Speaker: Sophie Aiken
University of California Santa Cruz
Date: December 02nd at 12:10 pm.
Abstract : Let $(M^n, [\hat{g}])$ be the conformal infinity of an asymptotically hyperbolic Einstein (AHE) manifold $(X^{n+1},g^+).$ We will take the scattering operator associated to the AHE filling in as the fractional conformal Laplacian. Equipped with fractional conformal Laplacians defined via the AHE manifold, we can define a fractional Yamabe problem, looking for a conformal metric of $(M^n,[\hat{g}])$ which has constant fractional scalar curvature. We will present some new developments on the fractional Yamabe problem assuming an AHE filling in.
Venue: DIM seminar room, Beauchef 851, 5th floor.
Zoom: https://uchile.zoom.us/j/96642349167?pwd=MkRVbWxzOFBUUXlCTWFicW0reWZ6dz09