Speaker: Roberto Capistrano-Filho
Universidade Federal de Pernambuco – Brasil
Date: Tuesday, October 10th, 2023 at 12 Santiago time
Venue: Sala John Von Neumann, 7th floor, Beauchef 851 / Online via Zoom
Chair: Rayssa Caju
Venue: Sala John Von Neumann, 7th floor, Beauchef 851 / Online via Zoom
Chair: Rayssa Caju
Venue: Sala de Seminarios, 5th floor, Beauchef 851 / Online via Zoom
Chair: Rayssa Caju
Venue: Sala de Seminarios, 5th floor, Beauchef 851 / Online via Zoom
Chair: Rayssa Caju
Venue: Sala de Seminarios, 5th floor, Beauchef 851 / Online via Zoom
Chair: Rayssa Caju
Venue: Online via Zoom / Sala de Seminarios, 5th floor, Beauchef 851
Chair: Rayssa Caju
Venue: Online via Zoom / Sala de Seminarios, 5th floor, Beauchef 851
Chair: Rayssa Caju
Abstract: We consider the long-time dynamics of large solutions to a special class of evolution equations. Using virial techniques, we describe regions of space where every solution in a suitable Sobolev space must decay to zero along sequences of times. Moreover, in the case of interior regions, we prove decay for a sequence of times. The classes of nonlocal dispersive equations which we will treat are as follows:
$$\begin{cases} \partial_t u + L_\alpha u + u\partial_x u=0, \quad x,t\in \mathbb{R}, \\u(x,0)=u_0(x)\end{cases}$$
where \(\alpha>0\),and the operator \(L_\alpha\) is the Fourier multiplier operator by a real-valued odd function belonging to \((C^1(\mathbb{R})\cap C^\infty(\mathbb{R}^∗))\). These classes contain, in particular, the following equations: the fractional KdV, Benjamin-Ono and the Intermediate Long Wave, for example.
Venue: Online via Zoom / Sala de Seminarios, 5th floor, Beauchef 851
Chair: Rayssa Caju
Abstract: Es bien conocido que las Propiedades de Continuación Única juegan un importante papel en el estudio de los problemas de controlabilidad y problemas inversos. También es natural preguntarse que sucede con las discretizaciones de las EDP y sus propiedades. En esta charla mostraremos que al considerar la discretización, en diferencias finitas, de operadores diferenciales, este tipo de propiedades pierden su validez, por lo que es válido preguntarse si resultados de controlabialidad, identificabilidad y estabilidad en los problemas inversos siguen siendo válidos en el caso discreto. Aquí damos una respuesta afirmativa a esta pregunta, pero la validez de estos resultados dependen de ciertos parámetros relacionados con el tamaño de la malla.
Venue: Online via Zoom / Sala de Seminarios, 5th floor, Beauchef 851
Chair: Rayssa Caju
Abstract: We propose in this work a new system of equations modeling Tsunamis. It is a coupled system accounting for both water compressibility and viscoelasticity of the earth. Adding these latter physical effects is responsible for the closest-to-reality time arrival predictions (among existing models), capturing the negative peak before the main wave hump, and the exhibition of the negative dispersion phenomena. This comes in remarkable agreement with previous experiments and studies on the topic. The system is also delivered in a relatively simple mathematical structure of equations that is easy to solve numerically. Further well posedness results are also investigated.
Venue: Online via Zoom / Sala de Seminarios, 5th floor, Beauchef 851
Chair: Rayssa Caju
Abstract: The hydrostatic Euler equations are derived from the incompressible Euler equations by means of the hydrostatic approximation. Among the different stability criteria that arise in the study of linear stability for the incompressible Euler equations, we can mention Rayeligh’s stability criterion, which gives rise to the local Rayleigh condition. Linear and nonlinear instability of the hydrostatic Euler equations around certain shear flows is well-known, as well as the finite time blow-up of certain solutions that do not satisfy the local Rayleigh condition. On the other hand, local existence, uniqueness and stability has been established in Sobolev spaces under the local Rayleigh condition. In this talk I will present new features of the \(H^4\) solution to the hydrostatic Euler equations under the local Rayleigh condition; under certain assumptions, we establish the dichotomy between the breakdown of the local Rayleigh condition and the formation of singularities. Additionally, we get necessary conditions for global solvability in Sobolev spaces. As a byproduct, we show the $x-$independence of stationary solutions. Our proof relies on new monotonicity identities for the solution to the hydrostatic Euler equations under the local Rayleigh condition.
Venue: Online via Zoom / Sala John Von Neumann, 7th floor, Beauchef 851
Chair: Rayssa Caju