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Motivation

The concepts of solution of several optimization problems whose image set is a real
topological linear space can be defined in the following way:

x̄ is a solution if M(x̄) ∩ (−E) = ∅

X is an arbitrary decision set

Y real topological linear space

M : X ⇒ Y

E ⊂ Y satisfies certain algebraic conditions (convex, free-disposal, coradiant,...)

Examples: vector optimization problems, vector equilibrium problems, vector
variational inequality problems, vector complementarity problems
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x̄ is a solution if M(x̄) ∩ (−E) = ∅

Example: vector optimization problems

MinK {f (x) : x ∈ S} (VP)

f : X → Y , ∅ 6= S ⊂ X

∅ 6= K ⊂ Y convex cone

The decision maker’s preferences are defined by the partial order ≤K :

y1, y2 ∈ Y , y1 ≤K y2 ⇐⇒ y1 − y2 ∈ −K

A point x̄ ∈ S is an efficient (nondominated) solution of (VP) if

x ∈ S, f (x) ≤K f (x̄)⇒ f (x) = f (x̄)

Equivalently,

(f (S)− f (x̄)) ∩ (−K\{0}) = ∅



Motivation

x̄ is a solution if M(x̄) ∩ (−E) = ∅

Convex separation and linear scalarization: if M(x̄) and E are convex and a separation
theorem can be applied, then there exists λ ∈ Y ′\{0} such that

inf
y∈M(x̄)

λ(y) ≥ sup
e∈E

λ(−e) −→ “scalar optimization”

Nonconvex separation and nonlinear scalarization: If ϕ : Y → R ∪ {±∞} satisfies

{y ∈ Y : ϕ(y) < c} = −E

then

inf
y∈M(x̄)

ϕ(y) ≥ c −→ “scalar optimization”



Motivation

x̄ is a solution if M(x̄) ∩ (−E) = ∅

Nonconvex separation and nonlinear scalarization: If ϕ : Y → R ∪ {±∞} satisfies

{y ∈ Y : ϕ(y) < c} = −E

inf
y∈M(x̄)

ϕ(y) ≥ c −→ “scalar optimization”

Nonconvex separation functionals

If Y is a real locally convex Hausdorff topological linear space and q ∈ Y\{0}, then we
can consider the so-called smallest strictly monotonic functional ϕq

E : Y → R ∪ {±∞}
(Gerth-Weidner (1990), Luc (1989), Luenberger (1992), Pascoletti-Serafini (1984),
Rubinov (1977),. . .)

ϕ
q
E (y) := inf{t ∈ R : y ∈ tq − E} ∀y ∈ Y

If Y is a normed space, then we can consider the oriented distance ∆−E : Y → R
(Hiriart-Urruty (1979))

∆−E (y) := d(y ,−E)− d(y ,Y\(−E)) ∀y ∈ Y
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Basic properties (Göpfert et al. (2003))
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Basic properties (Flores-Bazán et al. (2015))
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First results concerning the linear approach (Zălinescu (1986), Torre-Popovici-Rocca
(2011), Qiu-He (2013), Qiu (2014),. . .)

Zălinescu (1986)

Algebraic interior

K i := {x ∈ X : ∀ v ∈ X , ∃λ > 0 s.t. x + [0, λ]v ⊂ K}



Motivation

Qiu (2014)

vintk0 D:= D + (0,+∞)k0,

vcl k0 D:= {x ∈ X : ∀λ > 0∃λ′ ∈ [0, λ] s.t. x + λ′k0 ∈ D}

= D ∪ {x ∈ X : ∃λ > 0 s.t. x + (0, λ]k0 ⊂ D}



Motivation

Aims of the seminar

1.- To study the smallest strictly monotonic functional in the linear setting

2.- As application, to state an Ekeland variational principle for a vector mapping
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Preliminaries

Y real linear space

∅ 6= E ⊂ Y , q ∈ Y\{0}, ϕq
E : Y → R ∪ {±∞},

ϕ
q
E (y) = inf{t ∈ R : y ∈ tq − E}, ∀y ∈ Y

Parameters: E , q
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Algebraic tools

Y real linear space

∅ 6= F ⊂ Y , q ∈ Y

Algebraic interior

core F := {y ∈ Y : ∀ v ∈ Y , ∃λ > 0 s.t. y + [0, λ]v ⊂ F}

Vector closure by q

vcl qF := {y ∈ Y : ∀λ > 0 ∃λ′ ∈ [0, λ] s.t. y + λ′q ∈ F}

Points from which the ray with direction q is not asymptotically contained in Y\F

ovcl +∞
q F := {y ∈ Y : ∀λ > 0∃λ′ ∈ [λ,+∞) s.t. y + λ′q ∈ F}
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Properties

ϕ : Y → R ∪ {±∞}

domϕ := {y ∈ Y : ϕ(y) < +∞}

S(ϕ, r ,=) := {y ∈ Y : ϕ(y) = r}, for all r ∈ R ∪ {±∞}

ϕ is proper if S(ϕ,−∞,=) = ∅ and domϕ 6= ∅

Theorem

(i) ϕq
E = ϕ

q
vclqE

(ii) domϕ
q
E = Rq − E and S(ϕq

E ,−∞,=) = ovcl +∞
q (−E)

(iii) ϕq
E is proper if and only if ovcl +∞

q (−E) = ∅

(iv) ϕq
E is finite if and only if ovcl +∞

q (−E) = ∅ and Y = Rq − E
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Properties

ϕ : Y → R ∪ {±∞}

S(ϕ, r ,R) := {y ∈ Y : ϕ(y)Rr}, for all r ∈ R and for all R ∈ {≤, <,≥, >}

Theorem

(v) ϕq
E (y + rq) = ϕ

q
E (y) + r , for all y ∈ Y and for all r ∈ R (translative function)

(vi) S(ϕq
E , r ,R) = S(ϕq

E , 0,R) + rq, for all R ∈ {≤, <,=,≥, >} and for all r ∈ R

(vii) S(ϕq
E , 0,≤) = (−∞, 0]q − vcl qE

(viii) S(ϕq
E , 0, <) = (−∞, 0)q − vcl qE

(ix) S(ϕq
E , 0,=) = (−vcl qE)\((−∞, 0)q − vcl qE)

(x) S(ϕq
E , 0,≥) = Y\((−∞, 0)q − vcl qE)
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Properties

∅ 6= C ⊂ Y
y1, y2 ∈ Y , y1 ≤C y2 ⇐⇒ y1 − y2 ∈ −C

ϕ is C-nondecreasing if

y1, y2 ∈ Y , y1 ≤C y2, y1 6= y2 ⇒ ϕ(y1) ≤ ϕ(y2)

Theorem The following statements are equivalent:

(i) ϕq
E is C-nondecreasing

(ii) vcl qE + C ⊂ [0,+∞)q + vcl qE

(iii) E + C ⊂ [0,+∞)q + vcl qE
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Properties

ϕ is C-increasing if

y1, y2 ∈ Y , y1 ≤C y2, y1 6= y2 ⇒ ϕ(y1) < ϕ(y2)

Theorem Suppose that ϕq
E is finite. Then the following statements are equivalent:

(i) ϕq
E is C-increasing

(ii) vcl qE + C\{0} ⊂ (0,+∞)q + vcl qE

Observe that if ϕq
E is C-nondecreasing, then

S(ϕq
E ,−∞,=)− C\{0} ⊂ S(ϕq

E ,−∞,=)

S(ϕq
E ,+∞,=) + C\{0} ⊂ S(ϕq

E ,+∞,=)

Thus, if ϕq
E is not finite, then it cannot be C-increasing
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Smallest strictly monotone functional

If D ⊂ Y is a solid convex cone and q ∈ int D, then ϕq
D is int D ∪ {0}-increasing, since

vcl qD + int D= int D,

(0,+∞)q + vcl qD= int D.

In addition,

S(ϕq
D , 0, <) = (−∞, 0)q − vcl qD = −int D

Thefore, for each int D ∪ {0}-increasing function g : Y → R at ȳ (i.e., g(y) < g(ȳ) for
all y ≤int D∪{0} ȳ , y 6= ȳ ), we have

{y ∈ Y : ϕq
D(y − ȳ) < 0} = ȳ − int D ⊂ {y ∈ Y : g(y) < g(ȳ)}.
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Properties

ϕ is positively homogeneous if ϕ(λy) = λϕ(y), for all y ∈ Y and λ > 0

ϕ is convex if ϕ(αy1 + (1− α)y2) ≤ αϕ(y1) + (1− α)ϕ(y2), for all y1, y2 ∈ Y and
α ∈ (0, 1)

In the previous definition it is assumed +∞−∞ = −∞+∞ = +∞

Theorem ∅ 6= E ⊂ Y , q ∈ Y\{0}

(i) If vcl qE is a cone, then ϕq
E is positively homogeneous

(ii) If vcl qE is convex, then ϕq
E is convex

If additionally we have that

vcl qE + (0,+∞)q ⊂ vcl qE

then the following characterizations are true:

(iii) ϕq
E is positively homogeneous if and only if vcl qE is a cone

(iv) ϕq
E is convex if and only if vcl qE is convex
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Ekeland variational principle for a vector mapping

∅ 6= D ⊂ Y\{0} convex cone.

≤D is a partial order

Theorem f : X → Y , (X , d) is a complete metric space, D is algebraic closed (vcl y D =
D, for all y ∈ Y ), ε > 0, x̄ ∈ X , q ∈ D\(−D)

Suppose that

{x ∈ X : f (x) ≤D y} is closed, for all y ∈ Y (lower semicontinuity condition)

f (x) 6≤D f (x̄)− εq, for all x ∈ X (x̄ approximate solution)

Then, there exists x̂ ∈ X such that

(i) f (x̂) + εd(x̄ , x̂)q ≤D f (x̄)

(ii) x ∈ X , f (x) + εd(x , x̂)q ≤D f (x̂)⇒ x = x̂
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Ekeland variational principle for a vector mapping

Theorem f : X → Y , (X , d) is a complete metric space, D is algebraic closed, ε > 0,
x̄ ∈ X , q ∈ D\(−D). Suppose that

{x ∈ X : f (x) ≤D y} is closed, for all y ∈ Y (lower semicontinuity condition)

f (x) 6≤D f (x̄)− εq, for all x ∈ X (x̄ approximate solution)

Then, there exists x̂ ∈ X such that

(i) f (x̂) + εd(x̄ , x̂)q ≤D f (x̄)

(ii) x ∈ X , f (x) + εd(x , x̂)q ≤D f (x̂)⇒ x = x̂

Proof ϕq
D > −∞. Indeed, if ϕq

D(y) = −∞ for a point y ∈ Y then

y ∈ S(ϕq
D ,−∞,=) = ovcl +∞

q (−D)

and there exists a sequence (λn) such that λn ↑ +∞ and y + λnq ∈ −D, for all n.
Therefore, q + (1/λn)y ∈ −D, and so q ∈ vcl y (−D) = −D, a contradiction

On the other hand, ϕq
D is D-nondecreasing (inclusion E + C ⊂ [0,+∞)q + vcl qE is

fulfilled when E = C = D)
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Ekeland variational principle for a vector mapping

Proof Moreover,
S(ϕq

D , 0,≤) = (−∞, 0]q − vcl qD = −D

S(ϕq
D , 0, <) = (−∞, 0)q − vcl qD = (−∞, 0)q − D

In particular, ϕq
D(0) = 0. Consider g : X → R ∪ {+∞},

g(x) := ϕ
q
D(f (x)− f (x̄)), ∀x ∈ X

Let x ∈ X and t ∈ R. We have that

g(x) ≤ t ⇐⇒ ϕ
q
D(f (x)− f (x̄)) ≤ t ⇐⇒ ϕ

q
D(f (x)− f (x̄)− tq) ≤ 0

⇐⇒ f (x)− f (x̄)− tq ≤D 0 ⇐⇒ f (x) ≤D f (x̄) + tq

From here, we see that g is proper, lower semicontinuous and g(x̄) − ε < g(x), for all
x ∈ X , since

f (x) 6≤D f (x̄)− εq,∀x ∈ X ⇒ g(x) > −ε = g(x̄)− ε
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Ekeland variational principle for a vector mapping

Proof By applying the Ekeland variational principle to g and x̄ we deduce that there
exists a point x̂ ∈ X such that

(i) g(x̂) + εd(x̄ , x̂) ≤ g(x̄)

(ii) x ∈ X , g(x) + εd(x , x̂) ≤ g(x̂)⇒ x = x̂

Recall that ϕq
D is D-nondecreasing and

g(x) ≤ t ⇐⇒ f (x) ≤D f (x̄) + tq

Then, by (i) we obtain f (x̂) ≤D f (x̄)− εd(x̄ , x̂)q

Analogously, if there exists x ∈ X such that f (x) + εd(x , x̂)q ≤D f (x̂), then

g(x) + εd(x , x̂) = ϕ
q
D(f (x)− f (x̄)) + εd(x , x̂)

= ϕ
q
D(f (x)− f (x̄) + εd(x , x̂)q)

≤ ϕq
D(f (x̂)− f (x̄))

= g(x̂)

and by (ii) we deduce that x = x̂
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