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Knowledge & economic growth



Knowledge growth and the allocation of time!

Lucas and Moll’s setting:
e Consider a continuum of agents characterised by their knowledge level z € T and
the fraction of time s = s(z, t) € [0, 1] devoted to learning.
Possible choices of Z: T =R*" or Z = [0, Z].
e Agents either produce goods with the knowledge already obtained or meet others
to increase their knowledge level.

Knowledge exchange: When two agents with
knowledge level z and z’ meet, their post-meeting
knowledge corresponds to

z* = max(z, z’).

Figure 1: Image by Microsoft Al
Image Creator

IR. E. Lucas Jr and B. Moll. Knowledge growth and the allocation of time. Journal of Political Economics, 2014



Agent dynamics

for the distribution of agents f = f(z, t):

0if(z,1) = —als(z, O)f(z. 1) | Ty dy  +(zt) /O * alsy, )F(y, ) dy

loss due to increase of knowledge level  gain due to knowledge gain of agents with lower level

where o = a(s) is the
For example:

a(s) = aps”, ne(0,1).
Individual productivity y(t):
y(t) = (time spent working) x (knowledge level) = (1 — s(z, t))z

total earnings in an economy

Y(t) = /OOO [1— s(z, )] zf(z, t) dz.



How much time should one spend on learning ?

Agent with knowledge level x maximises their earnings by choosing the optimal
s =s(z,t):

V(x,t') := max ‘/t/ / 175(2 t))zpx(z, t) dzdt],

sES
with S = {s: Z x [0, T] — [0,1]}, r € RT subject to
Orpx(z,t) = —a(s)px(z, t)/ fy,t) dy+f(z,t)/O a(s)px(y, t) dy

with px(z,t') = ox.

for the value function V = V(z, t):
0:V(z,t) — rV(z,t)

+ max[(1~ s(z, 1)z + a(s) /OO[V(y, )~ V(z, 0]y, ) dy] =0,

z



The full Boltzmann mean field game (BMFG) model

0¢f(z,t) = —a(S(z, t))f(z, t) /00 f(y, t)dy + f(z,t) /OZ a(S(y,t))f(y, t)dy.

0:V(z,t) — rV(z,t) =

— max |:(1 —s(z,t))z — a(s(z, t)) / [V(y,t) — V(z,t)]f(y,t) dy:|

sES
S(z,t) = arg max {(1 —s(z,t))z + a(s(z, t))/ [V(y,t) = V(z,t)]f(y,t) dy] ,

f(zv 0) = fO(z)v
V(z, T)=0.



Special case a = ag

BMFG system decouples:

max | (1 - s(z, )z + a(s) /OO[V(y, £) = V(z, )]f(y, t) dy

z

Boltzmann equation can be rewritten using the cdf F(z,t) = [ f(y,t)dy:
0tF(z,t) = —ap (1 — F(z,t)) F(z,t).
Then the function G(z,t) = 1 — F(z, t) satisfies the
0:G(z,t) = ap(1 — G(z,1))G(z, t).

Diffusive Fisher-KPP equations has travelling wave solutions.



Original BMFG model is rather simplistic....

the larger the difference between the knowledge levels, the lower
the learning rate.

More general agent dynamics:
0f(z,1) =f(z.1) [ alsty )y 0k (2) ay
— a(s(z, £)F(z, t)/ 0k (£) .

with an interaction function/learning rate k. For example
z —K
k(z,y) =86+ (1—90) <7> where 6 € (0,1) and k > 0.
y

or k(z,y) = pe=#1z=Yl with p, x > 0.

Let p = (1 — s(z,t))z, then we can replace the linear utility
U(p) = p by
1—

S
the logarithmic one U(p) = In p or the isoelastic one U(p) = fiC with ¢ € (0,1).



Generalised BMFG model

Fully coupled system:
emut—fzw/ s(v, ) k(2. ) F(y, £) dy
() flzt) [ K 2)(r0) dy,
0:V(z.0) — V(2 6) =~ max [U(p) + a(s) [ (Vi) = VL 0) fly, k(v 2)

ﬂzﬂ=a@g§PMﬂ+Mﬂ/m(W%ﬂ*V&J»ﬂ%ﬂHwﬂd4,

f(z,0) = fo(z)
V(z,T) =0,

where fj is the initial distribution of agents.



If f, has compact support....

Consider the Boltzmann type equation for a given learning function o = a(z, t):
¥4 z
0if(z,) = ~alz, O (2,1) [ F(t) dy +7(z.0) [ oy )F (v, ),
z 0
f(z,0) = fo(2),
on the interval T = [0, Z], where fy € L°°(Z) is a given probability density.
If a(z,t) > a > 0 and Z = argmax,supp(fy), then

f(-, t) —* dz.

Diribusonof agents o 101014




The full BMFG system

Assumptions:

(A1) Let the final data V/(-, T) be non-negative and non-decreasing.
(A2) Let the interaction function satisfy:

a:[0,1] = RT, a € €*([0,1]), «(0) =0, a/(0) = o0, o'’ < 0 and a monotone.

Theorem

Let fo(z) € L°°(Z) be a probability density and (A1) and (A2) be satisfied. If
lims_o (2—,2 < oo, then the fully coupled Boltzmann mean field game system on

T = R*t has a unique local in time solution.



Monotonicity of solutions

e Fixed point argument.
e Relies heavily on qualitative properties of solutions, in particular
e The value function V is a non-negative and non-decreasing function of the knowledge

level z for all times t > 0.
e The optimal learning time fraction S is a non-increasing function of the knowledge level

z for all times t > 0.




Endogenous growth theory




Endogenous growth theory

e Endogenous growth theory proposes that economic growth is correlated to
investments in human capital, innovation and knowledge.

e The 'performance’ of economies is generally measured using the gross domestic
product (GDP).

e The GDP of most developed countries has grown exponentially since World War
1.
Long-term real growth in US GDP

GDP adjusted for inflation (2005 dolas) 18712009

VisualizingEconomics.com

e Economists are interested in solutions which correspond to sustained/exponential
growth - so-called
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Balanced growth path solutions (BGPs)

Assume there exists a growth parameter v € R" and consider the re-scaling:
F(z,t) = e~ Tid(ze~t), V(z,t) = eMv(ze~7t) and s(z, t) = o(ze~ ).
Rescaled BMFG system in (v, ¢,0) = (v(x), d(x), o(x)) with x = e~ 7'z reads as:
—700) =16/ (x)x = 6() | alan))oy) dy — ale()e(x) [~ el
(=) + v (9x = max{ (1 = ohx-+ (o) [~ ) = V(o) }

where = = {o : R™ — [0, 1]} denotes the set of admissible controls.

Re-scaling results in

Y(t) = et /0 "1 = o ()]x(x)dx.



Existence of BGP solutions

Does such a growth parameter ~ exist ?



Existence of BGP solutions

The initial commutative distribution function F(z,0) = [ fo(z) dz has a ;
if there exist constants k,0 € R™ such that

. 1-F(z,0) _
L (P)
Lemma

Let (P) be satisfied. Then solutions F = F(z, t) to the Boltzmann equation have a
Pareto tail with the same decay rate 0 for all times t € [0, T].

Theorem

Let (P) be satisfied and oo = cvg. then there exists a unique BGP solution (¥, v,0) and
a scaling constant ~y given by

with ®(x) = /: #(y) dy.

1
—ad | f(z)dz, O(x)= ——
v aQ A O(Z) z (X) 1+kx—1/9



Existence of BGP solutions

Theorem

Let r > 6a(1) and k > 0, then the BGP system has a non-trivial solution satisfying
the Pareto-tail condition with k = %l;

Fixed points argument.
e Solve equations for (®,~) given (v, S).
e Solve equations for (v, S) and given (®,~).

degenerate solution:
v =0, Vi and S=0= ®(x)=1forx >0
r
= ¢(x) = do

Have to construct solutions ® that satisfy a Pareto tail condition with some k > 0.



Knowledge diffusion initiates growth

Achdou et al. postulated that (even in case of
compactly supported fy), with a growth parameter

Y= 2\/V /0 ~ a(o(y))e(y)dy-

where o corresponds to the diffusivity.
Later proven by Papanicolaou, et al. and Porretta and Rossi.

e The Fisher KPP equation (with diffusion) admits travelling wave solutions
G(z,t) = &(z — 1)

with a minimal wave speed v = 2,/vag.

e Travelling waves correspond to BGP solutions (in logarithmic variables).

ly. Achdou, F.J. Buera, J.-M. Lasry, P.-L. Lions and B. Mol, Phil. Trans. Roy. Soc. A, 2014; G. Papnicolaou, L.
Ryzhik and K. Velcheva, Nonlinearity (2021); A. Porretta and L. Rossi, Annales de I'lnstitute Henri Poincare C
(2022)



Numerical simulations

e Use an for the time-dependent problem as well as the BGP
system..

o We solve the systems on the interval Z = [0, Z] with no-flux boundary conditions.

e To exclude degenerate BGP solutions we set
¢o = 0.

e We use a finite difference discretization in space and approximate the integrals
using the trapezoidal rule.



The time-dependent solver

1. Given fy and S¥ solve

1
7(f;,k+1 _ fk) o

v
Y2 kil (2 2 k+1 4 2 ck+l
- ’ 12 (27,1 f, (Zi+% + Z,;%)fi +z= 1 £57)

1 )
i+3 i1 5 it1

v k41 k+1 k ck
+;(zi+%fi - R 'j1)zg1(f »5%),

for every tX = k7, k > 1, where g; is the approximation of the gain/loss term.
2. Update the maximizer SK.
3. Given the evolution of the density fK and the maximizer S¥ solve the HJB
equation
ARy
— VK = gy(SKHL, FRHL kL),

14
(Vi -2V + Vi) +

1 k+1 k
;(V,- -V )+§

backward in time, where g» is the approximation of the rhs.

4. Go to step (1) until convergence.



Time-dependent solutions
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(a) Evolution of the agent density f. (b) Overall productivity Y (t) = [(1 — s(z, t))zf dz.
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The BGP solver

1. Given ¢"t1 ~" and o" solve

2

UX:
(,,n+1 n+1 i n+1 n+1 n+1
xi(vi = v — 2 (viin —2v" +vY)

n_
(r_,yn)vp+1+ (’Y V)
! h
= —q(dn+1,v",0")

where @ is an approximation of the gain/loss term.

2. Compute the maximum ¢"*1 and update the growth parameter 4"+1 via

1 =2(v [ o™ ()em ) dy)

3. Given v", 0" and " solve

~ =)o = T gt — 6171 = (T = aloP)(a - 0)6™

14

ROy 9 — Oy +x )01 el =0,
as well as (7™ + 0™ 4 ... %qﬁ’ﬁrl)h =1.

The coefficients T; and ®; correspond to approximations of the integrals

Jo¥ ala(y))é(y)dy and [¢7 ¢(y)dy-

4. Go to (1) until convergence.

21



Simulation: BGP solutions in case of knowledge diffusion

(c) Agent distribution f for different dif-  (d) Optimal learning time o for different
fusivities diffusivities.

= = 00012
o

400!

100

Time.

(e) Overall production Y.

22



Simulation: comparison original vs BGP with diffusivity » = 0.05

Evolution of

5.5,
—Transient solution
5[|—BGP solution

(f) Agent distribution f

30 0 10 20 30 40 50

(g) Y(t) = (1 — s)zf(z,t) dz
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o If , then to the original MFG
e In the case of , then to the original MFG , and the
growth depends on the diffusion parameter.

° to the original BMFG system have . For

example
e The value function V is a non-negative and non-decreasing function of the knowledge

level z for all times t > 0.
e The optimal learning time fraction S is a non-increasing function of the knowledge level

z for all times t > 0.

24
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Limits to learning




General BMFG model

Bef(z,1) = F(2,t) /0 “ o (s(y, 1)) k(z,y)F(, 2) dy
~a(stz, ) f(z) [ ” Ky, 2)f (v, 1) dy,
0V(z.0) — V(2. 0) =~ max [U(p) + a(s) [ (Vi 0) = V(a0 fly, Ok(y.2)

S(z.0) = argmax |U(p) +a(s) [ (VI 1) = Vi(z 0) £y, Ok(y. ) dy |,

f(z,0) = fo(2)
V(z, T)=0,

with different learning rates k
z z\ "
k{=)=64+1-90)(—- where 6 >0, kK > 0,
y y
and utilities U:

1-¢
U(p) =por U(p) =Inpor U(p) = f_ c with ¢ € (0,1).

25



What we know so far for the general BMFG

e Existence and uniqueness of solutions for small times for all bounded learning
kernels k and for the linear as well as isoelastic utility U (not the logarithmic
one).

e The value function V is non-decreasing for all choices of k and U considered.

e The optimal learning time S is non-increasing for the linear and isoelastic utility

for certain parameter ranges of k.

e Numerical simulation show non-monotonic behaviour in case of the logarithmic
utility U(p) = In p.

26



Simulation: non-monotonic behaviour for U(p) = Inp

(h) Value function V (i) Optimal time fraction S

27



Local MFGs

Consider a general BMFG with a localised kernel k, in particular

K(z,y) = ek <ﬂ> ,

e

with k. being symmetric and satisfying some more assumptions, and ¢ < 1.

Formal limit € — 0 gives a local mean field game (omitting higher order terms)

Otf(z,t) = —0: (fz(z, t)a(s(z, t))) ,
OV (z,t) —rV(z,t) = — max [U((1 = 5s)z) + a(s(z, t))f(z, )0, V(z, t)].

28



Local MFGs

Introduce the control variable

ol ) = el A ), olE ) = e ("(Z’ t)>
with V:= {v: Ry — Ry}. Then

Bef(z, t) + 0:(F(z, )v(z, t)) = O,
8:V(z, 1) — rV(z, t) = — max [u ((1 e ("(Z’ ”)) z> + v(z, £)8: V(z, t)},

vev f(z,t)

which can be written as an optimal control problem or potential mean field game

r‘;neag/ /Oo ( Z’? z) f(z,t) dz dt

Otf(z,t) + 0, (v(z, t)f(z,t)) =0,

subject to

The function w(-,-) depends on the utility U and has to satisfy:

w(p,z) — pdpw(p,z) = —U((1— a~'(p))2), VzeER;.

29



Simulation: local MFG with linear utility

@ Vv (k) s
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e Existence of BGP solution to the general BMFG model.
o Numerical analysis for all systems.

e Existence of solutions to the local MFG.

31



The end

And a To-Do List:
e Existence of BGP solution to the general BMFG model.
o Numerical analysis for all systems.

e Existence of solutions to the local MFG.

Thank you very much for you attention
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