. Slepčev, A. Warren '22] nonlocal wasserstein distance

Gradient flows for free energies/(relative) entropies:

$$
\mathcal{F}^{\sigma}(\rho)=\sigma \int \rho(x) \log \rho(x) d x+\frac{1}{2} \iint K(x, y) d \rho(x) d \rho(y)
$$

Wasserstein-like gradient flow structure

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12] Diffusion on graphs as gradient flows of the entropy
\Rightarrow Wassertein metric on a finite graph
Maas JFA '11

$$
\begin{aligned}
j_{t}(x, y) & =\phi\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y) \\
\phi(r, s) & =(r-s) /(\ln r-\ln s)
\end{aligned}
$$

- [Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure for McKean-Vlasov on discrete spaces
- [Heinze, Schmidtchen, Pietschmann '22, '23] Systems on graphs
- [D. Slepčev, A. Warren '22] nonlocal wasserstein distance

Gradient flows for free energies/(relative) entropies:

$$
\mathcal{F}^{\sigma}(\rho)=\sigma \int \rho(x) \log \rho(x) d x+\frac{1}{2} \iint K(x, y) d \rho(x) d \rho(y)
$$

What if $\sigma=0$?
$\sigma \rightarrow 0$: nonlocal metrics above do not have a clear/well-defined limit!
What is a suitable metric for gradient structure of interaction energies?

Valparaíso, 12/01/24

Upwind transportation "metric"

Nonlocal continuity equation $\left(\rho_{t} \ll \mu\right)$

$$
\begin{equation*}
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) v_{t}(x, y)_{+}-\rho_{t}(y) v_{t}(x, y)_{-}\right) \eta(x, y) d \mu(y)=0 \tag{NCE}
\end{equation*}
$$

Benamou-Brenier

$$
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)=\inf \left\{\left.\frac{1}{2} \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|v_{t}(x)\right|^{2} \rho_{t}(x) d x d t \right\rvert\,\left(\rho_{t}, v_{t}\right) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)\right\}
$$

Upwind transportation "metric"

Nonlocal continuity equation $\left(\rho_{t} \ll \mu\right)$

$$
\begin{equation*}
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) v_{t}(x, y)_{+}-\rho_{t}(y) v_{t}(x, y)_{-}\right) \eta(x, y) d \mu(y)=0 \tag{NCE}
\end{equation*}
$$

Benamou-Brenier

$$
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)=\inf \left\{\left.\frac{1}{2} \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|v_{t}(x)\right|^{2} \rho_{t}(x) d x d t \right\rvert\,\left(\rho_{t}, v_{t}\right) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)\right\}
$$

Upwind nonlocal transportation "metric": Benamou-Brenier

$$
\inf _{(\rho, v) \in \operatorname{NCE}}\left\{\frac{1}{2} \int_{0}^{1} \iint_{G}\left(\left|v_{t}(x, y)_{+}\right|^{2} \rho_{t}(x)+\left|v_{t}(x, y)-\right|^{2} \rho_{t}(y)\right) \eta(x, y) d \mu(x) d \mu(y) d t\right\}
$$

Note that:

- ρ might contain atoms, even if μ is Lebesgue! \Rightarrow measure valued framework
- Benamou-Brenier functional is not jointly convex in (ρ_{t}, v_{t}) \Rightarrow flux variables

Action

Definition

For $\mu \in \mathcal{M} \mathcal{N}^{+}\left(\mathbb{R}^{\boldsymbol{d}}\right)$, $\rho \in \mathcal{P}\left(\mathbb{R}^{\boldsymbol{d}}\right)$ and $\boldsymbol{j} \in \mathcal{M}(G)$, consider $\lambda \in \mathcal{M}(G)$ such that $\rho \otimes \mu, \mu \otimes \rho,|\boldsymbol{j}| \ll|\lambda|$. We define

$$
\begin{equation*}
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\frac{1}{2} \iint_{G}\left(\alpha\left(\frac{d \boldsymbol{j}}{d|\lambda|}, \frac{d(\rho \otimes \mu)}{d|\lambda|}\right)+\alpha\left(-\frac{d \boldsymbol{j}}{d|\lambda|}, \frac{d(\mu \otimes \rho)}{d|\lambda|}\right)\right) \eta d|\lambda| . \tag{8}
\end{equation*}
$$

Hereby, the lower semicontinuous, convex, and positively one-homogeneous function $\alpha: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is defined, for all $j \in \mathbb{R}$ and $r \geq 0$, by

$$
\alpha(j, r):= \begin{cases}\frac{\left(j_{+}\right)^{2}}{r} & \text { if } r>0, \tag{9}\\ 0 & \text { if } j \leq 0 \text { and } r=0, \\ \infty & \text { if } j>0 \text { and } r=0\end{cases}
$$

with $j_{+}=\max \{0, j\}$. If the measure μ is clear from the context, we write $\mathcal{A}(\rho, \boldsymbol{j})$ for $\mathcal{A}(\mu ; \rho, \boldsymbol{j})$.

Action

Definition

For $\mu \in \mathcal{M} \mathcal{N}^{+}\left(\mathbb{R}^{\boldsymbol{d}}\right)$, $\rho \in \mathcal{P}\left(\mathbb{R}^{\boldsymbol{d}}\right)$ and $\boldsymbol{j} \in \mathcal{M}(G)$, consider $\lambda \in \mathcal{M}(G)$ such that $\rho \otimes \mu, \mu \otimes \rho,|\boldsymbol{j}| \ll|\lambda|$. We define

$$
\begin{equation*}
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\frac{1}{2} \iint_{G}\left(\alpha\left(\frac{d \boldsymbol{j}}{d|\lambda|}, \frac{d(\rho \otimes \mu)}{d|\lambda|}\right)+\alpha\left(-\frac{d \boldsymbol{j}}{d|\lambda|}, \frac{d(\mu \otimes \rho)}{d|\lambda|}\right)\right) \eta d|\lambda| . \tag{8}
\end{equation*}
$$

Hereby, the lower semicontinuous, convex, and positively one-homogeneous function $\alpha: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is defined, for all $j \in \mathbb{R}$ and $r \geq 0$, by

$$
\alpha(j, r):= \begin{cases}\frac{\left(j_{+}\right)^{2}}{r} & \text { if } r>0, \tag{9}\\ 0 & \text { if } j \leq 0 \text { and } r=0, \\ \infty & \text { if } j>0 \text { and } r=0\end{cases}
$$

with $j_{+}=\max \{0, j\}$. If the measure μ is clear from the context, we write $\mathcal{A}(\rho, \boldsymbol{j})$ for $\mathcal{A}(\mu ; \rho, \boldsymbol{j})$.

If $\rho \ll \mu$ and $\boldsymbol{j} \ll \mu \otimes \mu$

$$
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\frac{1}{2} \iint_{G}\left(\frac{\left(j(x, y)_{+}\right)^{2}}{\rho(x)}+\frac{\left(j(x, y)_{-}\right)^{2}}{\rho(y)}\right) \eta(x, y) d \mu(x) d \mu(y)
$$

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{10}
\end{equation*}
$$

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{10}
\end{equation*}
$$

Properties

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)$ with $\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}$

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{10}
\end{equation*}
$$

Properties

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)$ with $\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}$
- Comparison with Wasserstein $W_{1}\left(\rho^{0}, \rho^{1}\right) \leq \sqrt{2 C_{\eta}} \sqrt{\mathcal{T}\left(\rho^{0}, \rho^{1}\right)}$ \Rightarrow topology is stronger than W_{1}

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{10}
\end{equation*}
$$

Properties

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)$ with $\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}$
- Comparison with Wasserstein $W_{1}\left(\rho^{0}, \rho^{1}\right) \leq \sqrt{2 C_{\eta}} \sqrt{\mathcal{T}\left(\rho^{0}, \rho^{1}\right)}$ \Rightarrow topology is stronger than W_{1}
- \mathcal{T}_{μ} is narrowly lower semicontinuous

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{10}
\end{equation*}
$$

Properties

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)$ with $\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}$
- Comparison with Wasserstein $W_{1}\left(\rho^{0}, \rho^{1}\right) \leq \sqrt{2 C_{\eta}} \sqrt{\mathcal{T}\left(\rho^{0}, \rho^{1}\right)}$ \Rightarrow topology is stronger than W_{1}
- \mathcal{T}_{μ} is narrowly lower semicontinuous
- \mathcal{T} is a quasi-metric on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$: non-symmetric!

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{10}
\end{equation*}
$$

Properties

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{NCE}\left(\rho_{0}, \rho_{1}\right)$ with

$$
\mathcal{A}\left(\mu ; \rho_{t}, \dot{\boldsymbol{j}}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}
$$

- Comparison with Wasserstein $W_{1}\left(\rho^{0}, \rho^{1}\right) \leq \sqrt{2 C_{\eta}} \sqrt{\mathcal{T}\left(\rho^{0}, \rho^{1}\right)}$ \Rightarrow topology is stronger than W_{1}
- \mathcal{T}_{μ} is narrowly lower semicontinuous
- \mathcal{T} is a quasi-metric on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$: non-symmetric!
- $\left\{\rho_{t}\right\}_{t \in[0, T]} \in \mathrm{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}_{\mu}\right)\right)$ iff $\exists\left(\boldsymbol{j}_{t}\right)_{t \in[0, T]}$ such that $(\rho, \boldsymbol{j}) \in \mathrm{C} \mathrm{E}_{T}$ and $\int_{0}^{T} \sqrt{\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)} d t<\infty$
D. Slepčev, A. Warren, Nonlocal wasserstein distance: metric and asymptotic properties - CVPDE '23

Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
$j \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, j}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by
$g_{\rho, j}\left(\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)$

Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
$j \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, j}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by
$g_{\rho, j}\left(\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)$

Goal: direction of steepest discent from ρ !

Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
$j \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, j}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by
$g_{\rho, j}\left(j_{1}, j_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)$

Goal: direction of steepest discent from ρ !

Gradient vector: $\operatorname{Diff}_{\rho} \mathcal{E}[\boldsymbol{j}]=g_{\rho, \operatorname{grad} \mathcal{E}(\rho)}(\operatorname{grad} \mathcal{E}(\rho), \boldsymbol{j}) \quad$ for all $\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{\boldsymbol{d}}\right)$

Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
$j \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, j}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by
$g_{\rho, j}\left(\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)$

Goal: direction of steepest discent from ρ !

Gradient vector: $\operatorname{Diff}_{\rho} \mathcal{E}[\boldsymbol{j}]=g_{\rho, \operatorname{grad}} \varepsilon(\rho)(\operatorname{grad} \varepsilon(\rho), \boldsymbol{j}) \quad$ for all $\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{\boldsymbol{d}}\right)$
Direction steepest descent is in general NOT $-\operatorname{grad} \mathcal{E}(\rho)$
It is the tangent flux denoted by $\operatorname{grad}^{-} \mathcal{E}(\rho) \mathrm{s}$. t .

$$
-\operatorname{Diff}_{\rho} \varepsilon[\boldsymbol{j}]=g_{\rho, \operatorname{grad}^{-}-\varepsilon(\rho)}\left(\operatorname{grad}^{-} \varepsilon(\rho), \boldsymbol{j}\right) \quad \forall \boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
$$

Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
$j \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, j}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by
$g_{\rho, j}\left(j_{1}, j_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)$

Goal: direction of steepest discent from ρ !

Gradient vector: $\operatorname{Diff}_{\rho} \mathcal{E}[\boldsymbol{j}]=g_{\rho, \operatorname{grad}} \varepsilon(\rho)(\operatorname{grad} \mathcal{E}(\rho), \boldsymbol{j}) \quad$ for all $\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{\boldsymbol{d}}\right)$
Direction steepest descent is in general NOT $-\operatorname{grad} \mathcal{E}(\rho)$
It is the tangent flux denoted by $\operatorname{grad}^{-} \mathcal{E}(\rho) \mathrm{s}$. t .

$$
-\operatorname{Diff}_{\rho} \varepsilon[\boldsymbol{j}]=g_{\rho, \mathrm{grad}^{-}-\varepsilon(\rho)}\left(\operatorname{grad}^{-} \mathcal{E}(\rho), \boldsymbol{j}\right) \quad \forall \boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
$$

Gradient flows in $\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right): \partial_{t} \rho_{t}=\bar{\nabla} \cdot \operatorname{grad}^{-} \mathcal{E}(\rho)$

Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
$j \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, j}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by
$g_{\rho, j}\left(\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)$

Goal: direction of steepest discent from ρ !

Gradient vector: $\operatorname{Diff}_{\rho} \mathcal{E}[\boldsymbol{j}]=g_{\rho, \operatorname{grad}} \varepsilon(\rho)(\operatorname{grad} \mathcal{E}(\rho), \boldsymbol{j}) \quad$ for all $\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{\boldsymbol{d}}\right)$
Direction steepest descent is in general NOT $-\operatorname{grad} \mathcal{E}(\rho)$
It is the tangent flux denoted by $\operatorname{grad}^{-} \mathcal{E}(\rho) \mathrm{s}$. t .

$$
-\operatorname{Diff}_{\rho} \varepsilon[\boldsymbol{j}]=g_{\rho, \mathrm{grad}^{-}-\varepsilon(\rho)}\left(\operatorname{grad}^{-} \mathcal{E}(\rho), \boldsymbol{j}\right) \quad \forall \boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
$$

Gradient flows in $\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right): \partial_{t} \rho_{t}=\bar{\nabla} \cdot \operatorname{grad}^{-} \mathcal{E}(\rho)$
Nonlocal interaction energy

$$
\operatorname{grad}^{-} \mathcal{E}(\rho)(x, y)=-\bar{\nabla}(K * \rho)(x, y)\left(\rho(x) \chi_{\{-\bar{\nabla} K * \rho>0\}}(x, y)+\rho(y) \chi_{\{-\bar{\nabla} K * \rho<0\}}(x, y)\right)
$$

Theorem
A curve $\left(\rho_{t}\right)_{t \in[0, T]} \subset \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is a weak solution to $\left(\mathrm{NL}^{2} \mathrm{IE}\right)$ if and only if ρ belongs to $\mathrm{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right)$ and is a curve of maximal slope for \mathcal{E} with respect to $\sqrt{\mathcal{D}}$, that is, satisfies

$$
\mathcal{G}_{T}(\rho)=0 .
$$

Local slope \& De Giorgi Functional
For any $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right)$, the De Giorgi functional at ρ is defined as

$$
\mathcal{G}_{T}(\rho):=\mathcal{E}\left(\rho_{T}\right)-\mathcal{E}\left(\rho_{0}\right)+\frac{1}{2} \int_{0}^{T}\left(\mathcal{D}\left(\rho_{\tau}\right)+\left|\rho_{\tau}^{\prime}\right|^{2}\right) d \tau \geq 0
$$

Variational characterisation of ($\left.\mathrm{NL}^{2} \mathrm{IE}\right)$

Theorem
A curve $\left(\rho_{t}\right)_{t \in[0, T]} \subset \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is a weak solution to $\left(\mathrm{NL}^{2} I \mathrm{I}\right)$ if and only if ρ belongs to $\mathrm{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right)$ and is a curve of maximal slope for \mathcal{E} with respect to $\sqrt{\mathcal{D}}$, that is, satisfies

$$
\mathcal{G}_{T}(\rho)=0 .
$$

Local slope \& De Giorgi Functional
For any $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right)$, the De Giorgi functional at ρ is defined as

$$
\begin{aligned}
\mathcal{G}_{T}(\rho): & =\mathcal{E}\left(\rho_{T}\right)-\mathcal{E}\left(\rho_{0}\right)+\frac{1}{2} \int_{0}^{T}\left(\mathcal{D}\left(\rho_{\tau}\right)+\left|\rho_{\tau}^{\prime}\right|^{2}\right) d \tau \geq 0, \\
\mathcal{D}(\rho) & :=\widehat{g}_{\rho,-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}}\left(-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho},-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}\right) \\
& =-\iint_{G}\left|\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}(x, y)_{-}\right|^{2} \eta(x, y) d \rho(x) d \mu(y)
\end{aligned}
$$

Stability with respect to graph approximations

Stability of gradient flows
Let $\left(\mu^{n}\right)_{n} \subset \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ and suppose that $\left(\mu^{n}\right)_{n}$ narrowly converges to μ. Suppose that ρ^{n} is a gradient flow of \mathcal{E} with respect to μ^{n} for all $n \in \mathbb{N}$, that is,

$$
\mathcal{G}_{T}\left(\mu^{n} ; \rho^{n}\right)=0 \quad \text { for all } n \in \mathbb{N},
$$

such that $\left(\rho_{0}^{n}\right)_{n}$ satisfies $\sup _{n \in \mathbb{N}} M_{2}\left(\rho_{0}^{n}\right)<\infty$ and $\rho_{t}^{n} \rightharpoonup \rho_{t}$ as $n \rightarrow \infty$ for all $t \in$ $[0, T]$ for some curve $\left(\rho_{t}\right)_{t \in[0, T]} \subset \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. Then, $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}_{\mu}\right)\right)$ and ρ is a gradient flow of \mathcal{E} with respect to μ, that is,

$$
\mathcal{G}_{T}(\mu ; \rho)=0 .
$$

Stability with respect to graph approximations

Stability of gradient flows
Let $\left(\mu^{n}\right)_{n} \subset \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ and suppose that $\left(\mu^{n}\right)_{n}$ narrowly converges to μ. Suppose that ρ^{n} is a gradient flow of \mathcal{E} with respect to μ^{n} for all $n \in \mathbb{N}$, that is,

$$
\mathcal{G}_{T}\left(\mu^{n} ; \rho^{n}\right)=0 \quad \text { for all } n \in \mathbb{N},
$$

such that $\left(\rho_{0}^{n}\right)_{n}$ satisfies $\sup _{n \in \mathbb{N}} M_{2}\left(\rho_{0}^{n}\right)<\infty$ and $\rho_{t}^{n} \rightharpoonup \rho_{t}$ as $n \rightarrow \infty$ for all $t \in$ $[0, T]$ for some curve $\left(\rho_{t}\right)_{t \in[0, T]} \subset \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. Then, $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}_{\mu}\right)\right)$ and ρ is a gradient flow of \mathcal{E} with respect to μ, that is,

$$
\mathcal{G}_{T}(\mu ; \rho)=0 .
$$

Corollary
Existence of weak solution to ($\mathrm{NL}^{2} \mathrm{IE}$) via finite-dimensional approximation.
A. E., F. S. Patacchini, A. Schlichting, D. Slepčev, Nonlocal-interaction equation on graphs: gradient flow structure and continuum limit - ARMA (2021).

Outline

Dynamics on graphs: well-posedness, gradient flow structure, and graph limit

Localising the graph

Co-evolving graphs

Valparaíso, 12/01/24

Graph-to-local limit

Consider a localising graph $\left(\mu, \eta^{\varepsilon}\right)$, for

$$
\begin{gather*}
\eta^{\varepsilon}(x, y):=\frac{1}{\varepsilon^{d+2}} \vartheta\left(\frac{x+y}{2}, \frac{x-y}{\varepsilon}\right) \\
\partial_{t} \rho_{t}^{\varepsilon}(x)+\int_{\mathbb{R}^{d}} \bar{\nabla}\left(K * \rho_{t}^{\varepsilon}\right)(x, y)-\eta^{\varepsilon}(x, y) \rho_{t}^{\varepsilon}(x) \mathrm{d} \mu(y) \\
-\int_{\mathbb{R}^{d}} \bar{\nabla}\left(K * \rho_{t}^{\varepsilon}\right)(x, y)_{+} \eta^{\varepsilon}(x, y) \mathrm{d} \rho_{t}^{\varepsilon}(y)=0 \\
\downarrow^{\varepsilon \rightarrow 0} \tag{T}\\
\partial_{t} \rho_{t}=\operatorname{div}\left(\rho_{t} \mathbb{T}\left(\nabla K * \rho_{t}\right)\right)
\end{gather*}
$$

$\left(\mathrm{NL}^{2} \mathrm{IE}_{\varepsilon}\right)$

The tensor $\mathbb{T}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$ is of the form

$$
\begin{equation*}
\mathbb{T}(x):=\frac{1}{2} \frac{\mathrm{~d} \mu}{\mathrm{~d} \mathcal{L}^{d}}(x) \int_{\mathbb{R}^{d} \backslash\{0\}} w \otimes w \vartheta(x, w) \mathrm{d} w \tag{T}
\end{equation*}
$$

- S. Lisini - ESAIM Control Optim. Calc. Var. (2009) diffusion
- D. Forkert, J. Maas, and L. Portinale - SIMA (2022) Evolutionary 「-convergence for FP
- A. Hraivoronska, O.Tse - SIMA (2023) limiting behaviour of random walks on tessellations

Linking nonlocal and local continuity equation

Proposition (Local flux)

Let $j \in \mathcal{M}\left(\mathbb{R}^{2 d}\right)$ satisfy the integrability condition $\iint_{\mathbb{R}_{d}^{2 d}}|x-y| \eta(x, y)|j|(x, y)<\infty$. Then there exists $\hat{\jmath} \in \mathcal{M}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\frac{1}{2} \iint_{\mathbb{R}^{2 d}} \bar{\nabla} \varphi \eta d j=\int_{\mathbb{R}^{d}} \nabla \varphi \cdot d \hat{\jmath}, \quad \text { for all } \varphi \in C_{c}^{1}\left(\mathbb{R}^{d}\right) \tag{11}
\end{equation*}
$$

In particular, if $(\boldsymbol{\rho}, \boldsymbol{j}) \in \mathrm{NCE}_{T}$ such that $\mathcal{A}(\mu, \eta ; \boldsymbol{\rho}, \boldsymbol{j})<\infty$, then there exists $\left(\hat{\jmath}_{t}\right)_{t \in[0, T]} \subset \mathcal{M}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ such that $(\rho, \hat{\jmath}) \in \mathrm{CE}_{T}$.

Linking nonlocal and local continuity equation

Proposition (Local flux)

Let $j \in \mathcal{M}\left(\mathbb{R}^{2 d}\right)$ satisfy the integrability condition
$\iint_{\mathbb{R}^{2 d}}|x-y| \eta(x, y)|j|(x, y)<\infty$. Then there exists $\hat{\jmath} \in \mathcal{M}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\frac{1}{2} \iint_{\mathbb{R}_{/}^{2 d}} \bar{\nabla} \varphi \eta d j=\int_{\mathbb{R}^{d}} \nabla \varphi \cdot d \hat{\jmath}, \quad \text { for all } \varphi \in C_{c}^{1}\left(\mathbb{R}^{d}\right) \tag{11}
\end{equation*}
$$

In particular, if $(\boldsymbol{\rho}, \boldsymbol{j}) \in \mathrm{NCE}_{T}$ such that $\mathcal{A}(\mu, \eta ; \boldsymbol{\rho}, \boldsymbol{j})<\infty$, then there exists $\left(\hat{\jmath}_{t}\right)_{t \in[0, T]} \subset \mathcal{M}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ such that $(\rho, \hat{\jmath}) \in \mathcal{C E}_{T}$.

Idea of the proof.

$$
\begin{align*}
\varphi(y)-\varphi(x) & =\int_{0}^{|y-x|} \nabla \varphi\left(x+s \nu_{x, y}\right) \cdot \nu_{x, y} \mathrm{~d} s=\int_{[[x, y]]} \nabla \varphi(\xi) \cdot \nu_{x, y} \mathrm{~d} \mathcal{H}^{1}(\xi) \\
& =\int_{\mathbb{R}^{d}} \nabla \varphi(\xi) \cdot \nu_{x, y} \mathrm{~d} \sigma_{x, y}(\xi) \tag{12}
\end{align*}
$$

$$
\sigma_{x, y}[A]=\mathcal{H}^{1}(A \cap[[x, y]]) \quad \text { with } \quad[[x, y]]:=\left\{(1-s) x+s y \in \mathbb{R}^{d}: s \in[0,1]\right\}
$$

Linking nonlocal and local continuity equation

Proposition (Local flux)

Let $j \in \mathcal{M}\left(\mathbb{R}^{2 d}\right)$ satisfy the integrability condition
$\iint_{\mathbb{R}_{!}^{2 d}}|x-y| \eta(x, y)|j|(x, y)<\infty$. Then there exists $\hat{\jmath} \in \mathcal{M}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\frac{1}{2} \iint_{\mathbb{R}_{/}^{2 d}} \bar{\nabla} \varphi \eta d j=\int_{\mathbb{R}^{d}} \nabla \varphi \cdot d \hat{\jmath}, \quad \text { for all } \varphi \in C_{c}^{1}\left(\mathbb{R}^{d}\right) \tag{11}
\end{equation*}
$$

In particular, if $(\boldsymbol{\rho}, \boldsymbol{j}) \in \mathrm{NCE}_{T}$ such that $\mathcal{A}(\mu, \eta ; \boldsymbol{\rho}, \boldsymbol{j})<\infty$, then there exists $\left(\hat{\jmath}_{t}\right)_{t \in[0, T]} \subset \mathcal{M}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ such that $(\rho, \hat{\jmath}) \in \mathrm{CE}_{T}$.

Proposition (Compactness)

Let $\left(\mu^{\varepsilon}\right)_{\varepsilon>0} \subset \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ and $\left(\eta^{\varepsilon}\right)_{\varepsilon>0}$ identify localising graphs, uniformly in ε. Let $\left(\boldsymbol{\rho}^{\varepsilon}, \boldsymbol{j}^{\varepsilon}\right)_{\varepsilon>0} \subset \mathrm{NCE}_{T}$ be such that $\sup _{\varepsilon>0} \mathcal{A}\left(\mu^{\varepsilon}, \eta^{\varepsilon} ; \boldsymbol{\rho}^{\varepsilon}, \boldsymbol{j}^{\varepsilon}\right)<\infty$ and let $\hat{\boldsymbol{\jmath}}^{\varepsilon}$ be associated to $\boldsymbol{j}^{\varepsilon}$ as in Proposition above. Then there exists a (not relabeled) subsequence of pairs $\left(\boldsymbol{\rho}^{\varepsilon}, \hat{\boldsymbol{\jmath}}^{\varepsilon}\right) \in \mathrm{CE}_{T}$ and a pair $(\boldsymbol{\rho}, \hat{\boldsymbol{\jmath}}) \in \mathrm{CE}_{T}$ such that $\rho_{t}^{\varepsilon} \rightharpoonup \rho_{t}$ narrowly in $\mathcal{P}\left(\mathbb{R}^{d}\right)$ for a.e. $t \in[0, T]$ and such that $\int \hat{\jmath}_{t}^{\epsilon} d t \stackrel{*}{\rightharpoonup} \int \hat{\jmath} d t$ weakly-* in $\mathcal{M}\left((0, T) \times \mathbb{R}^{d} ; \mathbb{R}^{d}\right)$.

Limiting tensor structure

Space of tangent velocities

$$
\begin{equation*}
\widetilde{T}_{\rho}^{\varepsilon} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right):=\left\{v: G^{\varepsilon} \rightarrow \mathbb{R}: v_{+} \mathrm{d}(\rho \otimes \mu)-v_{-} \mathrm{d}(\mu \otimes \rho) \in T_{\rho}^{\varepsilon} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right\} \tag{12}
\end{equation*}
$$

$\left\{\bar{\nabla} \varphi: \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)\right\}$ is dense in $\widetilde{T}_{\rho}^{\varepsilon} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ wrt "L2 -norm"
Tangent-to-cotangent mapping
$\widetilde{I}_{\rho}^{\varepsilon}: \widetilde{T}_{\rho}^{\varepsilon} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow\left(\widetilde{T}_{\rho}^{\varepsilon} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)^{*}$, for a fixed $v \in \widetilde{T}_{\rho}^{\varepsilon} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

$$
\begin{equation*}
{\widetilde{l_{\rho}^{\varepsilon}}}_{\varepsilon}^{\varepsilon}(v)[w]:=\frac{1}{2} \iint_{G} w \eta^{\varepsilon}\left[v_{+} \mathrm{d}(\rho \otimes \mu)-v_{-} \mathrm{d}(\mu \otimes \rho)\right] \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
\left.{\widetilde{I_{\rho}^{\varepsilon}}}_{\varepsilon}^{(\nabla} \varphi\right)[\bar{\nabla} \psi] & =\iint_{G}(\bar{\nabla} \varphi)_{+}(x, y) \bar{\nabla} \psi(x, y) \eta^{\varepsilon}(x, y) \mathrm{d} \rho^{\varepsilon}(x) \mathrm{d} \mu(y) \\
& =\frac{1}{2} \iint_{G} \bar{\nabla} \varphi(x, y) \bar{\nabla} \psi(x, y) \eta^{\varepsilon}(x, y) \mathrm{d} \rho(x) \mathrm{d} \mu(y)+o(1) \\
& =\int_{\mathbb{R}^{d}} \nabla \varphi(x) \cdot \mathbb{T}^{\varepsilon}(x) \nabla \psi(x) \mathrm{d} \rho(x)+o(1)
\end{aligned}
$$

$$
\mathbb{T}^{\varepsilon}(x):=\frac{1}{2} \int_{\mathbb{R}^{d} \backslash\{x\}}(x-y) \otimes(x-y) \eta^{\varepsilon}(x, y) \mathrm{d} \mu(y)
$$

Limiting tensor structure

Theorem (Limiting inner product)
The tangent-to-cotangent mapping $\widetilde{I}_{\rho}^{\varepsilon}: \widetilde{T}_{\rho}^{\varepsilon} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow\left(\widetilde{T}_{\rho}^{\varepsilon} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)^{*}$ defined in (13) satisfies

$$
\lim _{\varepsilon \rightarrow 0} \widetilde{I}_{\rho_{\rho}}(\bar{\nabla} \varphi)[\bar{\nabla} \psi]=\int_{\mathbb{R}^{d}} \nabla \varphi \cdot \mathbb{T} \nabla \psi d \rho, \quad \forall \varphi, \psi \in C_{c}^{2}\left(\mathbb{R}^{d}\right)
$$

with the tensor $\mathbb{T} \in C\left(\mathbb{R}^{d} ; \mathbb{R}^{d \times d}\right)$ obtained as limit of $\left(\mathbb{T}^{\varepsilon}\right)_{\varepsilon_{0} \geq \varepsilon>0}$. The limiting tensor, given by

$$
\begin{equation*}
\mathbb{T}(x):=\frac{1}{2} \widetilde{\mu}(x) \int_{\mathbb{R}^{d} \backslash\{0\}} w \otimes w \vartheta(x, w) d w, \tag{T}
\end{equation*}
$$

is bounded and uniformly continuous.
Furthermore, the tensor \mathbb{T} is uniformly elliptic, i.e. there exist $c, C>0$ such that for any $x, \xi \in \mathbb{R}^{d}$ we have

$$
c|\xi|^{2} \leq \xi \cdot \mathbb{T}(x) \xi \leq C|\xi|^{2} .
$$

Finally, for any $x \in \mathbb{R}$ the matrix $\mathbb{T}(x)$ is symmetric.

Variational graph-to-local limit

Theorem (Graph-to-local limit)
Let $\left(\mu, \eta^{\varepsilon}\right)$ be a localising graph. For any $\varepsilon>0$ suppose that ρ^{ε} is a gradient flow of \mathcal{E} in $\left.\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}_{\varepsilon}\right)\right)$, that is,

$$
\mathcal{E}\left(\rho_{T}^{\varepsilon}\right)-\mathcal{E}\left(\rho_{0}^{\varepsilon}\right)+\frac{1}{2} \int_{0}^{T}\left(\mathcal{D}_{\varepsilon}\left(\rho_{\tau}^{\varepsilon}\right)+\left|\rho_{\tau}^{\prime}\right|_{\varepsilon}^{2}\right) d \tau=0 \quad \text { for any } \varepsilon>0
$$

with $\left(\rho_{0}^{\varepsilon}\right)_{\varepsilon} \subset \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ be such that $\sup _{\varepsilon>0} M_{2}\left(\rho_{0}^{\varepsilon}\right)<\infty$. Then there exists $\rho \in \operatorname{AC}^{2}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}_{\mathbb{T}}^{d}\right), W_{\mathbb{T}}\right)\right)$ such that $\rho_{t}^{\varepsilon} \rightharpoonup \rho_{t}$ as $\varepsilon \rightarrow 0$ for all $t \in[0, T]$ and ρ is a gradient flow of \mathcal{E} in $\left(\mathcal{P}_{2}\left(\mathbb{R}_{\mathbb{T}}^{d}\right), W_{\mathbb{T}}\right)$), that is,

$$
\varepsilon\left(\rho_{T}\right)-\varepsilon\left(\rho_{0}\right)+\frac{1}{2} \int_{0}^{T}\left(\mathcal{D}_{\mathbb{T}}\left(\rho_{\tau}\right)+\left|\rho_{\tau}^{\prime}\right|_{\mathbb{T}}^{2}\right) d \tau=0
$$

where the metric slope is

$$
\begin{gathered}
\mathcal{D}_{\mathbb{T}}(\rho)=\int_{\mathbb{R}^{d}}\left\langle\nabla \frac{\delta \varepsilon}{\delta \rho}, \mathbb{T} \nabla \frac{\delta \mathcal{E}}{\delta \rho}\right\rangle d \rho \\
W_{\mathbb{T}}^{2}\left(\varrho_{0}, \varrho_{1}\right)=\inf \left\{\int_{0}^{1} \int_{\mathbb{R}^{d}}\left\langle\mathbb{T}^{-1}(x) \frac{\mathrm{d} j}{\mathrm{~d} \rho}(x), \frac{\mathrm{d} j}{\mathrm{~d} \rho}(x)\right\rangle \mathrm{d} \rho(x) \mathrm{d} t:(\rho, j) \in \operatorname{CE}\left(\varrho_{0}, \varrho_{1}\right)\right\}
\end{gathered}
$$

A. E., G. Heinze, A. Schlichting, Graph-to-local limit for the nonlocal interaction equation, preprint arXiv:2306.03475.

Outline

Dynamics on graphs: well-posedness, gradient flow structure, and graph limit

Localising the graph

Co-evolving graphs

Valparaíso, 12/01/24

Co-evolving graphs

$$
\begin{align*}
\partial_{t} \rho_{t} & =-\bar{\nabla} \cdot F^{\Phi}\left[\mu, \eta_{t} ; \rho_{t}, V_{t}\left[\rho_{t}\right]\right], \\
\partial_{t} \eta_{t} & =\omega\left[\rho_{t}\right]-\eta_{t}, \tag{Co-NCL}
\end{align*}
$$

$$
\mathrm{d} F^{\Phi}[\mu, \eta ; \rho, w]=\Phi\left(\frac{\mathrm{d}(\rho \otimes \mu)}{\mathrm{d} \lambda}, \frac{\mathrm{~d}(\mu \otimes \rho)}{\mathrm{d} \lambda} ; w\right) \eta \mathrm{d} \lambda .
$$

Co-evolving graphs

$$
\begin{align*}
\partial_{t} \rho_{t} & =-\bar{\nabla} \cdot F^{\Phi}\left[\mu, \eta_{t} ; \rho_{t}, V_{t}\left[\rho_{t}\right]\right], \tag{Co-NCL}\\
\partial_{t} \eta_{t} & =\omega\left[\rho_{t}\right]-\eta_{t},
\end{align*}
$$

$$
\mathrm{d} F^{\Phi}[\mu, \eta ; \rho, w]=\Phi\left(\frac{\mathrm{d}(\rho \otimes \mu)}{\mathrm{d} \lambda}, \frac{\mathrm{~d}(\mu \otimes \rho)}{\mathrm{d} \lambda} ; w\right) \eta \mathrm{d} \lambda .
$$

Definition (Solution to (Co-NCL))
Given an admissible Φ, a $V:[0, T] \times \mathcal{M}_{\mathrm{TV}}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{2 d} \rightarrow \mathcal{V}^{\text {as }}\left(\mathbb{R}^{2 d}\right)$, and function $\omega:[0, T] \times \mathcal{M}_{\mathrm{TV}}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{2 d} \rightarrow \mathbb{R}$, a pair $(\rho, \eta):[0, T] \rightarrow \mathcal{M}_{\mathrm{TV}}\left(\mathbb{R}^{d}\right) \times C_{b}\left(\mathbb{R}^{2 d}\right)$ is a solution to the initial value problem (Co-NCL) if, for any $\varphi \in C_{0}\left(\mathbb{R}^{d}\right)$,

1. $\rho \in A C\left([0, T], \mathcal{M}_{\mathrm{TV}}\left(\mathbb{R}^{d}\right)\right), \eta \in A C\left([0, T], C_{b}\left(\mathbb{R}_{,}^{2 d}\right)\right)$;
2. the maps $t \mapsto\left\langle\varphi, \bar{\nabla} \cdot F^{\Phi}\left[\mu, \eta_{t} ; \rho_{t}, V_{t}\left[\rho_{t}\right]\right]\right\rangle$ and $t \mapsto \omega\left[\rho_{t}\right]-\eta_{t} \in L^{1}([0, T])$;
3. for a.e. $t \in[0, T]$, every $(x, y) \in \mathbb{R}^{2 d}$, for any $\varphi \in C_{0}\left(\mathbb{R}^{d}\right)$, it holds

$$
\begin{align*}
\int_{\mathbb{R}^{d}} \varphi \mathrm{~d} \rho_{t} & =\int_{\mathbb{R}^{d}} \varphi \mathrm{~d} \rho_{0}+\frac{1}{2} \int_{0}^{t} \iint_{\mathbb{R}^{2 d}} \bar{\nabla} \varphi \mathrm{~d} F^{\Phi}\left[\mu, \eta_{s}, \rho_{s} ; V_{s}\left[\rho_{s}\right]\right] \mathrm{d} s \tag{14}\\
\eta_{t}(x, y) & =\eta_{0}(x, y)+\int_{0}^{t}\left(\omega\left[\rho_{s}\right](s, x, y)-\eta_{s}(x, y)\right) \mathrm{d} s . \tag{15}
\end{align*}
$$

A.E., L. Mikolás, On evolution PDEs on co-evolving graphs, preprint arXiv:2310.10350.

Different time-scales

Graph slower: $\tau=\varepsilon t$

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{t}=-\bar{\nabla} \cdot F^{\Phi}\left[\mu, \eta_{t} ; \rho_{t}, V_{t}\left[\rho_{t}\right]\right] \tag{S}\\
\partial_{t} \eta_{t}=\varepsilon\left(\omega\left[\rho_{t}\right]-\eta_{t}\right) \\
\rho_{0} \in \mathcal{M}_{T V}^{M}\left(\mathbb{R}^{d}\right), \eta_{0} \in C_{b}\left(\mathbb{R}_{d}^{2 d}\right)
\end{array}\right.
$$

Graph faster: $\tau=t / \varepsilon$

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{t}=-\bar{\nabla} \cdot F^{\Phi}\left[\mu, \eta_{t} ; \rho_{t}, V_{t}\left[\rho_{t}\right]\right] \tag{F}\\
\varepsilon \partial_{t} \eta_{t}(x, y)=-\eta_{t}(x, y)+\omega[\rho](t, x, y)
\end{array}\right.
$$

\Rightarrow

$$
\partial_{t} \rho_{t}=-\bar{\nabla} \cdot F^{\Phi}\left[\mu, \omega\left[\rho_{t}\right] ; \rho_{t}, V_{t}\left[\rho_{t}\right]\right]
$$

Take-home messages

- Evolution (nonlocal) PDEs on graphs (static and co-evolving)

Take-home messages

- Evolution (nonlocal) PDEs on graphs (static and co-evolving)
- Graph-to-local limit for the nonlocal interaction equation

Take-home messages

- Evolution (nonlocal) PDEs on graphs (static and co-evolving)
- Graph-to-local limit for the nonlocal interaction equation
- Connect Finslerian and Riemannian structures

Take-home messages

- Evolution (nonlocal) PDEs on graphs (static and co-evolving)
- Graph-to-local limit for the nonlocal interaction equation
- Connect Finslerian and Riemannian structures
- Graphs: space-discretisation
\Rightarrow nonlocal deterministic approximation for transport type equations

Take-home messages

- Evolution (nonlocal) PDEs on graphs (static and co-evolving)
- Graph-to-local limit for the nonlocal interaction equation
- Connect Finslerian and Riemannian structures
- Graphs: space-discretisation
\Rightarrow nonlocal deterministic approximation for transport type equations
- A. E., F. S. Patacchini, A. Schlichting, D. Slepčev, Nonlocal-interaction equation on graphs: gradient flow structure and continuum limit - ARMA (2021).
- A. E, F. S. Patacchini, A. Schlichting, On a Class of Nonlocal Continuity Equations on Graphs, EJAM (2023).
- A. E., G. Heinze, A. Schlichting, Graph-to-local limit for the nonlocal interaction equation, preprint arXiv:2306.03475.
- A.E., L. Mikolás, On evolution PDEs on co-evolving graphs, preprint arXiv:2310.10350.

Take-home messages

- Evolution (nonlocal) PDEs on graphs (static and co-evolving)
- Graph-to-local limit for the nonlocal interaction equation
- Connect Finslerian and Riemannian structures
- Graphs: space-discretisation
\Rightarrow nonlocal deterministic approximation for transport type equations
- A. E., F. S. Patacchini, A. Schlichting, D. Slepčev, Nonlocal-interaction equation on graphs: gradient flow structure and continuum limit - ARMA (2021).
- A. E, F. S. Patacchini, A. Schlichting, On a Class of Nonlocal Continuity Equations on Graphs, EJAM (2023).
- A. E., G. Heinze, A. Schlichting, Graph-to-local limit for the nonlocal interaction equation, preprint arXiv:2306.03475.
- A.E., L. Mikolás, On evolution PDEs on co-evolving graphs, preprint arXiv:2310.10350.

Thank you for your attention!

