An algebraic view of the smallest strictly monotonic function

C. Gutiérrez

Department of Applied Mathematics

Mathematics Research Institute (*im*UVa)

University of Valladolid

Optimization Seminars

Center for Mathematical Modeling - U. de Chile November 4, 2020

Motivation

The concepts of solution of several optimization problems whose image set is a real topological linear space can be defined in the following way:

$$\bar{x}$$
 is a solution if $M(\bar{x}) \cap (-E) = \emptyset$

X is an arbitrary decision set

Y real topological linear space

 $M:X \rightrightarrows Y$

 $E \subset Y$ satisfies certain algebraic conditions (convex, free-disposal, coradiant,...)

Examples: vector optimization problems, vector equilibrium problems, vector variational inequality problems, vector complementarity problems

$$\bar{x}$$
 is a solution if $M(\bar{x}) \cap (-E) = \emptyset$

Example: vector optimization problems

$$\mathsf{Min}_{K}\{f(x):x\in\mathcal{S}\}\tag{VP}$$

$$f: X \to Y, \emptyset \neq S \subset X$$

$$\emptyset \neq K \subset Y$$
 convex cone

The decision maker's preferences are defined by the partial order \leq_{κ} :

$$y_1, y_2 \in Y$$
, $y_1 \leq_K y_2 \iff y_1 - y_2 \in -K$

A point $\bar{x} \in \mathcal{S}$ is an efficient (nondominated) solution of (VP) if

$$x \in S, f(x) \leq_K f(\bar{x}) \Rightarrow f(x) = f(\bar{x})$$

Equivalently,

$$(f(S) - f(\bar{x})) \cap (-K \setminus \{0\}) = \emptyset$$

$$\bar{x}$$
 is a solution if $M(\bar{x}) \cap (-E) = \emptyset$

Convex separation and linear scalarization: if $M(\bar{x})$ and E are convex and a separation theorem can be applied, then there exists $\lambda \in Y' \setminus \{0\}$ such that

$$\inf_{y \in M(\bar{x})} \lambda(y) \geq \sup_{e \in E} \lambda(-e) \quad \longrightarrow \quad \text{``scalar optimization''}$$

Nonconvex separation and nonlinear scalarization: If $\varphi: Y \to \mathbb{R} \cup \{\pm \infty\}$ satisfies

$${y \in Y : \varphi(y) < c} = -E$$

then

$$\bar{x}$$
 is a solution if $M(\bar{x}) \cap (-E) = \emptyset$

Nonconvex separation and nonlinear scalarization: If $\varphi: Y \to \mathbb{R} \cup \{\pm \infty\}$ satisfies

$$\{y \in Y : \varphi(y) < c\} = -E$$

$$\inf_{y \in M(\bar{x})} \varphi(y) \geq c \longrightarrow$$
 "scalar optimization"

Nonconvex separation functionals

If Y is a real locally convex Hausdorff topological linear space and $q \in Y \setminus \{0\}$, then we can consider the so-called smallest strictly monotonic functional $\varphi_E^q : Y \to \mathbb{R} \cup \{\pm \infty\}$ (Gerth-Weidner (1990), Luc (1989), Luenberger (1992), Pascoletti-Serafini (1984), Rubinov (1977),...)

$$\varphi_E^q(y) := \inf\{t \in \mathbb{R} : y \in tq - E\} \quad \forall y \in Y$$

If Y is a normed space, then we can consider the oriented distance $\Delta_{-E}:Y\to\mathbb{R}$ (Hiriart-Urruty (1979))

$$\Delta_{-E}(y) := d(y, -E) - d(y, Y \setminus (-E)) \quad \forall y \in Y$$

Basic properties (Göpfert et al. (2003))

$$D + [0, \infty) \cdot k^0 \subset D, \tag{2.22}$$

$$\varphi(y) := \inf\{t \in \mathbb{R} \mid (y, t) \in D'\} = \inf\{t \in \mathbb{R} \mid y \in tk^0 - D\}.$$
 (2.23)

Theorem 2.3.1. Let $D \subset Y$ be a closed proper set and $k^0 \in Y$ be such that (2.22) holds. Then φ is l.s.c., dom $\varphi = \mathbb{R}k^0 - D$,

$$\{y \in Y \mid \varphi(y) \le \lambda\} = \lambda k^0 - D \quad \forall \ \lambda \in \mathbb{R},$$
 (2.24)

and

$$\varphi(y + \lambda k^0) = \varphi(y) + \lambda \quad \forall y \in Y, \ \forall \lambda \in \mathbb{R}.$$
 (2.25)

Basic properties (Göpfert et al. (2003))

Suppose, furthermore, that

$$D + (0, \infty) \cdot k^0 \subset \text{int } D. \tag{2.28}$$

Then

(f) φ is continuous and

$$\{y \in Y \mid \varphi(y) < \lambda\} = \lambda k^0 - \text{int } D, \quad \forall \ \lambda \in \mathbb{R},$$
 (2.29)

$$\{y \in Y \mid \varphi(y) = \lambda\} = \lambda k^0 - \operatorname{bd} D, \quad \forall \ \lambda \in \mathbb{R}.$$
 (2.30)

(g) If φ is proper, then φ is B-monotone $\Leftrightarrow D + B \subset D \Leftrightarrow \operatorname{bd} D + B \subset D$. Moreover, if φ is finite-valued, then φ strictly B-monotone (i.e., $y_2 - y_1 \in B \setminus \{0\} \Rightarrow \varphi(y_1) < \varphi(y_2)) \Leftrightarrow D + (B \setminus \{0\}) \subset \operatorname{int} D \Leftrightarrow \operatorname{bd} D + (B \setminus \{0\}) \subset \operatorname{int} D$.

Basic properties (Flores-Bazán et al. (2015))

([9,10]), is the function $\xi_{q,S} \colon L \longrightarrow I\!\!R \cup \{\pm \infty\}$ defined by

$$\xi_{q,S}(y) := \inf\{t \in \mathbb{R} : y \in tq + S\},\tag{2}$$

Proposition 4.1 Let $\lambda \in \mathbb{R}$, $0 \neq q \in L$, and $\emptyset \neq A \subsetneq L$. The following assertions hold:

- (a) $\{y \in L : \xi_{q,A}(y) < \lambda\} = \lambda q + A IR_{++}q \text{ and } \lambda q + A \subseteq \{y \in L : \xi_{q,A}(y) \le \lambda\};$ thus, $\{y \in L : \xi_{q,A}(y) < 0\} = -IR_{++}q + A \text{ and } \{y \in L : \xi_{q,A}(y) < +\infty\} = IRq + A.$
- (b) $\lambda q + \text{intA} \subseteq \{ y \in L : \xi_{q,A}(y) < \lambda \}.$
- (c) $\{y \in L : \xi_{q,A}(y) \le \lambda\} \subseteq \lambda q + \operatorname{cl}(A \mathbb{R}_{++}q).$
- (d) $\{y \in L : \xi_{q,A}(y) = \lambda\} \subseteq \lambda q + \operatorname{cl}(A \mathbb{R}_{++}q) \setminus (A \mathbb{R}_{++}q).$

Motivation

First results concerning the linear approach (Zălinescu (1986), Torre-Popovici-Rocca (2011), Qiu-He (2013), Qiu (2014),...)

Zălinescu (1986)

<u>Proposition 1</u>. Let $K \subset X$ be a convex cone and $\overline{X} \in X$. Then X =

- = $K + R\widetilde{x}$ if and only if
- a) K is a linear subspace of codimension 1 and $\overline{x} \notin K$, or
- b) $\{\bar{x}, -\bar{x}\} \cap K^{i} \neq \emptyset$.

Algebraic interior

$$K^i := \{ x \in X : \forall v \in X, \exists \lambda > 0 \text{ s.t. } x + [0, \lambda]v \subset K \}$$

Qiu (2014)

Lemma 3.2. (Refer to [10,21,40,41,44].) Let $y \in Y$ and $r \in R$. Then we have:

- (i) $\xi_{k_0}(y) < r \Leftrightarrow y \in rk_0 \operatorname{vint}_{k_o}(D)$.
- (ii) $\xi_{k_0}(y) \le r \Leftrightarrow y \in rk_0 \operatorname{vcl}_{k_0}(D)$.
- (iii) $\xi_{k_0}(y) = r \Leftrightarrow y \in rk_0 (\operatorname{vcl}_{k_0}(D) \setminus \operatorname{vint}_{k_0}(D))$. In particular, $\xi_{k_0}(k_0) = 1$ and $\xi_{k_0}(0) = 0$.
- (iv) $\xi_{k_0}(y) \ge r \Leftrightarrow y \notin rk_0 \operatorname{vint}_{k_0}(D)$.
- (v) $\xi_{k_0}(y) > r \Leftrightarrow y \notin rk_0 \operatorname{vcl}_{k_0}(D)$.

Moreover, we have:

(vi)
$$\xi_{k_0}(y_1 + y_2) \le \xi_{k_0}(y_1) + \xi_{k_0}(y_2), \ \forall y_1, y_2 \in Y.$$

(vii)
$$\xi_{k_0}(y + \lambda k_0) = \xi_{k_0}(y) + \lambda, \ \forall y \in Y, \ \forall \lambda \in R.$$

(viii)
$$y_1 \leq_D y_2 \Rightarrow \xi_{k_0}(y_1) \leq \xi_{k_0}(y_2)$$
.

$$\begin{aligned} & \mathsf{vint}_{k_0} D := D + (0, +\infty) k_0, \\ & \mathsf{vcl}_{k_0} D := \{ x \in X : \forall \, \lambda > 0 \, \exists \, \lambda' \in [0, \lambda] \, \text{s.t.} \, \, x + \lambda' k_0 \in D \} \\ & = D \cup \{ x \in X : \exists \, \lambda > 0 \, \text{s.t.} \, \, x + (0, \lambda] k_0 \subset D \} \end{aligned}$$

Motivation

Aims of the seminar

- 1.- To study the smallest strictly monotonic functional in the linear setting
- 2.- As application, to state an Ekeland variational principle for a vector mapping

Preliminaries and algebraic tools

2 Smallest strictly monotonic functiona

Application: Ekeland variational principle for a vector mapping

Preliminaries and algebraic tools

2 Smallest strictly monotonic functional

3 Application: Ekeland variational principle for a vector mapping

Preliminaries and algebraic tools

2 Smallest strictly monotonic functional

Application: Ekeland variational principle for a vector mapping

Preliminaries and algebraic tools

2 Smallest strictly monotonic functional

Application: Ekeland variational principle for a vector mapping

Preliminaries

Y real linear space

$$\emptyset \neq E \subset Y, \, q \in Y \backslash \{0\}, \, \varphi_E^q : \, Y \to \mathbb{R} \cup \{\pm \infty\},$$

$$\varphi_E^q(y) = \inf\{t \in \mathbb{R} : y \in tq - E\}, \quad \forall y \in Y$$

Parameters: E, q

Algebraic tools

Y real linear space

$$\emptyset \neq F \subset Y, g \in Y$$

Algebraic interior

core
$$F := \{ y \in Y : \forall v \in Y, \exists \lambda > 0 \text{ s.t. } y + [0, \lambda]v \subset F \}$$

Vector closure by q

$$\operatorname{vcl}_q F := \{ y \in Y : \forall \lambda > 0 \,\exists \, \lambda' \in [0, \lambda] \text{ s.t. } y + \lambda' q \in F \}$$

Points from which the ray with direction q is not asymptotically contained in $Y \setminus F$

$$\operatorname{ovcl}_{a}^{+\infty} F := \{ y \in Y : \forall \lambda > 0 \,\exists \lambda' \in [\lambda, +\infty) \text{ s.t. } y + \lambda' q \in F \}$$

Properties

$$\begin{split} \varphi:Y &\to \mathbb{R} \cup \{\pm \infty\} \\ \operatorname{dom} \varphi &:= \{y \in Y: \varphi(y) < +\infty\} \\ S(\varphi,r,=) &:= \{y \in Y: \varphi(y) = r\}, \text{ for all } r \in \mathbb{R} \cup \{\pm \infty\} \\ \varphi \text{ is proper if } S(\varphi,-\infty,=) &= \emptyset \text{ and } \operatorname{dom} \varphi \neq \emptyset \end{split}$$

Theorem

(i)
$$\varphi_{E}^{q} = \varphi_{\mathrm{vcl}_{q}E}^{q}$$

(ii) dom
$$\varphi_F^q=\mathbb{R}q-E$$
 and $S(\varphi_F^q,-\infty,=)=\operatorname{ovcl}_q^{+\infty}(-E)$

(iii)
$$\varphi_E^q$$
 is proper if and only if $\operatorname{ovcl}_q^{+\infty}(-E)=\emptyset$

(iv)
$$\varphi_E^q$$
 is finite if and only if $\operatorname{ovcl}_q^{+\infty}(-E)=\emptyset$ and $Y=\mathbb{R}q-E$

Properties

$$arphi: Y o \mathbb{R} \cup \{\pm \infty\}$$

$$S(arphi, r, \mathcal{R}) := \{y \in Y : arphi(y) \mathcal{R}r\}, \text{ for all } r \in \mathbb{R} \text{ and for all } \mathcal{R} \in \{\leq, <, \geq, >\}$$

Theorem

(v)
$$\varphi_E^q(y+rq)=\varphi_E^q(y)+r$$
, for all $y\in Y$ and for all $r\in \mathbb{R}$ (translative function)

(vi)
$$S(\varphi_E^q, r, \mathcal{R}) = S(\varphi_E^q, 0, \mathcal{R}) + rq$$
, for all $\mathcal{R} \in \{\leq, <, =, \geq, >\}$ and for all $r \in \mathbb{R}$

(vii)
$$S(\varphi_E^q, 0, \leq) = (-\infty, 0]q - \text{vol } qE$$

(viii)
$$S(\varphi_E^q, 0, <) = (-\infty, 0)q - \operatorname{vcl}_q E$$

(ix)
$$S(\varphi_E^q, 0, =) = (-\operatorname{vcl}_q E) \setminus ((-\infty, 0)q - \operatorname{vcl}_q E)$$

$$(\mathsf{x})\;\mathcal{S}(\varphi_E^q,0,\geq)=\mathit{Y}\backslash((-\infty,0)\mathit{q}-\mathsf{vcl}_\mathit{q}E)$$

$$\emptyset \neq C \subset Y$$

$$y_1, y_2 \in Y, \quad y_1 \leq_C y_2 \iff y_1 - y_2 \in -C$$

 φ is C-nondecreasing if

$$y_1, y_2 \in Y, y_1 \leq_C y_2, y_1 \neq y_2 \Rightarrow \varphi(y_1) \leq \varphi(y_2)$$

Theorem The following statements are equivalent:

- (i) φ_F^q is *C*-nondecreasing
- (ii) $\operatorname{vcl}_{a}E + C \subset [0, +\infty)q + \operatorname{vcl}_{a}E$
- (iii) $E + C \subset [0, +\infty)q + \operatorname{vcl}_q E$

Properties

 φ is C-increasing if

$$y_1, y_2 \in Y, y_1 \leq_C y_2, y_1 \neq y_2 \Rightarrow \varphi(y_1) < \varphi(y_2)$$

Theorem Suppose that φ_F^q is finite. Then the following statements are equivalent:

- (i) φ_E^q is *C*-increasing
- (ii) $\operatorname{vcl}_q E + C \setminus \{0\} \subset (0, +\infty)q + \operatorname{vcl}_q E$

Observe that if φ_{F}^{q} is *C*-nondecreasing, then

$$S(\varphi_E^q, -\infty, =) - C \setminus \{0\} \subset S(\varphi_E^q, -\infty, =)$$

$$S(\varphi_F^q, +\infty, =) + C \setminus \{0\} \subset S(\varphi_F^q, +\infty, =)$$

Thus, if φ_F^q is not finite, then it cannot be *C*-increasing

Smallest strictly monotone functional

If $D \subset Y$ is a solid convex cone and $q \in \text{int } D$, then φ_D^q is $\text{int } D \cup \{0\}$ -increasing, since

$$\operatorname{vcl}_q D + \operatorname{int} D = \operatorname{int} D,$$

 $(0, +\infty)q + \operatorname{vcl}_q D = \operatorname{int} D.$

In addition,

$$S(\varphi_D^q, 0, <) = (-\infty, 0)q - \operatorname{vcl}_q D = -\operatorname{int} D$$

Thefore, for each int $D \cup \{0\}$ -increasing function $g: Y \to \mathbb{R}$ at \bar{y} (i.e., $g(y) < g(\bar{y})$ for all $y \leq_{\text{int } D \cup \{0\}} \bar{y}$, $y \neq \bar{y}$), we have

$$\{y \in Y : \varphi_D^q(y - \bar{y}) < 0\} = \bar{y} - \operatorname{int} D \subset \{y \in Y : g(y) < g(\bar{y})\}.$$

Properties

Preliminaries and algebraic tools

 φ is positively homogeneous if $\varphi(\lambda y) = \lambda \varphi(y)$, for all $y \in Y$ and $\lambda > 0$ φ is convex if $\varphi(\alpha y_1 + (1 - \alpha)y_2) \le \alpha \varphi(y_1) + (1 - \alpha)\varphi(y_2)$, for all $y_1, y_2 \in Y$ and $\alpha \in (0,1)$

In the previous definition it is assumed $+\infty - \infty = -\infty + \infty = +\infty$

Theorem $\emptyset \neq E \subset Y, q \in Y \setminus \{0\}$

- (i) If $\operatorname{vcl}_q E$ is a cone, then φ_F^q is positively homogeneous
- (ii) If $\operatorname{vcl}_q E$ is convex, then φ_E^q is convex

If additionally we have that

$$\operatorname{vcl}_q E + (0, +\infty)q \subset \operatorname{vcl}_q E$$

then the following characterizations are true:

- (iii) φ_E^q is positively homogeneous if and only if $\operatorname{vcl}_q E$ is a cone
- (iv) φ_{E}^{q} is convex if and only if $vcl_{q}E$ is convex

Ekeland variational principle for a vector mapping

 $\emptyset \neq D \subset Y \setminus \{0\}$ convex cone.

is a partial order

Theorem $f: X \to Y$, (X, d) is a complete metric space, D is algebraic closed (vcl $_VD =$ D, for all $y \in Y$), $\varepsilon > 0$, $\bar{x} \in X$, $q \in D \setminus (-D)$

Suppose that

Preliminaries and algebraic tools

 $\{x \in X : f(x) \leq_D y\}$ is closed, for all $y \in Y$ (lower semicontinuity condition)

 $f(x) \not<_D f(\bar{x}) - \varepsilon q$, for all $x \in X$ (\bar{x} approximate solution)

Then, there exists $\hat{x} \in X$ such that

(i)
$$f(\hat{x}) + \varepsilon d(\bar{x}, \hat{x})q \leq_D f(\bar{x})$$

(ii)
$$x \in X$$
, $f(x) + \varepsilon d(x, \hat{x})q \leq_D f(\hat{x}) \Rightarrow x = \hat{x}$

Ekeland variational principle for a vector mapping

Theorem $f: X \to Y$, (X, d) is a complete metric space, D is algebraic closed, $\varepsilon > 0$, $\bar{x} \in X$, $g \in D \setminus (-D)$. Suppose that

 $\{x \in X : f(x) <_D y\}$ is closed, for all $y \in Y$ (lower semicontinuity condition)

$$f(x) \not\leq_D f(\bar{x}) - \varepsilon q$$
, for all $x \in X$ (\bar{x} approximate solution)

Then, there exists $\hat{x} \in X$ such that

(i)
$$f(\hat{x}) + \varepsilon d(\bar{x}, \hat{x})q \leq_D f(\bar{x})$$

(ii)
$$x \in X$$
, $f(x) + \varepsilon d(x, \hat{x})q \leq_D f(\hat{x}) \Rightarrow x = \hat{x}$

Proof $\varphi_D^q > -\infty$. Indeed, if $\varphi_D^q(y) = -\infty$ for a point $y \in Y$ then

$$y \in S(\varphi_D^q, -\infty, =) = \operatorname{ovcl}_q^{+\infty}(-D)$$

and there exists a sequence (λ_n) such that $\lambda_n \uparrow +\infty$ and $y + \lambda_n q \in -D$, for all n. Therefore, $q + (1/\lambda_n)y \in -D$, and so $q \in \text{vcl}_{V}(-D) = -D$, a contradiction

On the other hand, φ_D^q is *D*-nondecreasing (inclusion $E + C \subset [0, +\infty)q + \text{vcl } qE$ is fulfilled when E = C = D)

Ekeland variational principle for a vector mapping

Proof Moreover.

$$\begin{split} \mathcal{S}(\varphi_D^q,0,\leq) &= (-\infty,0]q - \operatorname{vcl}_q D = -D \\ \mathcal{S}(\varphi_D^q,0,<) &= (-\infty,0)q - \operatorname{vcl}_q D = (-\infty,0)q - D \end{split}$$

In particular, $\varphi_D^q(0) = 0$. Consider $g: X \to \mathbb{R} \cup \{+\infty\}$,

$$g(x) := \varphi_D^q(f(x) - f(\bar{x})), \quad \forall x \in X$$

Let $x \in X$ and $t \in \mathbb{R}$. We have that

$$g(x) \le t \iff \varphi_D^q(f(x) - f(\bar{x})) \le t \iff \varphi_D^q(f(x) - f(\bar{x}) - tq) \le 0$$
$$\iff f(x) - f(\bar{x}) - tq \le_D 0 \iff f(x) \le_D f(\bar{x}) + tq$$

From here, we see that g is proper, lower semicontinuous and $g(\bar{x}) - \varepsilon < g(x)$, for all $x \in X$, since

$$f(x) \not\leq_D f(\bar{x}) - \varepsilon q, \forall x \in X \Rightarrow g(x) > -\varepsilon = g(\bar{x}) - \varepsilon$$

Ekeland variational principle for a vector mapping

Proof By applying the Ekeland variational principle to g and \bar{x} we deduce that there exists a point $\hat{x} \in X$ such that

(i)
$$g(\hat{x}) + \varepsilon d(\bar{x}, \hat{x}) \leq g(\bar{x})$$

Preliminaries and algebraic tools

(ii)
$$x \in X, g(x) + \varepsilon d(x, \hat{x}) \le g(\hat{x}) \Rightarrow x = \hat{x}$$

Recall that φ_D^q is *D*-nondecreasing and

$$g(x) \le t \iff f(x) \le_D f(\bar{x}) + tq$$

Then, by (i) we obtain $f(\hat{x}) <_D f(\bar{x}) - \varepsilon d(\bar{x}, \hat{x})q$

Analogously, if there exists $x \in X$ such that $f(x) + \varepsilon d(x, \hat{x}) q <_D f(\hat{x})$, then

$$g(x) + \varepsilon d(x, \hat{x}) = \varphi_D^q(f(x) - f(\bar{x})) + \varepsilon d(x, \hat{x})$$

$$= \varphi_D^q(f(x) - f(\bar{x}) + \varepsilon d(x, \hat{x})q)$$

$$\leq \varphi_D^q(f(\hat{x}) - f(\bar{x}))$$

$$= g(\hat{x})$$

and by (ii) we deduce that $x = \hat{x}$

Nonconvex separation functionals

- C. GERTH, P. WEIDNER. Nonconvex separation theorems and some applications in vector optimization. *J. Optim. Theory Appl.* **67** (1990), 297–320
- J.-B. HIRIART-URRUTY. New concepts in nondifferentiable programming. Analyse non convexe (Proc. Colloq., Pau, 1977). *Bull. Soc. Math. France Mém.* **60** (1979), 57–85
- J.-B. HIRIART-URRUTY. Tangent cones, generalized gradients and mathematical programming in Banach spaces. *Math. Oper. Res.* **4** (1979), 79–97
- D.T. Luc. Theory of Vector Optimization. *Lecture Notes in Econom. and Math. Systems* **319**. Springer, Berlin, 1989.
- D.G. LUENBERGER. New optimality principles for economic efficiency and equilibrium. *J. Optim. Theory. Appl.* **75** (1992), 221–264
- A. PASCOLETTI, P. SERAFINI. Scalarizing vector optimization problems. *J. Optim. Theory Appl.* **42** (1984) 499–524
- A.M. Rubinov. Sublinear operators and their applications. *Russian Math. Surveys* **32** (1977) 115–175

F. FLORES-BAZÁN, F. FLORES-BAZÁN, S. LAENGLE. Characterizing efficiency on infinite-dimensional commodity spaces with ordering cones having possibly empty interior. *J. Optim. Theory Appl.* **164** (2015), 455–478

A. GÖPFERT, H. RIAHI, C. TAMMER, C. ZĂLINESCU. Variational Methods in Partially Ordered Spaces. Springer, Berlin (2003)

A.A. KHAN, C. TAMMER, C. ZĂLINESCU. Set-Valued Optimization. An Introduction with Applications. Springer, Berlin (2015)

- C. GUTIÉRREZ, V. NOVO, J.L. RÓDENAS-PEDREGOSA, T. TANAKA. Nonconvex separation functional in linear spaces with applications to vector equilibria. *SIAM J. Optim.* **26** (2016), 2677–2695
- J.-H. QIU. A pre-order principle and set-valued Ekeland variational principle. *J. Math. Anal. Appl.* **419** (2014) 904–937
- J.H. QIU, F. HE. A general vectorial Ekeland's variational principle with a p-distance. *Acta Math. Sin. (Engl. Ser.)* **29** (2013), 1655–1678
- D. La Torre, N. Popovici, M. Rocca. A note on explicitly quasiconvex set-valued maps. *J. Nonlinear Convex Anal.* **12** (2011) 113–118
- P. WEIDNER. Scalarization in vector optimization with arbitrary domination sets. *Optimization* **69** (2020) 1731–1750
- C. ZĂLINESCU. On a class of convex sets. *Comment. Math. Univ. Carolin.* **27** (1986) 543–549

Application

- C. GUTIÉRREZ. Ekeland's variational principles for vector equilibrium problems with solid ordering cones. *J. Appl. Numer. Optim.* **1** (2019), 253–265
- C. TAMMER. A generalization of Ekeland's variational principle. *Optimization* **25** (1992), 129–141

Thank you for your attention!

cesargv@mat.uva.es